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Exercise 1. Free particle two-point function I

Calculate the two-point function ⟨0, tb|T (x̂(t)x̂(t′))|0, ta⟩ for a free particle explicitly

(a) Prove the following integral identities:∫ ∞

−∞
dx xeiax

2+ikx = −
(

k

2a

)√
iπ
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e−

ik2

4a∫ ∞
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(b) Compute ⟨0, tb|x̂(t′)x̂(t)|0, ta⟩ by using the definition: x̂(t) =
∫
dx x|x, t⟩⟨x, t| together

with the explicit expression for the free particle propagator derived in Sheet 1 Exercise
1(c).

Hint. Use the integrals derived in part (a).

(c) Using the definition of the time-ordered product:

T (x̂(t)x̂(t′)) := θ(t− t′)x̂(t)x̂(t′) + θ(t′ − t)x̂(t′)x̂(t)

calculate ⟨0, tb|T (x̂(t)x̂(t′))|0, ta⟩ by using the expression derived in part (b).

Exercise 2. Free particle two-point function II

Calculate the two-point function ⟨0, tb|T (x̂(t)x̂(t′))|0, ta⟩ for a free particle using the relation:

⟨0, tb|T (x̂(t)x̂(t′))|0, ta⟩ =
(
ℏ
i

)2 [ δ2

δJ(t)δJ(t′)
⟨0, tb|0, ta⟩J

]
J(t)=J(t′)=0

where the free particle generating (partition) function is defined as:

Z[J ] := ⟨0, tb|0, ta⟩J =

∫ xb=0

xa=0
Dx e

i
ℏS[x,J ]

where S[x, J ] =
∫ tb
ta

dt 1
2mẋ2 + J(t)x

(a) By defining x(t) = x̄(t) + η(t), where x̄(t) satisfies the equation of motion with boundary
conditions x(ta) = xa = x(tb) = xb = 0, and η(t) are ‘quantum’ fluctuations which satisfy
η(ta) = η(tb) = 0, show that:

S[x, J ] = S[x̄, J ] + S[η, 0]

Hint. Integrate by parts and use the fact that x̄(t) is a solution to the equation of motion for the

action S[x, J ].
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(b) Using the result of part (a) show that:

Z[J ] =

√
m

2πiℏ(tb − ta)
e

i
ℏS[x̄,J ]

Hint. Argue that Dx = Dη.

(c) Show that one can write:

S[x̄, J ] =
1

2m

∫ tb

ta

dt

∫ tb

ta

dt′ J(t)G(t, t′)J(t′)

where G(t, t′) is the Green’s function of the operator d2

dt2
.

Hint. Integrate by parts and use the relation: x̄(t) = 1
m

∫ tb
ta

dt G(t, t′)J(t′).

(d) Show that the Green’s function G(t, t′) with boundary conditions G(ta, t
′) = G(tb, t

′) = 0
is given by:

G(t, t′) = θ(t− t′)
(t− tb)(t

′ − ta)

(tb − ta)
+ θ(t′ − t)

(t′ − tb)(t− ta)

(tb − ta)

Hint. Use the defining relation of the Green’s function d2

dt2G(t, t′) = δ(t − t′) and solve G(t, t′)

separately in the regions t < t′ and t > t′ subject to the boundary conditions. To fix the integration

constants assume that G(t, t′) is continuous at t = t′ and use the fact that:

limϵ→0

[
dG(t′+ϵ,t′)

dt − dG(t′−ϵ,t′)
dt

]
= 1.

(e) Using the functional definition of the two-point function at the beginning of the question
together with the results of parts (b), (c) and (d), calculate an explicit expression for
⟨0, tb|T (x̂(t)x̂(t′))|0, ta⟩.
Hint. You should obtain the same expression as derived in the first exercise!

Exercise 3. Euclidean time and Statistical Mechanics

Consider the amplitude A(xi, xf , ;T ) of a free particle. If we continue analytically the time
parameter to purely imaginary values by T → −iβ, with real β (setting ℏ = 1), its Schroedinger
equation

∂

∂T
A(xi, xf , ;T ) = − 1

2m

∂2

∂x2f
A(xi, xf , ;T )

with initial conditions A(xi, xf , ; 0) = δ(xf − xi) becomes the heat equation

∂

∂β
A(xi, xf , ;T ) =

1

2m

∂2

∂x2f
A(xi, xf , ;T )

The solution, with boundary conditions A
β→0−−−→ δ(xf − xi), is given by

A =

√
m

2πβ
e
−

m(xf−xi)
2

2β
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This analytic continuation is called “Wick Rotation”. It can be performed directly on the path
integral: analytically continuing the time variable as t → −iτ , the action with “Minkowskian”
time (i.e. with a real time t) becomes an “Euclidean” action SE defined by

iS[x] = i

∫ T

0
dt

m

2
ẋ → −SE [x] = −

∫ β

0
dτ

m

2
ẋ

where in the Euclidean action ẋ = dx
dτ , with τ called “Euclidean time”. This action is positive

definite and the corresponding path integral∫
Dxe−SE [x]

for a free theory is truly gaussian, with an exponential damping instead of an increasingly rapid
phase oscillations. It coincides with the functional integral introduced by Wiener in the 1920’s
to study Brownian motion and the heat equation.

The Euclidean path integrals are quite useful in statistical mechanics, where β is related to
the inverse temperature Θ by β = 1/(kΘ) (k is the Boltzmann’s constant). The trace of the
evolution operator Z, that can be written using energy eigenstates labeled by n (if the spectrum
is discrete) or position eigenstates labeled by q,

Z ≡ Tr e−
i
ℏ ĤT =

∑
n

e−
i
ℏEn T =

∫
dq ⟨q|e−

i
ℏ ĤT |q⟩

can be Wick rotated with T → −iβ. Setting again ℏ = 1, one obtains the statistical partition
function ZE of the quantum system with hamiltonian Ĥ

ZE ≡ Tr e−βĤ =
∑
n

e−βEn =

∫
dq ⟨q|e−βĤ |q⟩

We can now easily obtain a representation of ZE in terms of path integrals: perform a Wick
rotation of the path integral action, set the initial state (at euclidean time τ = 0) equal to the
final state (at Euclidean timeτ = β), and sum over all possible states. Note that the paths are
now closed paths, as q(0) = q(β), and the partition function becomes

ZE ≡ Tr e−βĤ =

∫
PBC

Dq e−SE [q]

where PBC stands for “periodic boundary conditions”, indicating the sum over all paths that
close on themselves in an Euclidean time β.

Moreover, if you consider the statistical partition function in the limit of vanishing temperature
(Θ → 0), or equivalently for an infinite Euclidean propagation time (β → ∞), it becomes simply

ZE ≡ Tr e−βĤ =
∑
n

e−βEn
β→0−−−→ e−βE0 + subleading terms

This is true even in the presence of a source J , if one assumes that the source is non-vanishing
only in a finite interval of time: the remaining infinite time is sufficient to project the operator

e−βĤ onto the ground state. This allows us to rewrite the generating functional Z[J ] in the
euclidean case in a simpler way, justifying the dropping of boundary terms in the integration by
parts.

The reason why we mention this relation between Euclidean and Minkowskian path integrals
is deeper. Often, even if one is interested in the theory with a real time, one works with the
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Euclidean theory, where path integral convergence is more easily kept under control. Only at
the very end one performs the inverse Wick rotation to read off the result for the Minkowskian
theory. Moreover, path integrals in Euclidean times are mathematically better defined (one
may develop a mathematically well defined measure theory on the space of functions), at least
for quadratic actions and perturbations thereof, while path integral with a Minkowskian time
are more delicate. The Wick rotation suggests a way of defining the path integral in real time
starting from the one with Euclidean time.

Let’s now practise a bit with Euclidean theories.

(a) By performing a Wick rotation t → −iτ , show that the Green’s function equation for the
Euclidean simple harmonic oscillator operator is given by:(

− d2

dτ2
+ ω2

)
GE(τ, τ

′) = δ(τ − τ ′)

(b) Show that in the case where the integration range of the action integral is extended such
that τ ∈ (−∞,∞), the Euclidean Green’s function has the explicit form:

GE(τ, τ
′) =

1

2ω
e−ω(τ−τ ′)θ(τ − τ ′) +

1

2ω
e−ω(τ ′−τ)θ(τ ′ − τ) =

1

2ω
e−ω|τ−τ ′|

Hint. Extending the integration range of τ in this way allows one to solve the Green’s function

equation using Fourier transform techniques. First, take the Fourier transform F of the Green’s

function equation in part (a) and determine an algebraic equation for F [GE(τ, τ
′)]. Then per-

form the inverse Fourier transform F−1 and use contour integration to explicitly solve the integral

equation for GE(τ, τ
′).

(c) Consider the previous Euclidean Green’s function obtained before preforming the integral.
How is it related to the one in the usual Minkowski space? Did you use any prescription to
evaluate the integral? Which is the relation between different boundary conditions (that
would lead, for instance, to retarded or advanced Green functions) and the corresponding
implemented prescriptions for performing the integrals? Can we always use the Wick
rotation to pass from Euclidean to Minkowskian propagators?
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