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Exercise 12 – 2-point tensor integral reduction

In class we discussed the strategy to reduce a 4-point and a 3-point tensor integral. Apply
this stategy to the 2-point tensor integrals

I2,r =

∫
dDl

(2π)D
N2,r(l)

d1d2

and show that one may always reduce the numerator polynomial to the form

N2,r≤2(l) = b̃0 + b̃1 (l · n2) + b̃2 (l · n3) + b̃3 (l · n4) + b̃4 (l · nε)2

+ b̃5 [ (l · n2)
2 − (l · n4)

2 ] + b̃6 [ (l · n3)
2 − (l · n4)

2 ]

+ b̃7 (l · n2)(l · n3) + b̃8 (l · n2)(l · n4) + b̃9 (l · n3)(l · n4) .

modulo 1-point integrals, i.e. terms proportional to d1 or d2.

Exercise 13 – Photon self-energy in QED

We now wish to apply the reduction technique to the calculation of the one-loop correc-
tion to the photon propagator in massless QED:100 3 Loop-Level Structure

Fig. 3.3 The one-loop
correction to the photon
propagator in massless QED

Π12 = −e2
∫

dDl

(2π)D
Tr(/ε1(/k + /l)/ε2/l)

l2(l + k)2 . (3.71)

Here we have introduced polarization vectors εi at the external legs, but this is to be
understood only as a place-holder to soak up the space-time indices. This one-loop
correction to the propagator is to be inserted into larger diagrams and has off-shell
photon legs with k2 ≠ 0. Ward identities demand the transversality of the photon
self-energy, i.e. the vanishing of Π12 for εi → k.

From the previous discussion it should be clear that Π12 may be written as a lin-
ear combination of bubbles Eq. (3.17) and tadpoles Eq. (3.16) along with a rational
piece R. The tadpoles vanish in dimensional regularization as the fermions in the
loop are massless. The one-point functions also yield no contributions to the rational
piece as is obvious from Eq. (3.54). Thus only the reduction of the two-point inte-
gral needs to be performed. This is a dp = 1 and dt = 3 − 2ε dimensional integral
for which we decompose the loop momentum lµ as

lµ = (l · k)v
µ
1 + l

µ
⊥ + (l · nε)n

µ
ε

where l
µ
⊥ = (l · n2)n

µ
2 + (l · n3)n

µ
3 + (l · n4)n

µ
4 and k · ni = 0 = k · nε. (3.72)

One easily convinces oneself that v
µ
1 = kµ

k2 . In order to isolate the bubble coefficients
of Π12 we put the two fermion propagators on-shell:

l2 = 0, (l + k)2 = 0. (3.73)

These are solved for loop momenta of the form

lµ = −1
2
kµ + l

µ
⊥ + (l · nε)n

µ
ε obeying l2

⊥ + (l · nε)
2 = −1

4
k2. (3.74)

Hence the two conditions Eq. (3.73) fix the parallel components of l and determine
the length of the transverse part. The idea is now to insert the on-shell lµ found
into the numerator of Eq. (3.71). This will directly yield the bubble coefficients
as any off-shell components of lµ would only give rise to terms proportional to
l2 or (l + k)2 in the numerator which contribute to the vanishing tadpole integrals
Eq. (3.16). Let us write lµ = − 1

2kµ + Lµ and kµ + lµ = + 1
2kµ + Lµ with Lµ =

l
µ
⊥ + (l · nε)n

µ
ε . The numerator then takes the on-shell form

N = Tr
[
/ε1

(
1
2
/k + /L

)
/ε2

(
−1

2
/k + /L

)]
. (3.75)

Π12 = −e2
∫

dDl

(2π)D
Tr(/ε1(/k + /l) /ε2 /l )

l2(l + k)2
.

Here we have introduced polarization vectors εi at the external legs which are to be
understood as placeholders. Nethertheless transversality demands the vanishing of Π12

for εi → k. For the reduction of this integral note that the tadpoles (1-point functions)
all vanish in dimensional regularization due to masslessness.
In order to isolate the bubble coefficients of Π12 we put the two fermion propagators
on-shell:

l2 = 0 , (l + k)2 = 0 .

Show that these two equations are solved by

lµ = −1
2
kµ + lµ⊥ + (l · nε)nµε obeying l2⊥ + (l · nε)2 = −1

4
k2 .
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Now to insert these on-shell lµ found into the numerator of Π12. This will directly yield
the bubble coefficients as any off-shell components of lµ would only give rise to terms
proportional to l2 or (l+k)2 in the numerator which contribute to the vanishing tadpole
integrals. Work this out and show that the self-energy takes the form

Π12 = −4

3
e2 k2

(
ε1 · ε2 −

(ε1 · k) (ε2 · k)

k2

) ∫ dDl

(2π)D
1

l2 (l + k)2

+
8

3
e2
(
ε1 · ε2 −

(ε1 · k) (ε2 · k)

k2

) ∫ dDl

(2π)D
(l · nε)2

l2 (l + k)2
,

in fact recovering transversality.

2


