Exercise 1. Optical Theorem

Writing the relation between the S-matrix and the T-matrix as

$$
\begin{equation*}
S_{\beta \alpha}=\delta(\beta-\alpha)-i 2 \pi \delta\left(E_{\alpha}-E_{\beta}\right) T_{\beta \alpha}, \tag{1}
\end{equation*}
$$

the unitarity condition on the S-matrix reads

$$
\left(S^{\dagger} S\right)_{\beta \alpha}=\sum_{\gamma}\left(S_{\gamma \beta}\right)^{*}\left(S_{\gamma \alpha}\right)=\delta(\beta-\alpha),
$$

with a sum over all intermediate states γ including an integration over their momenta.
(a) Show that the unitarity condition for $\beta=\alpha$ implies

$$
\begin{equation*}
-2 \operatorname{Im}\left(T_{\alpha \alpha}\right)=(2 \pi) \sum_{\gamma} \delta\left(E_{\gamma}-E_{\alpha}\right)\left|T_{\gamma \alpha}\right|^{2} \tag{2}
\end{equation*}
$$

(b) Starting from the equation above, prove the Optical Theorem:

$$
\begin{equation*}
\sigma_{\text {tot }}=\frac{4 \pi}{k_{\alpha}} \operatorname{Im}\left(f_{\alpha \alpha}\right) \tag{3}
\end{equation*}
$$

where $f_{\alpha \alpha}=-\frac{m_{\alpha}}{2 \pi \hbar^{2}} T_{\alpha \alpha}$ is the elastic scattering amplitude in the forward direction. Hint. Recall that the differential cross-section for the process $\alpha \rightarrow \gamma$ can be written as:

$$
\frac{d \sigma_{\alpha \rightarrow \gamma}}{d \Omega}=\frac{1}{f l u x} \frac{2 \pi}{\hbar}\left|T_{\gamma \alpha}\right|^{2} \frac{d \rho}{d \Omega},
$$

where ρ is the density of states

$$
\rho=\int \frac{d^{3} \vec{k}_{\gamma}}{(2 \pi)^{3}} \delta\left(E_{\gamma}-E_{\alpha}\right)
$$

Exercise 2. The photoelectric effect

We want to treat the photoelectric effect using the quantization of the electromagnetic field. A photon is absorbed by the atom and an electron is excited from the bound state:

$$
\begin{equation*}
\psi_{i}(\vec{r})=\sqrt{\frac{Z^{3}}{\pi a_{0}^{3}}} e^{-\frac{Z r}{a_{0}}}, \tag{4}
\end{equation*}
$$

where $a_{0}=\frac{\hbar^{2}}{m e^{2}}$, to a free state

$$
\begin{equation*}
\psi_{f}(\vec{r})=e^{i \vec{k}_{e} \cdot \vec{r}} . \tag{5}
\end{equation*}
$$

(a) Compute the transition matrix element $V_{f i}=\left\langle\psi_{f} ;(n-1)\left(\vec{k}_{\lambda}, \lambda\right)\right| V\left|\psi_{i} ; n\left(\vec{k}_{\lambda}, \lambda\right)\right\rangle$.
(b) Using the Fermi's golden rule for a continuum of states, show that the differential cross section is given by:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{e^{2}}{\hbar c} \frac{32 \hbar k_{e}}{m \omega_{\lambda}}\left(\vec{\varepsilon}_{\lambda} \cdot \vec{k}_{e}\right)^{2} \frac{\left(\frac{Z}{a_{0}}\right)^{5}}{\left[\left(\frac{Z}{a_{0}}\right)^{2}+\left|\vec{k}_{\lambda}-\vec{k}_{e}\right|^{2}\right]^{2}} \tag{6}
\end{equation*}
$$

where $\vec{\varepsilon}_{\lambda}, \vec{k}_{\lambda}, \omega_{\lambda}$ corresponds to the absorbed photon described by $\left(\vec{k}_{\lambda}, \lambda\right)$.
(c) If the photon energy is large compared to the binding energy of the electron but small compared with the rest mass energy ($W=\frac{m Z^{2} e^{4}}{2 \hbar^{2}}=\frac{\hbar^{2}}{2 m} \frac{Z^{2}}{a_{0}^{2}} \ll \hbar \omega_{\lambda} \ll m c^{2}$), show that for an unpolarized light (equal polarization along x and y direction) the scattering cross section can be written as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{e^{2}}{\hbar c} 32\left(\frac{k_{e} a_{0}}{Z}\right)^{3}\left(\frac{W}{\hbar \omega_{\lambda}}\right)^{5} \frac{\left(\frac{a_{0}}{Z}\right)^{2} \sin ^{2} \theta}{\left(1-\frac{v}{c} \cos \theta\right)^{4}}, \tag{7}
\end{equation*}
$$

where $v=\frac{\hbar k_{e}}{m}$ is the electron velocity, the z-axis coincides with the direction of the incident photon and the photon velocity is described by the polar angle $\theta\left(\vec{k}_{\lambda} \cdot \vec{k}_{e}=k_{\lambda} k_{e} \cos \theta\right)$.

