Exercise 1. Dirac Matrices

(a) Prove that any matrices $\vec{\alpha}, \beta$ satisfying

$$
\left\{\alpha^{i}, \alpha^{j}\right\}=2 \delta^{i j} ; \quad \beta^{2}=1 ; \quad\left\{\beta, \alpha^{i}\right\}=0 ;
$$

are traceless with eigenvalues ± 1.
(b) Using the properties above, argue that they must be even dimensional.
(c) What is the minimum dimensionality of the Dirac matrices? Can they be 2×2 matrices?

Exercise 2. Relativistic Hydrogen Atom

In non-relativistic quantum mechanics the radial Schroedinger equation for the Hydrogen atom reads

$$
\begin{equation*}
\left[\frac{\hbar^{2}}{2 m}\left(-\frac{d^{2}}{d r^{2}}-\frac{2}{r} \frac{d}{d r}+\frac{l(l+1)}{r^{2}}\right)-\frac{Z \alpha \hbar c}{r}-E\right] R(r)=0 \tag{1}
\end{equation*}
$$

The quantisation condition requires that $n^{\prime}=n-(l+1)$ must be a non-negative integer, and the energy levels are

$$
E=-\frac{m c^{2}(Z \alpha)^{2}}{2 n^{2}} ; \quad n=1,2, \ldots
$$

where $\alpha=e^{2} /(\hbar c)$. Consider now the Dirac equation for an electron interacting with an external electromagnetic field

$$
\begin{equation*}
\left(i \hbar \gamma^{\mu} \partial_{\mu}+\frac{e}{c} \gamma^{\mu} A_{\mu}-m c\right) \psi=0 \tag{2}
\end{equation*}
$$

(a) Show that by multiplying Eq.(2) by the operator $\left(i \hbar \gamma^{\mu} \partial_{\mu}+e / c \gamma^{\mu} A_{\mu}+m c\right)$ we get the equation

$$
\begin{equation*}
\left[\left(i \hbar \partial+\frac{e}{c} A\right)^{2}+\frac{e \hbar}{2 c} \sigma^{\mu \nu} F_{\mu \nu}-m^{2} c^{2}\right] \psi=0 \tag{3}
\end{equation*}
$$

where $\sigma^{\mu \nu}=(i / 2)\left[\gamma^{\mu}, \gamma^{\nu}\right]$ and $F_{\mu \nu}$ is the usual field strength tensor.
(b) In the case of a pure Coulomb interaction the only non-vanishing component of the potential is $A_{0}=Z e / r$. It is convenient to work in the so called chiral representation for the gamma matrices where

$$
\sigma^{0 j}=i\left(\begin{array}{cc}
\sigma^{j} & 0 \\
0 & -\sigma^{j}
\end{array}\right), \quad \psi=\binom{\psi_{+}}{\psi_{-}}
$$

Show that Eq.(3) can be formally written as two decoupled Schroedinger-like equations for the two spinor components $\psi_{ \pm}$

$$
\begin{equation*}
\left[\hbar^{2}\left(-\frac{d^{2}}{d r^{2}}-\frac{2}{r} \frac{d}{d r}+\frac{l(l+1)-Z^{2} \alpha^{2} \mp i Z \alpha \vec{\sigma} \cdot \hat{r}}{r^{2}}\right)-\frac{Z \alpha 2 E \hbar}{c r}-\frac{E^{2}-\left(m c^{2}\right)^{2}}{c^{2}}\right] \psi_{ \pm}=0 \tag{4}
\end{equation*}
$$

(c) In order to write the equivalent of the radial equation Eq.(1), we decompose the spinor wavefunction as follows

$$
\left|\psi_{ \pm}(\vec{r})\right\rangle=R_{ \pm}(r)|j m l\rangle
$$

where $|j m l\rangle$ are the generalisation of the spherical harmonics and $R_{ \pm}$are the radial wave functions.
Note that, since the operator $\tilde{L}^{2}=L^{2}-\hbar^{2} Z^{2} \alpha^{2} \mp i \hbar^{2} Z \alpha \vec{\sigma} \cdot \hat{r}$ commutes with the total angular momentum $\vec{J}=\vec{L}+\vec{\sigma} / 2$, we can look at the subspace of the Hilbert space with j fixed, in such a way that l can take two values:

$$
l_{ \pm}=j \pm \frac{1}{2},
$$

and obviously $L^{2}|j m l\rangle=\hbar^{2} l(l+1)|j m l\rangle$.
Show that with an appropriate phase-choice we have (for j and m fixed):

$$
\left\langle j m l_{ \pm}\right| \vec{\sigma} \cdot \hat{r}\left|j m l_{ \pm}\right\rangle=\left(\begin{array}{cc}
0 & 1 \tag{5}\\
1 & 0
\end{array}\right)
$$

i.e., $\vec{\sigma} \cdot \hat{r}$ switches $l_{ \pm} \rightarrow l_{\mp}$.
(d) Using the results above show that Eq. (4) can be rewritten as an equation for the radial wave functions $R_{ \pm}$of the same form of (1):

$$
\begin{equation*}
\left[\frac{\hbar^{2}}{2 m}\left(-\frac{d^{2}}{d r^{2}}-\frac{2}{r} \frac{d}{d r}+\frac{\lambda(\lambda+1)}{r^{2}}\right)-\frac{Z \tilde{\alpha} \hbar c}{r}-\tilde{E}\right] R_{ \pm}(r)=0 \tag{6}
\end{equation*}
$$

with

$$
\tilde{\alpha}=\alpha \frac{E}{m c^{2}}, \quad \tilde{E}=\frac{E^{2}-\left(m c^{2}\right)^{2}}{2 m c^{2}},
$$

and the two eigenvalues

$$
\lambda=\sqrt{(j+1 / 2)^{2}-Z^{2} \alpha^{2}} \quad \text { and } \quad \lambda=\sqrt{(j+1 / 2)^{2}-Z^{2} \alpha^{2}}-1,
$$

which can be rewritten as

$$
\lambda=(j \pm 1 / 2)-\delta_{j}, \quad \text { with } \quad \delta_{j}=j+1 / 2-\sqrt{(j+1 / 2)^{2}-Z^{2} \alpha^{2}} .
$$

(e) Finally, with these identifications, show that the energy eigenvalues in Dirac case can be written as:

$$
\begin{equation*}
E_{n j}=\frac{m c^{2}}{\sqrt{1+Z \alpha^{2} /\left(n-\delta_{j}\right)^{2}}}, \tag{7}
\end{equation*}
$$

and compare the result with the fine-structure corrections to the non-relativistic result at $\approx \mathcal{O}\left(\alpha^{4}\right)$.

