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Lecture 1

Introduction and Motivation

Before formally introducing supersymmetric gauge theories and spin chains, I will give
a brief overview about the two subjects and the relations between them, to provide the
student with a sketch of the big picture.

Gauge theories are the foundation of our understanding of nature. Of the fundamental
interactions, the electroweak force and QCD (strong interaction) are described by quantum
gauge theories. Understanding gauge theories as well as possible is a top priority. Despite
decades of research, there are still open problems remaining, in particular regarding their
non-perturbative behavior and confinement. One way of rendering quantum gauge theories
more tractable is to introduce supersymmetry.

Supersymmetry is a symmetry relating bosons and fermions. Each particle has a super-
partner of the opposite statistics. We speak about extended supersymmetry when we have
more than one set of supersymmetry generators and superpartners (e.g. N = 2, N = 4
supersymmetry). Supersymmetry has not yet been observed in nature. It must necessarily
be broken, as otherwise particles and their superpartners would have the same mass, which
is clearly not the case. Even so, the allowed regions for the superpartner masses that have
not yet been excluded by experiment are shrinking. Here, we will however not worry
ourselves with phenomenological concerns. We will be using supersymmetry as a tool to
gain insights into gauge theories, as a kind of laboratory for studying them. Supersymmetry
constrains a theory and makes it well-behaved. It has a number of desirable mathematical
properties, such as e.g. non-renormalisation theorems and protection of certain quantities
from quantum corrections. The more supersymmetry a theory has, the more constrained it
is, but a the same time, the less realistic it is from a phenomenological point of view (e.g.
N = 4 super Yang–Mills theory).

In recent years, N = 2 gauge theories have been a focus of interest. Seiberg and Witten
(1994) showed that N = 2 SYM theory can be solved completely at the quantum level. It is
possible to construct an exact low energy Lagrangian and the exact spectrum of BPS states.
It displays moreover a strong/weak duality and has a rich algebraic structure surviving
quantum corrections.

In the following, we will be particularly interested in deformations of supersymmetric
gauge theories that preserve some of the supersymmetry and in particular preserve its
useful properties. There will be two types of deformation of relevance:

• mass deformations (e.g. twisted mass deformations in 2D).

• Ω–type deformations.
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Lecture 1. Introduction and Motivation

In the Ω–deformation, deformation parameters εi are introduced which break Poincaré
symmetry. It was introduced by Nekrasov (2004) as a calculational device for a localization
calculation of the instanton sum of N = 2 SYM. However, it is also interesting to study
Ω–deformed gauge theories in their own right.

We will see later on that these deformed gauge theories are intimately connected with
integrable systems.

Integrable models are exactly solvable models of many-body systems in statistical me-
chanics or solid state physics. These models are inherently discrete (lattice models). With
some exceptions, most known integrable models are one-dimensional.

In 1931, Hans Bethe solved the XXX1/2 or Heisenberg spin chain. His ansatz can
be generalized to many more systems and is the basis of the field of integrable systems.
Colloquially, people often equate “Bethe-solvable” with “integrable”, but the set of integrable
models is marginally bigger.

The example we will be mostly concerned with is the one of a 1d ferromagnet. Here,
one studies a linear chain of L identical atoms with only next-neighbor interactions. Each
atom has one electron in an outer shell (all other shells being complete). These electrons
can either be in the state of spin up (↑) or down (↓). At first order, the Coulomb- and
magnetic interactions result in the exchange interaction in which the states of neighboring
spins are interchanged:

↑↓ ↔ ↓↑ (1.1)

In a given spin configuration of a spin chain, interactions can happen at all the anti-parallel
pairs. For simplicity, we will be studying the periodic chain. Bethe posed himself the
question of finding the spectrum and energy eigenfunctions of this spin chain. We will
study his ansatz in detail in the next chapter. His method is a little gem and studying it is
likely to lift the morale of any theoretical physicist!

There are many generalizations to this simplest of all spin chains which can still be
solved by versions of Bethe’s ansatz:

• different boundary conditions: periodic, anti-periodic, open, kink, . . . .

• anisotropic models: XXY chain, where the z-direction is singled out by a magnetic
field in this directions, XYZ model.

• different choice of symmetry group. The spin 1/2 spin chain corresponds to SU(2),
but any Lie group or even supergroup can be chosen instead.

• for the rank of the symmetry group r > 1, there are more particle species on the
chain, e.g. ↑, ↓, ◦ (hole) of the tJ–model, where ↑, ↓ are fermionic while ◦ is bosonic.

• each site of the spin chain can carry a different representation of the symmetry group.

• on each site another parameter, the so-called inhomogeneity can be turned on.

The relations between integrable models and supersymmetric gauge theories are a
very interesting subject and active research topic. There are several examples of these
connections, e.g.

• 2d gauge/Bethe correspondence: N = (2, 2) gauge theories in 2d are related to
Bethe-solvable spin chains.

• 4d gauge/Bethe correspondence: Ω–deformed N = 2 supersymmetric gauge theories
are related to quantum integrable models.
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Lecture 1. Introduction and Motivation

• Alday–Gaiotto-Tachikawa (AGT) correspondence: Ω–deformed super Yang–Mills theory
in 4d is related to Liouville theory.

In these lectures, we will concentrate on the 2d gauge/Bethe correspondence (Nekrasov–
Shatashvili). We will match the parameters of a spin chain to those of N = (2, 2) su-
persymmetric gauge theories. It will turn out that the full (Bethe) spectrum of the spin
chain corresponds one-to-one to the supersymmetric ground states of the corresponding
gauge theories. In order to understand this correspondence, we first need to introduce the
following concepts in the course of the coming lectures:

Spin Chain:

• parameters of a general spin
chain

• Bethe ansatz equations

• Yang–Yang counting
function

Supersymmetric gauge theories:

• N = (2, 2) gauge theories

• twisted mass deformation

• low energy effective action, in particular
the effective twisted superpotential

• equation for the ground states
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Lecture 2

Spin Chains and the Bethe Ansatz

As discussed in the introduction, we want to find the energy eigenfunctions and eigenvalues
of a 1d magnet. Consider a closed chain of identical atoms with each one external electron
which can be in the state of spin up or down and only next-neighbor interactions — the
XXX1/2 spin chain. Its Hamiltonian (Heisenberg 1926) is given by

H = −J
L

∑
n=1

Pn,n+1, (2.1)

where J is the exchange integral1 and Pn,n+1 is the permutation operator of states at
positions n, n + 1. Let us write down the spin operator at position n on the spin chain:

~Sn = (Sx
n, Sy

n, Sz
n) =

1
2~σn, (2.2)

where σn are the Pauli matrices for spin 1/2. In terms of the spin operators, the permutation
operator is given by

Pn,n+1 = − 1
2 (1 +~σn~σn+1). (2.3)

In terms of the spin operators, the Hamiltonian (2.1) becomes

H = −J
L

∑
n=1

~Sn~Sn+1

= −J
L

∑
n=1

1
2

(
S+

n S−n+1 + S−n S+
n+1

)
+ Sz

nSz
n+1,

(2.4)

where S± = Sx
n ± iSy

n are the spin flip operators. The term in parentheses corresponds to
the exchange interaction which exchanges neighboring spin states.

The spin flip operators act as follows on the spins:

S+
k | . . . ↑ . . . 〉 = 0, S+

k | . . . ↓ . . . 〉 = | . . . ↑ . . . 〉,
S−k | . . . ↑ . . . 〉 = | . . . ↓ . . . 〉, S−k | . . . ↓ . . . 〉 = 0,

Sz
k| . . . ↑ . . . 〉 = 1

2 | . . . ↑ . . . 〉, Sz
k| . . . ↓ . . . 〉 = − 1

2 | . . . ↓ . . . 〉.
(2.5)

The spin operators have the following commutation relations:

[Sz
n, S±n′ ] = ±S±n δnn′ , [S+

n , S−n′ ] = 2Sz
nδnn′ . (2.6)

For the closed chain, the sites n and n + L are identified:

~SL+1 = ~S1. (2.7)

1−J > 0: ferromagnet, spins tend to align, −J < 0: anti-ferromagnet, spins tend to be anti-parallel.
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Lecture 2. Spin Chains and the Bethe Ansatz

So far, we have discussed the isotropic spin chain. In the anisotropic case, a magnetic field
is turned on in the z-direction:

H∆ = −J
L

∑
n=1

Sx
nSx

n+1 + Sy
nSy

n+1 + ∆(Sz
nSz

n+1 − 1
4 ). (2.8)

This is the XXZ spin chain. ∆ is the anisotropy parameter, where ∆ = 1 is the isotropic case.
The most general model in this respect is the XYZ spin chain:

H∆, Γ = −
L

∑
n=1

JxSx
nSx

n+1 + Sy
nSy

n+1 + Sz
nSz

n+1. (2.9)

It has two anisotropy parameters ∆, Γ which fulfill the ratios

Jx : Jy : Jz = 1− Γ : 1 + Γ : ∆. (2.10)

In the following, we will however concentrate on the isotropic case.
Let us define the ferromagnetic reference state

| ↑↑ . . . ↑↑〉 = |Ω〉. (2.11)

H acts on a Hilbert space of dimension 2L, given that each site on the chain can be in one
of two states, which is spanned by the orthogonal basis vectors

|Ω(n1, . . . , nN)〉 = S−n1
. . . S−nN

|Ω〉, (2.12)

which are vectors with N down spins (0 ≤ N ≤ L) in the positions n1, . . . , nN, where we
always take 1 ≤ n1 < n2 < · · · < nN ≤ L.

In order to diagonalize the Heisenberg model, two symmetries will be of essential
importance:

• the conservation of the z–component of the total spin,

[H, Sz] = 0, Sz =
L

∑
n=1

Sz
n. (2.13)

This remains also true for the XXZ spin chain Hamiltonian H∆.

• the translational symmetry, i.e. the invariance of H with respect to discrete trans-
lations by any number of lattice spacings. This symmetry results from the periodic
boundary conditions we have imposed.

As the exchange interaction only moves down spins around, the number of down spins in
a basis vector is not changed by the action of H. Acting with H on |Ω(n1, . . . , nN)〉 thus
yields a linear combination of basis vectors with N down spins. It is therefore possible to
block-diagonalize H by sorting the basis vectors by the quantum number Sz = L/2− N.

Let us start by considering the subsector with N = 0. It contains only one single basis
vector, namely |Ω〉, which is an eigenvector of H as there are no antiparallel spins for the
exchange interaction to act on:

H|Ω〉 = E0|Ω〉, E0 = −J L
4 . (2.14)

Next we consider the sector with N = 1. As the down spin can be in each of the lattice
sites, this subspace is spanned by

|Ω(n)〉 = S−n |Ω〉. (2.15)
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Lecture 2. Spin Chains and the Bethe Ansatz

In order to diagonalize this block, we must invoke the translational symmetry. We can
construct translationally invariant basis vectors as follows:

|ψ〉 = 1√
L

L

∑
n=1

eikn|Ω(n)〉, k =
2πm

L
, m = 0, 1, . . . , L− 1. (2.16)

The |ψ〉 with wave number k are eigenvectors of the translation operator with eigenvalue
eik and eigenvectors of H with eigenvalues

E = −J( L
4 − 1− cos k), (2.17)

or in terms of E0,
E− E0 = J(1− cos k). (2.18)

The |ψ〉 are so-called magnon excitations: the ferromagnetic ground state is periodically
perturbed by a spin wave with wave length 2π/k.

So far, we have block-diagonalized H and diagonalized the sectors N = 0, 1 by symmetry
considerations alone. The invariant subspaces with 2 ≤ N ≤ L/2 however are not
completely diagonalized by the translationally invariant basis.

In order to remedy this situation, we will now study Bethe’s ansatz, again for the case
N = 1.

Bethe ansatz for the one-magnon sector. We can write the eigenvectors of H in this
sector as

|ψ〉 =
L

∑
n=1

a(n)|Ω(n)〉. (2.19)

Plugging this into the eigenvalue equation results in a set of conditions for a(n):

2
[

E +
JL
4

]
a(n) = J [2a(n)− a(n− 1)− a(n + 1)] , n = 1, 2, . . . , L. (2.20)

On top of this, we have the periodic boundary conditions

a(n + L) = a(n). (2.21)

The L linearly independent solutions to the difference equation Eq. (2.20) are given by

a(n) = eikn, k =
2π

L
m, m = 0, 1, . . . , L− 1. (2.22)

Little surprisingly, these are the same solutions we had found before. But now we can apply
the same procedure to the case N = 2.

Bethe ansatz for the two-magnon sector. This invariant subspace has dimension L(L−
1)/2. We want to determine a(n1, n2) for the eigenstates of the form

|ψ〉 = ∑
1≤n1<n2≤L

a(n1, n2)|Ω(n1, n2)〉. (2.23)

Bethe’s preliminary ansatz is given by

a(n1, n2) = A ei(k1n1+k2n2) + A′ ei(k1n2+k2n1). (2.24)

The first term is called the direct term and represents an incoming wave, while the second
term is called the exchange term and represents an outgoing wave. Indeed, the expression
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Lecture 2. Spin Chains and the Bethe Ansatz

looks like the superposition of two magnons, however, the flipped spins must always be in
different lattice sites. Asymptotically, we can only have the direct and exchange terms for
two magnons. Bethe’s ansatz postulates that this asymptotic form remains true in general.

Let us now plug the eigenstates |ψ〉 of the form given in Eq. (2.24) into the eigenvalue
equation. There are two cases to consider separately, namely the two down spins not being
adjacent, and the two down spins being adjacent:

2(E− E0) a(n1, n2) = J [4 a(n1, n2) + a(n1 − 1, n2)− a(n1 + 1, n2) (2.25)

−a(n1, n2 − 1)− a(n1, n2 + 1)] , n2 > n1 + 1 ,
2(E− E0) a(n1, n2) = J [2a(n1, n2)− a(n1 − 1, n2)− a(n1, n2 + 1)] , n2 = n1 + 1.

(2.26)

Equations (2.25) are satisfied by a(n1, n2) of the form Eq. (2.24) with arbitrary A, A′, k1, k2
for both n2 > n1 + 1 and n2 = n1 + 1 if the energies fulfill

E− E0 = J ∑
j=1,2

(1− cos k j). (2.27)

Equation (2.26) on the other hand is not automatically satisfied. Subtracting equa-
tion (2.26) from equation (2.25) for the case n2 = n1 + 1 leads to N conditions, known as
the meeting conditions:

2 a(n1, n1 + 1) = a(n1, n1) + a(n1 + 1, n1 + 1). (2.28)

Clearly, the expressions a(n1, n1) have no physical meaning, as the two down spins cannot
be at the same site, but are defined formally by the ansatz Eq. (2.24). Thus the a(n1, n2)
solve Eq. (2.25), (2.26) if they have the form Eq. (2.24) and fulfill Eq. (2.28). Plugging
Eq. (2.24) into Eq. (2.28) and taking the ratio, we arrive at

A
A′

=: eiθ = − ei(k1+k2) + 1− 2 eik1

ei(k1+k2) + 1− 2 eik2
. (2.29)

We see thus that as a result of the magnon interaction, we get an extra phase factor in the
Bethe ansatz Eq. (2.24):

a(n1, n2) = ei(k1n1+k2n2+
1
2 θ12) + ei(k1n2+k2n1+

1
2 θ21), (2.30)

where θ12 = −θ21 = θ, or written in the real form,

2 cot θ/2 = cot k1/2− cot k2/2. (2.31)

k1, k2 are the momenta of the Bethe ansatz wave function. The translational invariance of
|ψ〉,

a(n1, n2) = a(n2, n1 + L) (2.32)

is satisfied if
eik1L = eiθ , eik2L = e−iθ , (2.33)

which, after taking the logarithm, is equivalent to

L k1 = 2πλ̃1 + θ, L k2 = 2πλ̃2 + θ, (2.34)

where λ̃i ∈ {0, 1, . . . , L− 1} are the Bethe quantum numbers which fulfill

k = k1 + k2 = 2π
L (λ̃1 + λ̃2). (2.35)
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Lecture 2. Spin Chains and the Bethe Ansatz

We have seen that the expression for the energies, Eq. (2.27), is reminiscent of two
superimposed magnons. The magnon interaction is reflected in the phase shift θ and the
deviation of the momenta k1, k2 from the one-magnon wave numbers. We will see that
the magnons either scatter off each other or form bound states. In the following lectures,
we will be mostly interested in the form of the Bethe equations themselves, and not so
much in their explicit solutions. But before treating the general N magnon case, we will
nonetheless quickly review the properties of the Bethe eigenstates for N = 2.

We need to identify all pairs (λ̃1, λ̃2) that satisfy the Bethe Equations (2.31) and (2.34).
Allowed pairs are restricted to 0 ≤ λ̃1 ≤ λ̃2 ≤ L− 1. Switching λ̃1 with λ̃2 interchanges k1
and k2 and leads to the same solution. L(L + 1)/2 pairs meet the restriction, however only
L(L− 1)/2 of them produce solutions, which corresponds to the size of the Hilbert space.
There are three distinct classes of solutions:

1. One of the Bethe quantum numbers is zero: λ̃1 = 0, λ̃2 = 0, 1, . . . , L− 1. There exists
a real solution for all N combinations k1 = 0, k2 = 2πλ̃2/L, θ = 0. These solutions
have the same dispersion relation as the one-magnon states in the subspace N = 1.

2. λ̃1, λ̃2 6= 0, λ̃2 − λ̃1 ≥ 2. There are L(L − 5)/2 + 3 such pairs and each gives a
solution with real k1, k2. These solutions represent nearly free superpositions of two
one-magnon states.

3. λ̃1, λ̃2 6= 0, λ̃1, λ̃2 are either equal or differing by unity. There are 2N − 3 such
pairs, but only N − 3 yield solutions. Most are complex, k1 := k/2 + iv, k2 :=
k/2− iv, θ := φ + iχ. These solutions correspond to two-magnon bound states. They
exhibit an enhanced probability that the two flipped spins are on neighboring sites.

The number of solutions adds up to the dimension of the Hilbert space. The first and
second class of solutions correspond to two-magnon scattering states.

Bethe ansatz for the N–magnon sector. We are finally ready to tackle the general
case with an unrestricted number N ≤ L of down spins. This subspace has dimension
L!/((L− N)!N!). The eigenstates have the form

|ψ〉 = ∑
1≤n1<···<nN≤L

a(n1, . . . , nN)|Ω(n1, . . . , nN)〉. (2.36)

Here, we have N momenta k j and one phase angle θij = −θji for each pairs (ki, k j). The
Bethe ansatz now has the form

a(n1, . . . , nN) = ∑
P∈SN

exp

(
i

N

∑
j=1

kp(j)nj +
i
2 ∑

i<j
θp(i)p(j)

)
, (2.37)

where P ∈ SN are the N! permutations of {1, 2, . . . , N}. From the eigenvalue equation, we
again get the two kinds of difference equations (the first for no adjacent down spins, the
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Lecture 2. Spin Chains and the Bethe Ansatz

second for one pair of adjacent down spins),

2[E− E0] a(n1, . . . , nN) = J
N

∑
i=1

∑
σ=±1

[a(n1, . . . , nN)− a(n1, . . . , ni+σ, . . . , nN)], (2.38)

if nj+1 > nj + 1, j = 1, . . . , N,

2[E− E0] a(n1, . . . , nN) = J
N

∑
i 6=jα,jα+1

∑
σ=±1

[a(n1, . . . , nN)− a(n1, . . . , ni+σ, . . . , nN)] (2.39)

+ J ∑
α

[2a(n1, . . . , nN)− a(n1, . . . , njα − 1, njα+1, . . . , nN)

− a(n1, . . . , njα , njα+1 + 1, . . . , nN)],

if njα + 1 = njα+1, nj+1 > nj + 1, j 6= jα.

The coefficients a(n1, . . . , nN) are solutions of Equations (2.38), (2.39) for the energy

E− E0 = J
N

∑
j=1

(1− cos k j) (2.40)

if they have the form Eq. (2.37) and fulfill the N meeting conditions

2 a(n1, . . . , njα , njα + 1, . . . , nN) = a(n1, . . . , njα , njα , . . . , nN)

+ a(n1, . . . , njα + 1, njα + 1, . . . , nN), (2.41)

for α = 1, . . . , N. This relates the phase angles to the (not yet determined) k j:

eiθij = − ei(ki+k j)+1−2 eiki

ei(ki+k j)+1−2 eikj
, (2.42)

or, in the real form

2 cot θij/2 = cot ki/2− cot k j/2, i, j = 1, . . . , N. (2.43)

Translational invariance, respectively the periodicity condition

a(n1, . . . , nN) = a(n2, . . . , nN , n1 + L) (2.44)

gives rise to

N

∑
j=1

kp(j)nj +
1
2 ∑

i<j
θp(i)p(j) =

1
2 ∑

i<j
θp′(i)p′(j) − 2πλp′(N) +

N

∑
j=2

kp′(j−1)nj + kp′(N)(n1 + L),

(2.45)

where p′(i − 1) = p(i), i = 1, 2, . . . , N and p′(N) = p(1). All terms not involving
p′(N) = p(1) cancel, we are therefore left with N relations

L ki = 2πλi + ∑
j 6=i

θij, (2.46)

with i = 1, . . . , N and λi ∈ {0, 1, . . . , L− 1}. We need to again find sets of Bethe quantum
numbers (λ1, . . . , λN) which lead to solutions of the Bethe equations (2.42), (2.46). Each
solution represents an eigenvector of the form Eq. (2.37) with energy (2.40) and wave
number

k =
2π

L

L

∑
i=1

λi. (2.47)
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Lecture 2. Spin Chains and the Bethe Ansatz

Similarly to the two magnon case, bound state solutions appear, this time also with three
or more magnons.

In order to find a clear interpretation of the Bethe ansatz, let us rewrite the N–particle
ansatz Eq. (2.37) as follows:

a(n1, . . . , nN) = ∑
P∈SN

exp

(
i
2 ∑

i<j
θp(i)p(j)

)
exp

(
i

N

∑
j=1

kp(j)nj

)

= ∑
P∈SN

A(kp(1), . . . , kp(N)) exp

(
i

N

∑
j=1

kp(j)nj

)
.

(2.48)

The coefficient A(kp(1), . . . , kp(N)) factorizes into pair interactions:

A(kp(1), . . . , kp(N)) = ∏
1≤i<j≤N

e
i
2 θij . (2.49)

We have seen that the two-body interactions are not free, they have a non-trivial scattering
matrix. The many-body collisions factorize, which means they happen as a sequence of two
magnon collisions. All Bethe-solvable systems are thus two-body reducible. This property
has to do with the fact that a spin chain is one-dimensional, so only neighboring down
spins can interact directly. There are in fact very few two-dimensional systems that are
exactly solvable.

To conclude this part, we will re-write the Bethe equations to give them a form which
is more commonly used in the literature and which we will need in the last part of this
lecture series. First, we introduce new variables, the so-called rapidities λi:

eik j =
λj +

i
2

λj − i
2

. (2.50)

Plugging them into the periodicity condition, we get(
λj +

i
2

λj − i
2

)L

=
N

∏
j 6=i

λi − λj + i
λi − λj − i

, i = 1, . . . , N. (2.51)

This Bethe equation encodes the periodic boundary condition. In can be generalized to
boundary conditions with a twist ϑ,

~SL+1 = e
i
2 ϑσz~S1e−

i
2 ϑσz : (2.52)(

λj +
i
2

λj − i
2

)L

= eiϑ
N

∏
j 6=i

λi − λj + i
λi − λj − i

, i = 1, . . . , N. (2.53)

The Bethe ansatz as it was presented in this lecture follows Bethe’s original treatment and is
referred to as the coordinate Bethe ansatz. It has the advantage that its physics is intuitively
very clear. It can be generalized to the XXZ spin chain, but not much beyond that. The
so-called algebraic Bethe ansatz is mathematically more elegant and much more powerful.
It uses concepts such as the Yang–Baxter equations, the Lax operator and the R–matrix and
relies heavily on the machinery of group theory. This goes beyond the scope of the present
lecture series.
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Lecture 2. Spin Chains and the Bethe Ansatz

As a last remark, we make the non-trivial observation that the Bethe equations (2.53)
describe the critical points of a potential, the so-called Yang–Yang counting function Y. We
can rewrite the Bethe equations as

e2πiv(λ) = 1. (2.54)

The one-form v = ∑N
j=1 vj(λ)dλj is closed and v = dY, with

Y(λ) =
L

2π

N

∑
i=1

x̂(2λi)−
1

2π

N

∑
i,j=1

x̂(λi − λj) +
N

∑
j=1

λj

(
nj −

ϑ

2π

)
, (2.55)

x̂(λ) = λ i
2

(
log(1− i

λ )− log(1 + i
λ )
)
+ 1

2 log(1 + λ2), (2.56)

where the ni are integers. The Bethe equations thus ultimately take the form

e2πdY(λ) = 1. (2.57)

Literature. This lecture follows largely [1], which itself follows Bethe’s original work [2].
The first chapter of [3] is also very useful as an introduction.
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Lecture 3

Supersymmetric Gauge Theories in
2D

This part follows closely sections 12.1, 12.2, 15.2 and 15.5 of the book Mirror Symmetry by
K. Hori et al [1].
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Lecture 4

Relations between Spin Chains and
Supersymmetric Gauge Theories

As we have seen in the introduction, there are a number of interesting relations between
supersymmetric gauge theories and integrable models. We will here concentrate on the
gauge/Bethe correspondence in 2d of Nekrasov and Shatashvili. This correspondence maps
the parameters of any Bethe solvable spin chain to a set of N = (2, 2) supersymmetric
gauge theories in 2d. We will see that the N–magnon Bethe spectrum is identified with the
supersymmetric ground states of a rank N gauge theory. Having learned in the previous
lectures how to obtain the Bethe equations that govern the spectrum of a spin chain and
how to obtain the ground states of the low energy effective gauge theory, we are ready to
tackle at least the simplest example of this correspondence:

Example: Spin 1/2 Heisenberg model - XXX1/2 spin chain. Recall the Bethe ansatz
equation for the N–magnon sector, Eq. (2.51):(

λi +
ı
2

λi − ı
2

)L

=
N

∏
j=1
j 6=i

λi − λj + i
λi − λj − i

, i = 1, . . . , N . (4.1)

We have seen that it is expressed equivalently by

e2πdY(λ) = 1, (4.2)

where Y us the Yang–Yang function, given explicitly by

Y(λ) =
L

2π

N

∑
i=1

(λi − i/2)(log(λi − i/2)− 1)− (λi + i/2)(log(−λi − i/2)− 1)

− 1
2π

N

∑
i,j=1

(λi − λj + i)(log(λi − λj + i)− 1) +
N

∑
j=1

λj

(
nj −

ϑ

2π

)
.

(4.3)

This result we now want to compare with the N = (2, 2) gauge theory with gauge group
U(Ñ), one adjoint mass m̃adj and L̃ fundamental and anti-fundamental fields Qi, Qi with
twisted masses m̃f, m̃f̄. The effective twisted superpotential for this theory is

W̃eff =
1

2π

Ñ

∑
i=1

L̃

∑
k=1

(σi + mf
k)(log(σi + mf

k)− 1)− (σi + mf̄
k)(log(−σi + mf̄

k)− 1)

− 1
2π

Ñ

∑
i,j=1

(σi − σj + madj)(log(σi − σj + madj)− 1)− iτ
Ñ

∑
j=1

σj,

(4.4)
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Lecture 4. Spin Chains and Supersymmetric Gauge Theories

E

N0 1 2 3 4

S+

S−

SU(2)
multiplet

gauge
theory

Figure 4.1: The SU(2) symmetry on the XXX1/2 spin chain for L = 4. The horizontal
arrows show the action of the S± operators, changing the magnon number N, preserving
the energy. The spectrum can be organized into multiplets of SU(2) (horizontal box) or by
magnon number (vertical box).

where the first term comes from the fundamental fields, the second from the anti-fundamental
fields, and the third from the adjoint fields. Comparing with Eq. (4.3), we find the two
expressions to be the same with the following identifications:

σi = λi, Ñ = N, (4.5)

mf
k = −i/2, mf̄

k = −i/2 (4.6)

madj = i, L̃ = L, (4.7)

t = 1
2π ϑ + in. (4.8)

The magnon number N corresponds to the number of colors of the U(N) gauge theory,
while the number of flavors corresponds to the length of the spin chain. Since we can
identify Y and W̃eff, the equations for the spectrum of the N–magnon sector and for the
ground states of the U(N) supersymmetric gauge theory are identified as well. The super-
symmetric ground states and the N–particle Bethe states are in one-to-one correspondence,
this is the main statement of the gauge/Bethe correspondence..

We have seen that in order to obtain the full spectrum of the spin chain, we must solve
the Bethe equations for all magnon subsectors, N = 0, 1, . . . , L. Taking the correspondence
seriously, we should thus also consider gauge theories with different numbers of colors
together, i.e. U(1), . . . , U(L). Let us consider the action of the symmetry group of the
integrable model. For concreteness, we take an XXX1/2 spin chain of length L = 4, see
Figure 4.1. We see that the S± operators of SU(2) act horizontally between states with
different N, preserving the energy. The full spectrum of the spin chain is thus organized
horizontally into SU(2) multiplets. The gauge/Bethe correspondence, on the other hand,
identifies states in an N–magnon subsector with the ground states of a gauge theory, slicing
the spectrum up vertically. The action of SU(2) is thus a symmetry between gauge theories
with different numbers of colors. This can bee seen with an obvious example: for the spin
chain, the physics is the same if we use the reference state |Ω〉 = | ↑ . . . ↑〉 or instead
| ↓ . . . ↓〉. The sector with N down spins starting with |Ω〉 and the one with L− N up spins
starting from the reference state | ↓ . . . ↓〉 are the same. The spectrum of the spin chain has
therefore a manifest N, L− N symmetry. This equivalence is reflected on the gauge theory
side as the Grassmannian duality. The vacuum manifold of the low energy effective gauge
theory corresponding to the XXX1/2 chain is the cotangent bundle of the Grassmannian
T∗Gr(N, L), where the Grassmannian is the collection of all linear subspaces of dimension
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Lecture 4. Spin Chains and Supersymmetric Gauge Theories

gauge theory integrable model

number of nodes in the
quiver

r r rank of the symmetry group

gauge group at a–th node U(Na) Na number of particles of species a

effective twisted
superpotential

W̃eff(σ) Y(λ) Yang–Yang function

equation for the vacua e2π d W̃eff = 1 e2πı d Y = 1 Bethe ansatz equation

flavor group at node a U(La) La effective length for the species a

lowest component of the
twisted chiral superfield

σ
(a)
i λ

(a)
i rapidity

twisted mass of the
fundamental field

m̃f(a)
k

ı
2 Λa

k + ν
(a)
k

highest weight of the representa-
tion and inhomogeneity

twisted mass of the
anti–fundamental field

m̃f̄(a)
k

ı
2 Λa

k − ν
(a)
k

highest weight of the representa-
tion and inhomogeneity

twisted mass of the adjoint
field

m̃adj(a) ı
2 Caa diagonal element of the Cartan

matrix

twisted mass of the
bifundamental field

m̃b(ab) ı
2 Cab non–diagonal element of the Car-

tan matrix

FI–term for U(1)–factor of
gauge group U(Na)

τa ϑ̂a boundary twist parameter for
particle species a

Table 4.1: Dictionary in the Gauge/Bethe correspondence.

N of a vector space of dimension L:

Gr(N, L) = {W ⊂ CL|dim W = N}, (4.9)

T∗Gr(N, L) = {(X, W), W ∈ Gr(N, L), X ∈ End(CL)|X(CL) ⊂W, X(W) = 0}. (4.10)

The Grassmannian duality states that there is an isomorphism between Gr(N, L) and
Gr(L− N, L), thus linking the ground states of the low energy U(N) and U(L− N) gauge
theories.

The integrable structure of the spin chain remains hidden on the gauge theory side
of the correspondence as long as the gauge theories with different numbers of colors are
considered separately. A mathematical framework that unifies these gauge theories in a
meaningful way is Ginzburg’s geometric representation theory.

We have studied only the simplest example of the correspondence involving the XXX1/2
spin chain, but the scope of the gauge/Bethe correspondence is much larger. In this lecture
series, we cannot make recourse to the algebraic Bethe ansatz and the full machinery of
group/representation theory to study the more general examples. We will nonetheless have
a quick look at the general dictionary between gauge theory and spin chain parameters,
see Table 4.1. In general, we are dealing with a quiver gauge theory, which can be
summarized by a graph, see Fig. 4.2. The black nodes represent gauge groups, arrows
between the nodes correspond to bifundamental fields, arrows from a node to itself indicate
adjoint fields, white nodes represent flavor groups and the dashed arrows between flavor
and gauge nodes represent fundamental and anti-fundamental fields. Using Table 4.1, the
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Lecture 4. Spin Chains and Supersymmetric Gauge Theories

U(La) U(Lb)

U(Na) U(Nb)
ı
2 Λa

k ± ν
(a)
k

ı
2 Λb

k ± ν
(b)
k

ı
2 Caa

ı
2 Cab

ı
2 Cba

ı
2 Cbb

Qa
k, Qa

k

Φa

Bab

Bba

Figure 4.2: Example quiver diagram for the Gauge/Bethe correspondence. Gauge groups
are labeled in black, matter fields in blue, the corresponding twisted masses in red.

x 0 1 2 3 4 5 6 7 8 9

D2–brane × × φ × σ

NS5–brane × × × × × ×
D4–brane × × × × ×

Table 4.2: Brane set-up for 2d gauge theory

values of the twisted masses that we recovered from the correspondence can be traced back
to the Cartan matrix of SU(2),

Cab =

(
2 −1

−1 2

)
, (4.11)

the fact that we had the fundamental representation at every site, so Λk = 1, and the
absence of inhomogeneities.

Advanced example: string theory construction for deformed gauge theories. In gen-
eral, gauge theories can be realized in string theory by placing branes into the ten dimen-
sional string theory background (bulk). A D–brane is an extended object in string theory on
which open strings can end with Dirichlet boundary conditions. A Dp–brane has p spatial
dimensions and and one time dimension. The fluctuations of a D–brane encode the degrees
of freedom of low energy gauge theory.

A two-dimensional gauge theory can be realized in two ways:

• by placing a D1–brane into the bulk.

• by placing a D2–brane between two parallel Neveu–Schwarz (NS) 5–branes.

The difference between the two possibilities is the amount of supersymmetry that is
preserved. The ten-dimensional background preserves maximally 32 real supercharges.
The D–branes break half of them. The NS5–branes break another half of them. We aim
to realize the gauge theory corresponding to the XXX1/2 spin chain. We use the following
(preliminary) brane set-up, see Table 4.2, where the x’s mark the directions in which the
branes are extended. In order to also capture the flavor group present in the gauge/Bethe
correspondence, we need to introduce a stack of L D4–branes. The NS5–branes are
localized in the directions 4567. Since the D2–brane is extended in a finite interval in x6,
the gauge theory is effectively two-dimensional. The D2 can move along the NS5–brane
in the directions x2, x3 and x8, x9. The fluctuations in these directions correspond to the
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Lecture 4. Spin Chains and Supersymmetric Gauge Theories

. . .

NS5(1) NS5(N) NS5(N+1)

D4 D2
D4

D2

N1
NN−1

NN

L1

LN

Figure 4.3: Brane cartoon for the U(N) model

x 0 1 2 3 4 5 6 7 8 9

(ρ1, θ1) (ρ2, θ2) (ρ3, θ3) (ρ4, θ4) v

fluxbrane ε1 ε2 ε3 ε4 ◦ ◦

Table 4.3: Coordinate names and ε–deformed directions. Circles denote periodic Melvin
directions.

complex scalar fields φ, σ of the gauge theory. A single D2–brane leads to a U(1) gauge
theory, while N coincident D-branes give rise to the gauge group U(N).

The brane set-up also encodes the symmetry group of the corresponding spin chain.
D2–branes suspended between two parallel NS5–branes corresponds to the symmetry group
SU(2). For SU(N), we need a set-up with N + 1 parallel NS5–branes with stacks of D2s
between them, see Figure 4.3. Let us study the matter content of the gauge theory. Open
strings beginning and ending on the same stack of D2s correspond to adjoint fields. Open
strings going from a stack of D2s to the neighboring stack correspond to bifundamental
fields, and open strings going from the D2s to the D4s correspond to the fundamental and
anti-fundamental fields.

The current string theory construction does not include twisted masses for the gauge
fields yet. In order to introduce them, we need to deform the ten-dimensional string theory
background.

In oder to describe the background, we divide ten dimensional flat space into four
planes each parameterized by a radial coordinate ρi and an angular coordinate θi, while the
x8, x9–directions form are periodic, see Table 4.3. Each of the four planes can in principle
be deformed via a deformation parameter εi. To introduce the deformation, we impose the
following identifications:{

x̃8 ' x̃8 + 2πR̃8n8

θk ' θk + 2πεR
k R̃8n8

{
x̃9 ' x̃9 + 2πR̃9n9

θk ' θk + 2πεI
kR̃9n9

(4.12)

where k = 1, 2, n8, n9 ∈ Z, εR,I
k ∈ R and θ1 = arctan x̃1/x̃0, θ2 = arctan x̃3/x̃2 are indepen-

dently 2π–periodic variables. The result is the so-called Melvin or fluxbrane background
with complex deformation parameters εk = εR

k + εI
k. In order to preserve part of the

supersymmetry, the εk have to fulfill the relation

∑±εk = 0. (4.13)
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Lecture 4. Spin Chains and Supersymmetric Gauge Theories

fluxtrap εi εj

D–brane × × × φi

Table 4.4: D–brane configuration in the fluxtrap corresponding to a twisted mass εi for the
field φi.

fluxtrap εi εj

D–brane × × × ×

Table 4.5: D–brane configuration in the fluxtrap corresponding to a Ω–deformed gauge
theory.

After performing two T–dualities in the periodic directions, we arrive at the fluxtrap
background. If for simplicity we set ε1 ∈ R, ε2 ∈ im R, ε3 = ε4 = 0, the bulk fields of this
background takes the form

d s2 = d ρ2
1 +

ρ2
1 d φ2

1 + d x2
8

1 + ε2
1ρ2

1
+ d ρ2

2 +
ρ2

2 d φ2
2 + d x2

9

1 + ε2
2ρ2

2
+

7

∑
k=4

(d xk)2, (4.14a)

B = ε1
ρ2

1

1 + ε2
1ρ2

1
d φ1 ∧ d x8 + ε2

ρ2
2

1 + ε2
2ρ2

2
d φ2 ∧ d x9 , (4.14b)

e−Φ =
√(

1 + ε2
1ρ2

1

) (
1 + ε2

2ρ2
2

)
, (4.14c)

where φk = θk − εR
k x̃8 − εI

k x̃9 are the new 2π–periodic angular coordinates. We see that
the following things have happened:

• the metric is no longer flat.

• a B–field has appeared.

• the dilaton is no longer constant.

The type of gauge theory deformation resulting from the fluxtrap background depends on
how the D–branes are placed into the fluxtrap with respect to the deformations in the bulk.
There are basically two possibilities, which can be combined.

• The background deformations being orthogonal to the brane world-volume gives rise
to mass-type deformations for the scalar fields encoding brane fluctuations in the
deformed directions1, see Table 4.4.

• When the background deformation happens on the brane world-volume, the effective
gauge theory receives an Ω–type deformation where Lorentz invariance is broken,
see Table 4.5.

The brane set-up for our 2d gauge theory in Table 4.2 is now supplemented by the
background deformation as shown in Table 4.6. The fluxtrap background pins the D2–
brane to the origin x2 = x3 = x4 = x5 = x7 = 0, thus the name "trap". When expanding
the Dirac–Born–Infeld action of the D2–brane, it turns out that the deformation parameter
ε1 = −ε2 = m acts as a twisted mass parameter for the resulting gauge theory. Thus
the above brane set-up in the fluxtrap background realizes the N = (2, 2) gauge theory
appearing in the gauge/Bethe correspondence.

1Deformed directions away from the brane world-volume without an associated scalar field result in
R–symmetries for the gauge theory.
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x 0 1 2 3 4 5 6 7 8 9

fluxtrap ε1 ε2 ◦ ◦
D2–brane × × φ × σ

NS5–brane × × × × × ×

Table 4.6: D2–brane set-up and its scalar fields in the fluxtrap background, ε1 = −ε2 = m

Literature. The 2d gauge/Bethe correspondence was introduced in [1, 2]. The dictionary
is explained in detail in [3, 4] and the string theory realization is summarized in the review
paper [5].
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