Exercise 1. Yukawa Theory from Path Integral Quantization

Consider the Yukawa theory, where the interaction between the scalar and the fermions has the form $\lambda \bar{\psi} \psi \phi$.

- (a) Calculate the fermionic and scalar propagators through $O(\lambda^2)$.
- (b) Derive the Feynman diagrams contributing to the scattering of four fermions at $O(\lambda^2)$.
- (c) Derive the Feynman diagrams contributing to the scattering of two fermions and two scalars at $O(\lambda^2)$.

Exercise 2. Abelian gauge theories

Consider the QED Lagrangian

$$\mathcal{L} = \bar{\psi} \left(i \not\!\!D - m \right) \psi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

where $D_{\mu} = \partial_{\mu} - igA_{\mu}$ is the covariant derivative.

Find the Noether current and the conserved charge corresponding to the invariance under the U(1) global transformation.

Exercise 3. Structure constants of SU(N)

Elements of SU(N) can be represented by $U(\theta) = e^{ig\theta_a T^a}$, where T^a 's are the generators of the group.

(a) Show that the generators form a Lie Algebra, i.e.

$$\left[T^a,\,T^b\right]=i\,f^{abc}\,T^c$$

Hint. Consider two independent group elements of SU(N), U, U' and compute the product $U'^{-1}U^{-1}U'U$.

(b) Show that the structure constants f^{abc} are real.