Exercise 1. Free radiation field

The radiation field can be written as

$$
\vec{A}(\vec{r}, t)=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \sum_{\lambda} \sqrt{\frac{2 \pi \hbar c^{2}}{\omega_{k}}}\left(a_{k, \lambda} \vec{\lambda}_{k, \lambda} e^{i \vec{k} \cdot \vec{r}-i \omega_{k} t}+a_{k, \lambda}^{*} \vec{\lambda}_{k, \lambda}^{*} e^{-i \vec{k} \cdot \vec{r}+i \omega_{k} t}\right)
$$

1. Compute the Hamiltonian $H=\frac{1}{8 \pi} \int d^{3} \vec{r}\left(\vec{E}^{2}+\vec{B}^{2}\right)$
2. Compute the Poynting vector $\vec{P}=\frac{1}{4 \pi c} \int d^{3} \vec{r} \vec{E} \times \vec{B}$

Exercise 2. Polarization vectors

Assuming the wave vector points along the z-axis, $\vec{k}=(0,0, k)$, common choices for the polarization vectors $\vec{\varepsilon}(\vec{k}, \lambda)=\vec{\varepsilon}_{k, \lambda}$ are:
circular polarization: $\vec{\varepsilon}_{k,+}=(-1,-i, 0) / \sqrt{2} \quad \vec{\varepsilon}_{k,-}=(1,-i, 0) / \sqrt{2}$
linear polarization: $\vec{\varepsilon}_{k, 1}=(1,0,0) ; \quad \vec{\varepsilon}_{k, 2}=(0,1,0)$;

1. Show

$$
\vec{\varepsilon}^{*}(\vec{k}, \lambda) \cdot \vec{\varepsilon}\left(\vec{k}, \lambda^{\prime}\right)=\delta_{\lambda \lambda^{\prime}}
$$

2. Show

$$
\sum_{\lambda} \varepsilon_{i}^{*}(\vec{k}, \lambda) \varepsilon_{j}(\vec{k}, \lambda)=\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}
$$

Exercise 3. Commutation relations

The Lagrangian density of the free radiation field is given by $\mathcal{L}=-\frac{1}{16 \pi} F^{\mu \nu} F_{\mu \nu}$ where $F^{\mu \nu} \equiv$ $\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$ is the field strength tensor.

1. Show that the canonical momentum to \vec{A} is given by $\vec{\pi}=-\frac{1}{4 \pi c} \vec{E}$
2. After quantisation of the radiation field, both \vec{A} and $\vec{\pi}$ are operators. Show that the commutation relations

$$
\begin{aligned}
& {\left[\hat{a}(\vec{k}, \lambda), \hat{a}^{\dagger}\left(\vec{k}^{\prime}, \lambda^{\prime}\right)\right]=(2 \pi)^{3} \delta\left(\vec{k}-\vec{k}^{\prime}\right) \delta_{\lambda \lambda^{\prime}}} \\
& {\left[\hat{a}(\vec{k}, \lambda), \hat{a}\left(\vec{k}^{\prime}, \lambda^{\prime}\right)\right]=\left[\hat{a}^{\dagger}(\vec{k}, \lambda), \hat{a}^{\dagger}\left(\vec{k}^{\prime}, \lambda^{\prime}\right)\right]=0}
\end{aligned}
$$

result in equal-time commutation relations

$$
\left[\hat{A}_{i}(\vec{x}, t), \hat{\pi}_{j}(\vec{y}, t)\right]=i \hbar \int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} e^{i \vec{k} \cdot(\vec{x}-\vec{y})}\left(\delta_{i j}-\frac{k_{i} k_{j}}{\vec{k}^{2}}\right)
$$

How would these relations simplify if there were three polarizations of the radiation field? Interpret the results.

