Problem Set 5: Scattering amplitudes in gauge theories

Discussion on Wednesday 16.04 13:45-14:30, HIT H 51
Prof. Dr. Jan Plefka & Matteo Rosso

Exercise 8 — Fermionic Delta Functions

The integration over anti-commuting or Grassmann odd variables is defined by
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where 6 is an anti-commuting coordinate. I.e. integration is identical to differentiation
here.

1) Show that §(f) = @ by integrating the fermionic d-function against a test-function
F(0).

2) Prove the following relations for the helicity spinors A and p
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| for a,b Grassmann even (commuting)
d(a)(b) (Mu) for a,b Grassmann odd (anti-commuting)

3) Use this to show that
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where 7,4 are anti-commuting variables. In fact they are the complex conjugates of
the n;4 that were introduced in class.

Exercise 9 — 3-point Superamplitudes

1) Argue that for MHV 3-particle kinematics, i.e. [ij] = 0 but (ij) # 0 Vi,j € {1,2,3},
together with the conditions of p and ¢ invariance and local helicity h; = 1 the only
possible form of the 3-point MHV amplitude is
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2) This entails the complex conjugated relation
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using (ij)* = —[ij]. In order to transform this back into the {\,\,n} original on-shell
superspace we need to perform a Fourier transformation of the anti-commuting 7 in
the sense of
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Show that under this Fourier transformation using the result (1) one obtains the
anti-MHV 3-point superamplitude
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