Problem Set 3: Scattering amplitudes in gauge theories

Discussion on Wednesday 25.03 12:45-14:30, HIT H 51
Prof. Dr. Jan Plefka \& Matteo Rosso

Exercise 6 - Non-trivial quark-gluon scattering

Show by using the color ordered Feynman rules and a suitable choice for the gluonpolarization reference vector $q_{3}^{\alpha \dot{\alpha}}=\mu_{3}^{\alpha} \tilde{\mu}_{3}^{\dot{\alpha}}$ that the first non-trivial $\bar{q} q g g$ scattering amplitude is given by

$$
A_{\bar{q} q g^{2}}^{\mathrm{tree}}\left(1_{\bar{q}}^{-}, 2_{q}^{+}, 3^{-}, 4^{+}\right)=\frac{\langle 13\rangle^{3}\langle 23\rangle}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle} .
$$

Also convince yourself that the result for this amplitude has the correct helicity assignments as was done in class for the pure-gluon four point amplitude. That is compute

$$
h_{i} A_{\bar{q} q q^{2}}^{\text {tree }}\left(1_{\bar{q}}^{-}, 2_{q}^{+}, 3^{-}, 4^{+}\right)=?
$$

Exercise 7 - Three-point amplitudes from color-ordered Feynman rules

Prove the expressions for the three-point MHV amplitude

$$
A_{3}^{M H V}\left(i^{-}, j^{-}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}, \quad[12]=[23]=[31]=0,
$$

and the three-point anti-MHV amplitude

$$
A_{3}^{\overline{M H V}}\left(i^{+}, j^{+}\right)=-\frac{[i j]^{4}}{[12][23][31]}, \quad\langle 12\rangle=\langle 23\rangle=\langle 31\rangle=0,
$$

by an explicit calculation using the color-ordered Feynman rules given in class (see also on the next page).

Propagators

$\mu \sim \sim_{p} v \quad-\frac{i}{p^{2}+i 0} \eta_{\mu v}$
$\longrightarrow{ }_{p}$
Color ordered vertices

$$
\begin{aligned}
& \text { \}m } 1 \\
& 2 \\
& -g \frac{i}{\sqrt{2}}\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)\left(p_{12} \cdot \varepsilon_{3}\right)+\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\left(p_{23} \cdot \varepsilon_{1}\right)\right. \\
& \left.+\left(\varepsilon_{3} \cdot \varepsilon_{1}\right)\left(p_{31} \cdot \varepsilon_{2}\right)\right] \quad p_{i j}:=p_{i}-p_{j} \\
& g^{2} \frac{i}{2}\left[2\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right)-\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)\left(\varepsilon_{3} \cdot \varepsilon_{4}\right)\right. \\
& \left.-\left(\varepsilon_{1} \cdot \varepsilon_{4}\right)\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\right] \\
& 1_{\bar{q}} \\
& \downarrow \sim 2 \\
& +g \frac{i}{\sqrt{2}}\left[3\left|\phi_{2}\right| 1\right\rangle \\
& 1_{q} \\
& \underbrace{\sim}_{1} 2 \\
& -g \frac{i}{\sqrt{2}}\left[1\left|\phi_{2}\right| 3\right\rangle
\end{aligned}
$$

Table 1.4: Color-ordered Feynman rules in a compact notation using dummy polarization vectors ε_{i}^{μ} and summy spinors λ_{i} respectively $\tilde{\lambda}_{i}$ to absorb the index structures. All momenta are outgoing, outgoing quark lines are represented by $\mid p]$ and [$p \mid$ states, whereas outgoing anti-quark lines are represented by $|p\rangle$ and $\langle p|$ states, compare the discussion in section 1.8.

