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Exercise 1. Ground state of helium

The helium atom consists of two electrons in orbit around a nucleus containing two protons.
The experimental value of the ground state energy is Eexp = −78.975 eV. In this exercise we
want to estimate this energy using the variational method.

The Hamiltonian of the helium atom is
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and it can be seen as the sum of two independent hydrogen-like terms plus a Coulomb interac-
tion describing the repulsion between the electrons. Therefore neglecting this contribution the
ground-state wavefunction Ψ0 is just the product of two hydrogen-like ground-state wavefunc-
tions ψ1s

Ψ0(~r1, ~r2) = ψ1s(~r1)ψ1s(~r2) =
8
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where a is the Bohr radius.

(a) Using the trial function Ψ0 obtain an upper value for the energy of the ground-state.

(b) This first estimate neglects completely the repulsion between the electrons. We can con-
sider this effect saying that on average each electron represents a cloud of negative charge
which partially shields the nucleus, so that the other electron actually sees an effective
nuclear charge Z that is somewhat less than 2. This suggests that we use a trial function
of the form

Ψ1(~r1, ~r2) =
Z3
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Give a new estimate of the ground state energy using Z as a variational parameter.

(c) Compare the two estimates to the experimental value.

Exercise 2. Hydrogen atom

In the following exercise we want to make use of a result due to Feynman and Hellmann to
compute the mean values of 1/rk on the eigenstates of the Coulomb problem.

(a) We start off considering a hamiltonian Hλ and the Schroedinger equation:

(Hλ − Eλ)|ψ〉 = 0 , (4)

where Hλ and Eλ are functions of a continuos parameter λ.

Show that given any eigenstate |ψ〉 and its eigenvalue Eλ:〈
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This apparently very simple result can be an extremely powerful tool in computing mean
values of different operators as we will see in the following.
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(b) Consider now the hamiltonian for the Coulomb problem

H = − ~2
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r
, (6)

The radial hamiltonian reads:
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With this notation the eigenvalues of H read:

En = −(Ze2)2
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where n is the principal quantum number, and N is the so called radial quantum number.

Using Feynman-Hellmann result show that:〈
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where ψnlm are the eigenfunctions of the Coulomb problem.
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