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Exercise 1. Yukawa Functional determinant

In order to understand the meaning and to compute the functional determinant for the Yukawa
theory, and in general for any interacting field theory, it is more convenient to rewrite the theory
as in the presence of a background field. In fact, this way we will be able to relate the functional
determinant to a certain infinite set of Feynman diagrams.

To this aim, let us write the generating functional in the following equivalent form

Z[J, η, η̄] = N

∫
DϕeiS0[ϕ]+i

∫
d4y J(y)ϕ(y) e

−ig
∫
d4xϕ(x) iδ

δηx
δ

iδη̄x ZF0 [η, η̄] (1)

where S0[ϕ] is the classical action for the real Klein-Gordon field, and

ZF0 [η, η̄] = e−
∫
dx

∫
dy η̄(x)∆F (x−y) η(y) (2)

Therefore, we can now concentrate only on the last part of (1) and write

ZFϕ [η, η̄] = Nϕ

∫
Dψ

∫
Dψ̄ ei

∫
dx ψ̄(x) [i/∂−m−gϕ(x)]ψ(x)+i

∫
dx [η̄(x)ψ(x)+ψ̄(x) η(x)] (3)

where ϕ plays now the role of a background field function. Consider in particular the case with
no sources

ZFϕ [0, 0] = Nϕ

∫
Dψ

∫
Dψ̄ ei

∫
dx ψ̄(x) [i/∂−m−gϕ(x)]ψ(x)

def
= Nϕ det ∥i/∂ −m− gϕ∥ (4)

where the definition in terms of the functional determinant has to be understood up to the Wick
rotation to the Euclidean space, and the normalisation constant Nϕ is usually fixed requiring
that in the limit ϕ → 0, i.e. in the absence of the background field, we recover ZF0 [0, 0] = 1.
Now, in order to evaluate the determinant, consider the following symbolic equality

det ∥i/∂ −m− gϕ∥
det ∥i/∂ −m∥

= det ∥1 − g (i/∂ −m)−1ϕ∥

= eTr ln ∥1−g (i/∂−m)−1ϕ∥

= e(−1)
∑∞

n=1
1
n
Tr [g (i/∂−m)−1ϕ]

n

(5)

Here Tr indicates both the the sum over spinor indices and the integration over space-time
coordinates. If we now denote every term in the expansion as

Anϕ = (−1)Tr
[
g (i/∂ −m)−1ϕ

]n
(6)

then the above equality can be written

ln det ∥i/∂ −m− gϕ∥
ln det ∥i/∂ −m∥

=

∞∑
n=1

Anϕ
n

(7)
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Let’s evaluate the first term of the expansion explicitly, so as to understand what it encodes.

A1
ϕ = (−1)Tr

[
g (i/∂ −m)−1ϕ

]
= −g

∫
dx ⟨x|tr (i/∂ −m)−1ϕ |x⟩

= −g
∫
dx

∫
dy ⟨x|tr (i/∂ −m)−1 |y⟩⟨y|ϕ|x⟩

= ig

∫
dx

∫
dy ϕ(x) δ(x− y) tr∆F (x− y)

= ig

∫
dxϕ(x) tr∆F (0)

def
= igTr (ϕ∆F (0)) (8)

where now tr indicates the sum over spinor indices.

(a) Evaluate the second term of the expansion A2
ϕ

(b) Show that it takes the form

A2
ϕ = (−i g)2

∫
dk

(2π)4
ϕ̃(k) ϕ̃(−k) (−1)

∫
dp

(2π)4
tr

[
i

/p−m+ iε

i

/p+ /k −m+ iε

]
(9)

Which kind of Feynman diagrams does this represent?

Hint. Consider the following change of variables

x̄ =
x1 + x2

2
x = x1 − x2

where x1, x2 are the coordinate integration variables.

We can then iterate and find

Anϕ = (−i g)n
∫

dk1
(2π)4

ϕ̃(k1) . . .

∫
dkn−1

(2π)4
ϕ̃(kn−1) ϕ̃(k1 + · · ·+ kn−1)

× (−1)

∫
dp

(2π)4
tr

[
∆̃F (p) ∆̃F (p+ k1) . . . ∆̃F (p+ k1 + · · ·+ kn−1)

]
= (−1)(−i g)nTr(ϕ∆F )

n (10)

This way, we can eventually write our initial symbolic equality as

det ∥i/∂ −m− gϕ∥
det ∥i/∂ −m∥

= e(−1)
∑∞

n=1
(−ig)n

n
Tr (ϕ∆F )n (11)

This is a perturbative expansion in the Yukawa coupling.

(c) Which kind of Feynman rules can we learn from the above expansion?
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Exercise 2. Dual Field Strength Tensors

(a) In abelian gauge theory consider the dual tensor F̃µν = 1
2ϵ
µνρσFρσ. Show that

FµνF̃µν = ∂µK
µ (12)

with Kµ = ϵµνρσAνFρσ.

Hint. Use that contractions of the ϵ tensor with a symmetric tensor vanish.

(b) In a non-abelian gauge theory consider the dual tensor G̃µν = 1
2ϵ
µνρσGρσ. Show that

Tr
(
GµνG̃µν

)
= ∂µK

µ (13)

with Kµ = ϵµνρσTr
[
GνρAσ +

2
3 igAνAρAσ

]
.

Hint. Use the cyclicity of the trace.

Remark: The dual field tensor in QED corresponds to the interchange of E and B; one
often says that E and B are dual.

The term FµνF̃µν is called the θ-term, Tr
(
GµνG̃µν

)
goes by the name of θ̄-term. They

are manifestly Lorentz invariant objects. In QED, it corresponds to E · B. These terms
are in fact CP-violating and therefore, their coupling constant must be very small (due to
experimental constraints on CP-violation). The apparent lack of a reason for the θ̄-term
to be so small is called the strong CP problem.
The θ-term also arises in the context of anomalies where they correspond to the right
hand side of the anomaly equation (see e.g. Peskin & Schroder, (19.45)). Anomalies are
symmetry violations that only arise at the one-loop level. They are very important in
quantum field theory. For instance, the masses of the nucleons are due to an anomaly in
the energy-momentum tensor.

Exercise 3. Gauge Invariance of the measure in Yang-Mills theory

Consider a gauge transformation Aaµ → Aa′µ . Prove that

DAaµ = DAa′µ (14)

You only need to consider an infinitesimal gauge transformation.

Exercise 4. Yang-Mills equation of motion

Given that the action of Yang-Mills theory has the form:

SYM =
1

2

∫
d4x Tr [GµνG

µν ]

determine the equations of motion from the extremality condition: δSYM = 0.

Hint. Use the anti-symmetry of fabc and Gµν .
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