Exercise 1. Electron in a time-dependent magnetic field

Imagine an electron at rest at the origin, in the presence of a magnetic field whose magnitude is constant, but whose direction sweeps out a cone, of opening angle α, at a constant angular velocity ω :

$$
\begin{equation*}
\vec{B}(t)=B_{0}[\sin \alpha \cos \omega t \hat{\imath}+\sin \alpha \sin \omega t \hat{\jmath}+\cos \alpha \hat{k}] . \tag{1}
\end{equation*}
$$

The Hamiltonian is

$$
H(t)=\frac{e}{m} \vec{B} \cdot \vec{S}=\frac{\hbar \omega_{1}}{2}\left(\begin{array}{cc}
\cos \alpha & \mathrm{e}^{-i \omega t} \sin \alpha \tag{2}\\
\mathrm{e}^{i \omega t} \sin \alpha & -\cos \alpha
\end{array}\right),
$$

where $\omega_{1}=\frac{e B_{0}}{m}$.
(a) Compute the normalized eigenspinors of $H(t)$:

$$
H(t) \chi_{ \pm}(t)=E_{ \pm} \chi_{ \pm},
$$

and show that

$$
E_{ \pm}= \pm \frac{\hbar \omega_{1}}{2}
$$

(b) Supposing that the electron starts out with spin up along $\vec{B}(0)$:

$$
\chi(0)=\binom{\cos (\alpha / 2)}{\sin (\alpha / 2)},
$$

verify that the exact solution of the time-dependent Schroedinger equation can be written as:

$$
\begin{align*}
\chi(t)= & {\left[\cos \left(\frac{\lambda t}{2}\right)-i \frac{\omega_{1}-\omega \cos \alpha}{\lambda} \sin \left(\frac{\lambda t}{2}\right)\right] \mathrm{e}^{-i \omega t / 2} \chi_{+}(t) } \\
& +i\left[\frac{\omega}{\lambda} \sin \alpha \sin \left(\frac{\lambda t}{2}\right)\right] \mathrm{e}^{+i \omega t / 2} \chi_{-}(t) . \tag{3}
\end{align*}
$$

(c) Compute the probability of a transition to spin down exactly.

Consider then the two regimes:

- $\omega \ll \omega_{1}$ (the so-called adiabatic regime)
- $\omega \gg \omega_{1}$
and compare the two behaviors. Is the adiabatic theorem satisfied?
(d) If $\omega_{1} \ll \omega, H(t)$ can be considered as a time-dependent perturbation. Assuming that the perturbation is switched on at $t>0$, compute the first order perturbative correction to the eigenstate

$$
\chi(0)=\binom{\cos (\alpha / 2)}{\sin (\alpha / 2)}
$$

in time-dependent perturbation theory and compare it to the expansion of the exact solution (3).
(e) Consider now again the adiabatic regime $\omega \ll \omega_{1}$. Starting from the exact solution (3), show that in this regime it can be written as:

$$
\chi(t)=\mathrm{e}^{i(\epsilon(t)+\gamma(t))} \chi_{+}(t)+\mathcal{O}\left(\omega / \omega_{1}\right)
$$

where $\epsilon(t)$ is the so-called dynamic phase, and $\gamma(t)$ is the geometric phase.
(f) The geometric phase can also be computed directly from $\chi_{+}(t)$, using the adiabatic approximation. Compute the geometric phase and compare the result with what you obtained in point (e).

