Problem Set 8: Scattering amplitudes in gauge theories

Discussion on Wednesday 28.05 13:45-14:30, HIT H 51
Prof. Dr. Jan Plefka \& Matteo Rosso

Exercise 14 - The triangle coefficients of the one-loop four point split helicity amplitude

In class we studied the split-helicity amplitude $A_{4}^{(1-l o o p)}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)$at the one-loop level. We derived the box coefficient to be

$$
c_{4}=s t A_{4}^{(\text {tree })}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right),
$$

from the study of 2-particle cuts in the t and s channel. Furthermore we arrived at the relation

$$
\begin{aligned}
& c_{3 ; a} \operatorname{Disc}(t) I_{3 ; a}+c_{3 ; b} \operatorname{Disc}(t) I_{3 ; b}+c_{2} \operatorname{Disc}(t) I_{2}= \\
& \frac{1}{\langle 23\rangle\langle 34\rangle\langle 41\rangle} \frac{1}{t^{2}}\left(\frac{\left.\langle 13\rangle\langle 2| l_{2} \mid 3\right]}{\left(l_{2}+p_{3}\right)^{2}}+\frac{\left.\langle 14\rangle\langle 2| l_{2} \mid 4\right]}{\left(l_{2}-p_{4}\right)^{2}}\right) \times \\
& \left.\quad \times\left[\left(4-n_{f}\right)\left(\langle 41\rangle^{2}\langle 2| l_{2} \mid 4\right]^{2}+\langle 23\rangle^{2}\langle 1| l_{2} \mid 3\right]^{2}\right) \\
& \left.\left.\left.\quad+\left(n_{s}-6\right)\langle 23\rangle\langle 41\rangle\langle 2| l_{2} \mid 4\right]\langle 1| l_{2} \mid 3\right]\right] .
\end{aligned}
$$

Start from here and show that the triangle coefficients $c_{3 ; a}$ and $c_{3 ; b}$ vanish!

