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Exercise 1. 1-loop renormalised QCD coupling constant

To renormalise QCD one re-scales the fields and parameters in such a way that the Lagrangian
can be written: LR + Lc.t, where LR has the form of the original ‘bare’ Lagrangian L0, but
with each term replaced by it’s corresponding renormalised one, and Lc.t contains the respective
counter-terms. In particular, under the re-scaling:
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the bare quark-quark-gluon vertex is transformed:
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In order to write this in the canonical ‘renormalised + counter-term’ form one defines the
quark-quark-gluon vertex renormalisation factor Z1F and renormalised coupling gR parameter
as follows:
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(a) By performing dimensional regularisation in d = 4 − 2ε dimensions show that the bare
coupling parameter can be written:
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where µ is the renormalisation scale.

(b) Using the definition Zi = 1 + δZi for i = A, 2, 1F , expand the renormalisation factors to
O(g2

R) and show that:
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Then use the relevant results in Exercise sheets 10 and 11 to show that this has the explicit
form:

g0 =

[
1−

g2
R

16π2

(
11

6
NC −

1

3
nf

)(
1

ε
+ finite

)]
gR µε

Exercise 2. The 1-loop Beta function in QCD

The Beta function β(µ) in renormalised QCD determines how the coupling parameter gR(µ)
depends on the renormalisation scale µ via the following differential equation:

∂gR
∂lnµ

= µ
∂gR
∂µ

= β(µ) (1)

where the derivatives are taken with g0 held constant.
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(a) With this definition use the result of Exercise 1 part (b) to show that:
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(b) By defining a scale ΛQCD via the condition:

lim
µ→ΛQCD
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solve equation 1 explicitly and show that αS(µ) :=
g2R
4π satisfies:
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)
(c) Classify all the different possible behaviours of αS(µ) as a function of NC and nf . What

is the form of αS(µ) in the case of QCD? Why is this so significant?

Hint. http: // www. nobelprize. org/ nobel_ prizes/ physics/ laureates/ 2004/ , “The Nobel

Prize in Physics 2004”. Nobelprize.org. Nobel Media AB 2013. Web. 19 May 2014.
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