Problem Set 7: Scattering amplitudes in gauge theories

Discussion on Wednesday 14.05 13:45-14:30, HIT H 51
Prof. Dr. Jan Plefka \& Matteo Rosso

Exercise 12 - 2-point tensor integral reduction

In class we discussed the strategy to reduce a 4 -point and a 3 -point tensor integral. Apply this stategy to the 2-point tensor integrals

$$
I_{2, r}=\int \frac{d^{D} l}{(2 \pi)^{D}} \frac{\mathcal{N}_{2, r}(l)}{d_{1} d_{2}}
$$

and show that one may always reduce the numerator polynomial to the form

$$
\begin{aligned}
\mathcal{N}_{2, r \leq 2}(l) & =\tilde{b}_{0}+\tilde{b}_{1}\left(l \cdot n_{2}\right)+\tilde{b}_{2}\left(l \cdot n_{3}\right)+\tilde{b}_{3}\left(l \cdot n_{4}\right)+\tilde{b}_{4}\left(l \cdot n_{\epsilon}\right)^{2} \\
& +\tilde{b}_{5}\left[\left(l \cdot n_{2}\right)^{2}-\left(l \cdot n_{4}\right)^{2}\right]+\tilde{b}_{6}\left[\left(l \cdot n_{3}\right)^{2}-\left(l \cdot n_{4}\right)^{2}\right] \\
& +\tilde{b}_{7}\left(l \cdot n_{2}\right)\left(l \cdot n_{3}\right)+\tilde{b}_{8}\left(l \cdot n_{2}\right)\left(l \cdot n_{4}\right)+\tilde{b}_{9}\left(l \cdot n_{3}\right)\left(l \cdot n_{4}\right) .
\end{aligned}
$$

modulo 1-point integrals, i.e. terms proportional to d_{1} or d_{2}.

Exercise 13 - Photon self-energy in QED

We now wish to apply the reduction technique to the calculation of the one-loop correction to the photon propagator in massless QED:

$$
\Pi_{12}=-e^{2} \int \frac{d^{D} l}{(2 \pi)^{D}} \frac{\operatorname{Tr}\left(\phi_{1}(\not k+l) \phi_{2} l\right)}{l^{2}(l+k)^{2}}
$$

Here we have introduced polarization vectors ϵ_{i} at the external legs which are to be understood as placeholders. Nethertheless transversality demands the vanishing of Π_{12} for $\epsilon_{i} \rightarrow k$. For the reduction of this integral note that the tadpoles (1-point functions) all vanish in dimensional regularization due to masslessness.
In order to isolate the bubble coefficients of Π_{12} we put the two fermion propagators on-shell:

$$
l^{2}=0, \quad(l+k)^{2}=0
$$

Show that these two equations are solved by

$$
l^{\mu}=-\frac{1}{2} k^{\mu}+l_{\perp}^{\mu}+\left(l \cdot n_{\epsilon}\right) n_{\epsilon}^{\mu} \quad \text { obeying } \quad l_{\perp}^{2}+\left(l \cdot n_{\epsilon}\right)^{2}=-\frac{1}{4} k^{2}
$$

Now to insert these on-shell l^{μ} found into the numerator of Π_{12}. This will directly yield the bubble coefficients as any off-shell components of l^{μ} would only give rise to terms proportional to l^{2} or $(l+k)^{2}$ in the numerator which contribute to the vanishing tadpole integrals. Work this out and show that the self-energy takes the form

$$
\begin{aligned}
\Pi_{12}= & -\frac{4}{3} e^{2} k^{2}\left(\epsilon_{1} \cdot \epsilon_{2}-\frac{\left(\epsilon_{1} \cdot k\right)\left(\epsilon_{2} \cdot k\right)}{k^{2}}\right) \int \frac{d^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l+k)^{2}} \\
& +\frac{8}{3} e^{2}\left(\epsilon_{1} \cdot \epsilon_{2}-\frac{\left(\epsilon_{1} \cdot k\right)\left(\epsilon_{2} \cdot k\right)}{k^{2}}\right) \int \frac{d^{D} l}{(2 \pi)^{D}} \frac{\left(l \cdot n_{\epsilon}\right)^{2}}{l^{2}(l+k)^{2}},
\end{aligned}
$$

in fact recovering transversality.

