Recently, much attention was devoted to classify non-Markovianity of quantum evolutions Λ_t , $t \geq 0$. We explore the problem here; Λ_t is a family of CP-maps describing the evolution of a state ρ of S from time 0 to time t, $\rho_t = \Lambda_t \rho_0$.

Definition 1 (Markovianity) We say that Λ_t is a Markovian evolution if there exists a family of CP-maps $V_{t,s}$ (propagators) such that

$$\Lambda_t = V_{t,s}\Lambda_s \quad for \ all \quad t \ge s.$$

Exercise 1 Why is it a reasonable definition of Markovianity?

Exercise 2 Prove that $V_{t,s}$ satisfies the composition law

$$V_{t,s}V_{s,u} = V_{t,u}$$
 for all $t \ge s \ge u$.

Exercise 3 Prove that if Λ_t is Markovian than

$$S(\Lambda_t \rho_1 | \Lambda_t \rho_2) \le S(\Lambda_s \rho_1 | \Lambda_s \rho_2) \quad for \ all \quad t \ge s, \tag{1}$$

where S is the relative entropy and ρ_1, ρ_2 are arbitrary states.

Exercise 4 Consider an evolution of a two level system

$$\dot{\rho}_t = L_t \rho, \quad L_t \rho := \frac{1}{2} \gamma(t) (\sigma_z \rho \sigma_z - \rho)$$

and the corresponding family Λ_t . Show that

- (i) Λ_t are CP maps if and only if $\int_0^t \gamma(s) ds \ge 0$ for all $t \ge 0$,
- (ii) Λ_t is Markovian if and only if $\gamma(t) \geq 0$ for all $t \geq 0$,
- (iii) The relation (1) cease to hold if Λ_t is not Markovian. This was in fact suggested as on of the possible measures of non-Markovianity.

You can compute Λ_t explicitly and check all the assertions. Alternatively you can understand the assertions by drawing evolution Λ_t on the Bloch sphere.