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Exercise 1. Renormalization of ϕ4 theory

Let’s consider the λϕ4 theory:

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4 (1)

Write up to two loop order all the (connected) diagrams contributing to the 2, 3 (if any) and
4-point function and compute the superficial degree of divergence for each of them. Are the
counterterms for the mass and coupling constant sufficient to cancel all the divergences at two
loop order?

Exercise 2. Renormalization in QCD at one loop: The Propagators

In this exercise series we will learn how to compute the UV divergent diagrams at one loop in
QCD and how to renormalize these. For this we will absorb these divergencies into the physical
quantities and write the bare Lagrangian parameters in terms of renomalized ones such as masses
and coupling constants. The divergent diagrams include the corrections to the propagators and
the corrections to the vertices. In this exercise we will look at the propagators only.

a) The Quark Propagator.

Consider the one loop correction to the quark propagator as shown in Figure 2. We can
separate the self energy as a combination of the vector and a scalar pieces:

Σ(p,m0) = ΣV (p
2)/p+ΣS(p

2)m0 (2)

where p is the momentum of the external fermion and m0 is the bare mass for the fermion.

Figure 1: One loop quark self energy

i) Write down the expression for Σ(p,m0) by applying the Feynman rules for QCD in
Feynman gauge, i.e. ξ = 1. Convince yourself that this diagram is indeed divergent.

ii) Show that in d = 4− 2ϵ dimensions:

ΣS =
αs

4π
µ2ϵCF (4π)ϵ Γ(ϵ) (4− 2ϵ)

∫ 1

0
dx(m2

0x− p2x(1− x))−ϵ (3)

ΣV =
αs

4π
µ2ϵCF (4π)ϵ Γ(ϵ) (2ϵ− 2)

∫ 1

0
dx(m2

0x− p2x(1− x))−ϵ(1− x) (4)

For this, you will need to recall the identities of the d-dimensional γ matrices. Apply
Feynman parametrization to the expression you found for Σ(p,m0) in part i) and
then bring it to the form in Equation 2.
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iii) Expand your results for ΣS and ΣV in ϵ. Observe that there are 1/ϵ terms, which
represent the divergences in the physical limit, ϵ→ 0.

iv) The UV divergences are renormalized by absorbing them into the physical quantities.
We define:

ψ0 =
√
Z2ψ (5)

m0 = Zmm (6)

where ψ and m are wave function and mass for the quark respectively. With this
definition show that the quark propagator becomes:

Sq(p) =
i

Z2/p− Z2Zmm− Σ(p,m)
(7)

Hint: Remember that using the geometic series we can express the full propagator in
terms of sum of 1 particle irreducible diagrams:

Sq(p) =
i

/p−m0 − Σ(p,m0)
(8)

where Σ(p,m0) is the sum of all 1PI diagrams. Up to second order in perturbation
theory Σ(p,m0) actually becomes the self energy diagram that is shown in the Figure
2.

v) From the results you found in part iv), show that:

Z2 = 1− αs

4π
CF

(
1

ϵ
+ finite

)
(9)

Zm = 1− αs

4π
3CF

(
1

ϵ
+ finite

)
(10)

so that the divergencies are cancelled.

b) The Gluon Propagator.

There are three self energy diagrams for gluon at one loop as shown in Figure 2.

Figure 2: One loop gluon self energy

i) Let Πµν express the one loop gluon self energy. Write down an expression for each
diagram contributing to Πµν , i.e. Πµν

1 , Πµν
2 and Πµν

3 by applying Feynman rules.

ii) Compute the gluonic contribution, i.e. Πµν
3 in d-dimensions.

2



∗ First work out the numerator and write Πµν
3 as:

Πµν
3 =

g20
2
Ncδcd

∫
ddk

(2π)d
Aµν

k2(p+ k)2
(11)

where k and p are the loop and external momentas respectively.

Keeping the tensor structure apply Feynman parametrization and make the nec-
essary shifting of the loop momentum. Note that the terms linear in the loop
momentum are odd and therefore vanishes:∫

ddk

(2π)d
kµ

(k2 −∆)2
= 0 (12)

This means you can make the replacement:

kµkν =
k2

d
gµν + terms linear in k which vanish (13)

You should find:

Πµν
3 =

g20
2
Ncδcd

∫
dx

∫
ddk

(2π)d
gµν

[(
2 + 4d−6

d

)
k2 + 2∆+ 5p2

]
+Mµν

(k2 −∆2)2
(14)

where

Mµν =
pµpν

p2
(
∆(4d− 6) + p2(d− 6)

)
, ∆ = −p2x(1− x) (15)

∗ Now make the Wick rotation to perform the loop integration in the Euclidean
space. Note that: ∫

ddk

(2π)d
k2

(k2 +∆)2
=

(2− ϵ)∆

ϵ− 1
∆−ϵ(4π)ϵΓ(ϵ) (16)∫

ddk

(2π)d
1

(k2 +∆)2
= ∆−ϵ(4π)ϵΓ(ϵ) (17)

∗ Finally you need to perform the integration over the Feynman parameter x. Your
result should be

Πµν
3 =

ig20
2
NCδcd p

2

[
gµν(19− 12ϵ) +

pµpν

p2
(−22 + 14ϵ)

]
(18)

Γ(ϵ) (4π)ϵ (−p2)−ϵ B(2− ϵ, 2− ϵ)

1− ϵ
(19)

where B(2− ϵ, 2− ϵ) is the Beta function:

B(2− ϵ, 2− ϵ) =

∫ 1

0
dxx1−ϵ (1− x)1−ϵ (20)

iii) Now compute the ghost contribution Πµν
2 following the same steps before. (Do not

forget the minus sign for the fermion and the ghost loop!) You should find:

Πµν
2 =

1

2

g20NC δcd
16π2

(4π)ϵ(−p2)−ϵ Γ(ϵ)
[
gµνp2 + 2(1− ϵ)pµpν

] B(2− ϵ, 2− ϵ)

1− ϵ
(21)

3



iv) Show that the sum of Πµν
2 and Πµν

3 can be brought to the form:

Πµν(p) =
(
p2gµν − pµpν

)
Π(p2) (22)

where p is the momentum of the external gluon. This implies that:

Πµνp
µ = 0. (23)

which is a consequence of the Ward identity in QCD and tells that the gluons are
transverse. It is important to notice that individually the second and third diagrams
cannot be brought to this form. This means to express a physical gluon propagator
we need the ghost contribution!

v) Now compute the fermionic contribution Πµν
1 . Take the fermions running in the loop

massless so that you can write:

Πµν
1 = − g20

4π2
δab
2
nf Γ(ϵ) (4π)

ϵ
[
gµνp2 − pµpν

]
(−p2)−ϵB(2− ϵ, 2− ϵ) (24)

vi) We define the renomalized wave function for the gluon field as:

A0 = Z
1/2
A A (25)

which leads to renormalised propagator at leading order:

Dµν
ab =

δab(−igµν)
ZAp2

(26)

Then up to second order in perturbation theory the gluon propagator is:

Sµν
ab (p) =

δab(−igµν)
ZAp2

+
δac(−igµσ)
ZAp2

Πcd
στ (p)

δdb(−igτν)
ZAp2

(27)

Using the transversality:

Πcd
στ (p) = δcd

(
−gστ +

pσpτ
p2

)
Π(p2) (28)

Now using this and expressing Sµν
ab (p) as a geometric sum we have:

Sµν
ab (p) =

δab(−igµν)
ZAp2 +Π(p2)

(29)

Now combine your results for Π(p2) from part iv) to determine ZA so that the diver-
gences cancel:

ZA = 1− αs

4π

1

ϵ

(
2

3
nf − 5

3
NC

)
+ finite (30)
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