Exercise 1. Transformation of $\psi(x)$

Under a Lorentz transformation Λ the solution to the Dirac equation transforms as $\psi(x) \rightarrow$ $\psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$, where the matrix $S(\Lambda)$ has to satisfy

$$
\Lambda_{\nu}^{\mu} \gamma^{\nu}=S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda)
$$

(a) Show that for an infinitesimal proper Lorentz transformation with parameters $\omega_{\mu \nu}$ we have $S(\Lambda)=1+\frac{i}{2} \omega_{\mu \nu} \sigma^{\mu \nu}$.
(b) Find the transformation of the Dirac adjoint $\bar{\psi}(x)$ under Lorentz transformations.
(c) Find the explicit form of $S(\Lambda)$ in the Dirac representation for Λ being a rotation about the z-axis through an angle ϕ.

Exercise 2. Hartree-Fock

Consider a system of N electrons described by:

$$
\begin{equation*}
H=T+U+V=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m}+\sum_{i=1}^{N} \frac{-Z e^{2}}{\left|r_{i}\right|}+\sum_{i>j}^{N} \frac{e^{2}}{\left|r_{i}-r_{j}\right|} \tag{1}
\end{equation*}
$$

The fermionic state ψ_{i} is defined in the second quantization by $\hat{a}_{i}^{\dagger}|0\rangle=|i\rangle=\left|\psi_{i}\right\rangle$, where the creation and annihilation operators satisfy the usual relation

$$
\begin{equation*}
\left\{\hat{a}_{i}, \hat{a}_{j}\right\}=\left\{\hat{a}_{i}^{\dagger}, \hat{a}_{j}^{\dagger}\right\}=0 \quad \text { and } \quad\left\{\hat{a}_{i}^{\dagger}, \hat{a}_{j}\right\}=\delta_{i, j} \tag{2}
\end{equation*}
$$

(a) Show that the Hamiltonian can be written as:

$$
\begin{equation*}
H=\sum_{i j}\langle i| T|j\rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}+\sum_{i j}\langle i| U|j\rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} \sum_{i j k l}\langle i, j| V|k, m\rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{m} \hat{a}_{k} \tag{3}
\end{equation*}
$$

Hint. By convention $|i, j\rangle=\hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger}|0\rangle$.
(b) We define a state $|\Psi\rangle=\hat{a}_{1}^{\dagger} \cdots \hat{a}_{N}^{\dagger}|0\rangle$. Show that this state is antisymmetric.
(c) Show that

$$
\begin{equation*}
\langle\Psi| \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k} \hat{a}_{m}|\Psi\rangle=\left(\delta_{i m} \delta_{j k}-\delta_{i k} \delta_{j m}\right)\langle\Psi| \hat{a}_{m}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{k} \hat{a}_{m}|\Psi\rangle \tag{4}
\end{equation*}
$$

(d) For the electrons the state is defined by an orbital part ψ_{i} and an spin part s_{i}. Assuming the ground state is given in the form of Ψ, show that the energy of this state is:

$$
\begin{align*}
& \langle\Psi| H|\Psi\rangle=\sum_{i=1}^{N} \int d^{3} \vec{r}\left(-\frac{\hbar^{2}\left|\nabla \psi_{i}(\vec{r})\right|^{2}}{2 m}-\frac{Z e^{2}}{|\vec{r}|}\left|\psi_{i}(\vec{r})\right|^{2}\right) \\
& +\frac{1}{2} \sum_{i, j=1}^{N} \int d^{3} \vec{r}_{1} \int d^{3} \vec{r}_{2} \frac{e^{2}}{\left|r_{1}-r_{2}\right|}\left(\left|\psi_{i}\left(\vec{r}_{1}\right)\right|^{2}\left|\psi_{j}\left(\vec{r}_{2}\right)\right|^{2}-\delta_{s_{i}, s_{j}} \psi_{i}^{*}\left(\vec{r}_{1}\right) \psi_{i}\left(\vec{r}_{2}\right) \psi_{j}^{*}\left(\vec{r}_{2}\right) \psi_{j}\left(\vec{r}_{1}\right)\right) \tag{5}
\end{align*}
$$

Compare the result with the one known from the Hartree-Fock theory.

