Fourth Exercise Sheet due to 27. March

The purpose of this exercise is to get familiar with the Jaynes-Cummings model describing an interaction of a single cavity mode (harmonic oscillator) with a two level atom. The Hamiltonian is

$$H = H_0 + H_{int} = \omega_c (a^* a + \frac{1}{2}) + \frac{\omega_0}{2} \sigma_z + \frac{\Omega}{2} [a\sigma_+ + a^*\sigma_-],$$

where $\sigma_{\pm} = \frac{1}{2}(\sigma_x \pm i\sigma_y)$ and *a* is the annihilation operator. The free Hamiltonian H_0 has eigenvectors $|n, \pm\rangle$,

$$H_0|n,\pm\rangle = (\omega_c(n+1/2)\pm\frac{\omega_0}{2})|n,\pm\rangle$$

The model exhibits different behavior depending on the value of the detuning $\delta = \omega_c - \omega_0$.

Exercise 1 (The resonant case, $\delta = 0$) Show that in the resonant case $[H_0, H_{int}] = 0$. Use this to compute the time evolution of an initial state $|0, +\rangle$. It exhibits Bloch oscillations between $|0, +\rangle$ and $|1, -\rangle$, periodically absorbing and emitting a photon.

Exercise 2 (The non-resonant case) Suppose that $\delta/\Omega >> 1$. Use second order perturbation theory to derive eigenvalues of H. You shall see that there is no correction in the first order and a non-zero correction in the second order. We shall use this result in the class but we will not derive it there.