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Exercise 9.1 Landau Diamagnetism

Calculate the orbital part of the magnetization (ignoring the Zeeman term) of the free elec-
tron gas in 3D in the limit of low temperature and small external field (T → 0, B → 0).
In addition, show that the magnetic susceptibility at T = 0 and B = 0 is given by

χ = −1

3

m2

m∗2
χP , (1)

where χP is the Pauli susceptibility, which is given by χP = µ2
Bρ(εF ) (at T = 0), where

µB = e~
2mc

, and ρ is the density of states (including spin degeneracy).
Hint: Calculate the free energy

F = Nµ− kBT
∑
i

ln
[
1 + e−(εi−µ)/kBT

]
(2)

at T = 0 to second order in B using the Euler-Maclaurin formula,

n0∑
0

f(n) ≈

(∫ n0+1/2

−1/2
f(n) dn

)
− 1

24
[f ′(n0 + 1/2)− f ′(−1/2)] . (3)

Exercise 9.2 The lowest Landau level in the Corbino geometry

The Hamilton operator for one electron (e < 0) restricted to the plane z = 0 and exposed
to a magnetic field is given by

H =
1

2m∗

(
p− e

c
A
)2

+ U(r) (4)

where r2 = x2 + y2. The annular potential

U(r) =
C1

r2
+ C2r

2 (5)

with C1, C2 > 0 yields a Corbino (after the Italian physicist O. M. Corbino, 1876-1937)
geometry confining the electron on a two-dimensional ring. Let the magnetic field B be
homogeneous and directed along the z-axis for r > 0. In addition, there is a magnetic
flux Φ = νΦ0 through the origin (r = 0) that does not physically touch the electron:

B = [B + νΦ0 δ(r)] ez, (6)

with B, ν > 0. Φ0 = hc/|e| = 2π~c/|e| is the magnetic flux quantum.

a) Show that the vector potential can be chosen in the symmetric gauge

A =
1

2

(
B +

νΦ0

πr2

)
(xey − yex). (7)

b) We now solve this single-particle problem in the symmetric gauge. First, we consider
ν = 0 and use the following ansatz for the wave functions of the lowest Landau level:

ψm(r, φ) = Arαe−imφe−
r2

4l∗2 . (8)



In order to avoid a singularity at the origin we have to demand that α ≥ 0. The
uniqueness of the wave function is ensured by m ∈ Z.
Show that the following Schrödinger equation for the radial part is obtained:{

~2

2m∗

[
−1

r

∂

∂r
r
∂

∂r
+
(m
r
− r

2l2

)2]
+ U(r)− Em

}
rαe−

r2

4l∗2 = 0, (9)

where l2 = ~c/|eB|.
Hint: Lz = xpy − ypx = −i~∂φ and ∂2x + ∂2y = (1/r)∂rr∂r + (1/r)2∂2φ.

Also, show that the following relations are obtained:

α =
√
m2 + C∗1 ,

1

l∗2
=

1

l2

√
1 + C∗2 , (10)

where C∗1 = 2m∗C1/~2 and C∗2 = 8l4m∗C2/~2 are dimensionless parameters.
Finally, show that the energy (with ωc = |eB|/m∗c) is given by

Em =
~ωc
2

[
l2

l∗2
(α + 1)−m

]
. (11)

c) i) Consider the case U ≡ 0. Plot the radial part of the wave function for several
m and show that it has a maximum at rm =

√
2ml. Thus, the wave functions

are localized on circles of radius rm. Compute the magnetic flux penetrating
the circle of radius rm. How big is the degeneracy of the lowest Landau level?

ii) Show that for C∗1 , C
∗
2 � 1 and m� 1 the energy in Eq. (11) is approximately

Em ≈ ~ωc/2 + U(rm).

Thus, the wave functions are localized on curves of equal potential energy.

d) Compute the angular speed ωm in the state ψm given by

ωm := 〈ψm|vφ/r|ψm〉 = −1

~
∂Em
∂m

, (12)

and show that under the conditions stated in c) ii) one finds

ωm ≈ −
U ′(rm)

m∗ωcrm
. (13)

Why are the states located on different boundaries of the Corbino disk called chiral
edge states?

e) We assume now ν > 0 and use the same ansatz as above for the wave functions of
the lowest Landau level. Show that the resulting Schrödinger equation is equal to
Eq. (9) except for the substitution m→ m− ν.
Use gauge transformations of the vector potential to show that under certain condi-
tions the contribution from the magnetic flux through the origin can be transformed
away. What is the condition on ν?

f) What happens if the magnetic flux through the central hole is turned on adiabati-
cally from ν = 0 to ν = 1? Use the above findings to recapitulate Laughlin’s gauge
argument for the quantization of the Hall conductivity (see Ch. 4.2.2 in the lecture
notes). What is the role of the additional magnetic flux?
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