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Exercise 1. Zeeman effect

In the following exercise we study the effect of an external magnetic field on the energy levels
of an hydrogen-like atom, the so-called Zeeman effect.

The interaction hamiltonian can be written:

HZ = −(~µl + ~µs) · ~B =
e

2m
( ~L+ 2~S ) · ~B (1)

The nature of the Zeeman effect depends on the strength of the external magnetic field, compared
to the internal magnetic field which gives rise to the fine structure splitting. We analyze the two
different regimes separately.

(a) Weak-field

If Bext � Bint the fine-structure dominates. Show that the energy shift due to the inter-
action with the magnetic field can be written as:

∆EZ =
e

2m
~Bext · 〈~L+ 2~S〉 =

e

2m
gJ ~Bext · 〈 ~J 〉

where

gJ =

[
1 +

j(j + 1)− l(l + 1) + s(s+ 1)

2 j (j + 1)

]
is the Landé g-factor.

Assuming that ~Bext = (0, 0, Bz), draw the energy-splitting of the levels 2P1/2 and 2P3/2

due to the Zeeman effect.

Hints

• Since the magnetic field can be considered as a perturbation of the fine structure, the
“good” quantum numbers to describe the energy splitting are n, l, j,mj .

• In order to compute the mean value of the Spin operator 〈~S〉 you can use the Wigner-
Eckart theorem, namely:

〈~S 〉 =

〈
~S · ~J
J2

~J

〉
.

(b) Strong-field (Paschen-Back effect)

On the other hand, if Bext � Bint the Zeeman effect dominates.

Putting again ~Bext = (0, 0, Bz), draw the energy-splitting for the level 2P in this regime
neglecting the fine structure contribution and compare it with the one above.

Hints

• Following what has been done in the weak case and noticing that in this regime the
relative importance of the Zeeman effect and of the spin-orbit is inverted, choose the
right basis of eigenvectors to compute the energy shifts in first order perturbation
theory.
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Exercise 2. Spin-statistics

(a) Positronium is the bound state of an electron-positron pair. The wave function for the
ground state with L = 0 (zero orbital angular momentum) can be decomposed into the
tensor product of the spinorial and spatial eigenfunctions:

Ψe+e−(~x1, ~x2) = χS ⊗ ψ(~x1, ~x2). (2)

Defining ~S = ~Se+ + ~Se− and knowing that e+ and e− have spin 1/2, write down the
spinorial eigenfunctions for the ground states of para-positronium (spin 0, 1S0) and ortho-
positronium (spin=1, 3S1) in the basis |Sz e− , Sz e+〉.
Recalling the symmetry properties of the wavefunction of a multi-fermion state, discuss
the symmetry of the spatial wavefunction under exchange of the two fermions.

(b) The particle ∆++ is a bound state of three identical spin-1/2 particles called up-quarks.

We can imagine to decompose the total wavefunction for this bound state as

Ψ∆++ = χspin Ψspace. (3)

The total spin of ∆++ is 3/2 and in the ground state L = 0 the spatial wavefunction is
symmetric . Discuss why the total wavefunction is not acceptable for a bound state of
three identical fermions.

We can introduce a new quantum number c, called colour, with three possible eigenvalues
associated to the eigenfunctions |r〉, |g〉, |b〉. Write down the total wave function for the
colour of the ground state as linear combination of the eigenstates above, in such a way
that the total wavefunction respects the expected symmetry properties.

Exercise 3. The Fermi gas

Let us consider a system of a very large number of non-interacting spin-1/2 particles contained
in a box. If the box is large enough, the properties of the system are independent of the shape
of the box, and the system is called a Fermi gas. Since the particles are non-interacting, each
of them satisfies the free-particle Schroedinger equation

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(x, y, z) = Eψ(x, y, z) (4)

We consider impenetrable walls with boudary conditions ψ = 0. For a large cubic box of side L
the wavefunction is given by

ψnxnynz = C sin
(nxπ
L
x
)

sin
(nyπ
L
y
)

sin
(nzπ
L
z
)

(5)

where C = (8/L3)1/2 and nx, ny, nz are positive integers. The corresponding eigenvalues are

En =
~2π2

2mL2
n2 n2 = n2

x + n2
y + n2

z (6)

The total one-particle wavefunction is the so-called spin-orbital

ψnxnynzms = ψnxnynz(x, y, z)χ 1
2
,ms

(7)
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where χ is the spin wavefunction with ms = ±1/2.

Since the energy spacings are very small for a macroscopic box, it is a good approximation to
consider that the energy levels are distributed nearly continuously. We may then introduce the
density of states D(E), which is defined in such a way that D(E)dE is the number of states with
energy in the range (E,E + dE). In the space formed by the axes nx, ny, nz we are interested
in the octant for which nx > 0, ny > 0, nz > 0. Each state is associated to a point (nx, ny, nz)
of a cubical lattice, and every elementary cube of the lattice has unit volume. Hence, the total
number of states up to an energy E is well approximated by the volume of the octant of a sphere
of radius n = (n2

x + n2
y + n2

z)
1/2. The total number of individual particle states for energies up

to E is therefore

Ns = 2
1

8

4

3
π n3 (8)

(a) Starting from Ns, and setting V = L3, derive the density of states D(E). Describe
schematically how the energy levels are populated by N identical spin-1/2 particles in the
ground state of the Fermi gas at absolute temperature T = 0, up to an energy EF called
the Fermi energy.

(b) Derive the explicit value of EF for a gas containing N particles.

(c) Compute the total energy of the gas and the average particle energy.
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