Seventh Exercise Sheet due to 17. April

Exercise 1 (Decoherence of a two level system) A two level atom in an external magnetic field pointing in the z-direction is often described by a Lindblad equation (used for example in NMR)

$$
\begin{aligned}
\dot{\rho}(t) & =\mathcal{L} \rho(t) \\
& =-i[H, \rho]+\sum_{\alpha=1}^{3} 2 \Gamma_{\alpha} \rho \Gamma_{\alpha}^{*}-\Gamma_{\alpha}^{*} \Gamma_{\alpha} \rho-\rho \Gamma_{\alpha}^{*} \Gamma_{\alpha}
\end{aligned}
$$

wherf $H=B \sigma_{z}, \Gamma_{1}=\sqrt{a} \sigma_{z}, \Gamma_{2}=\sqrt{b_{+}} \sigma_{+}, \Gamma_{3}=\sqrt{b_{-}} \sigma_{-}$. This is the most general Lindblad equation which is rotationally symmetric around the axis of the magnetic field, z-axis (try to think about it little bit).

Take a simple case $b_{+}=b_{-}=: b$ and $B=0$. Prove that solutions of the Lindblad equation have a form $\rho(t)=\frac{1+n(t) \cdot \sigma}{2}$, where the Bloch vector $n(t)$ solves equations

$$
\begin{aligned}
& \dot{n}_{z}(t)=-T_{\|}^{-1} n_{z}(t), \\
& \dot{n}_{y}(t)=-T_{\perp}^{-1} n_{y}(t), \\
& \dot{n}_{x}(t)=-T_{\perp}^{-1} n_{x}(t) .
\end{aligned}
$$

The relaxation times $T_{\|}, T_{\perp}$ depend on a and b. Show that an inequality

$$
T_{\|} \geq 2 T_{\perp}
$$

always holds true. Sketch all results on the Bloch sphere.

$$
{ }^{1} \text { Recall } \sigma_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

