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Exercise 1. Third-order perturbation theory

Assuming a non degenerate energy spectrum, compute the third-order correction to the energy
eigenvalues in the framework of time-independent perturbation theory.

Exercise 2. FExact solution vs perturbation theory

Consider the following 2 x 2 Hamiltonian for a 2-state system:

H = Hy+ \V
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(a) Solve exactly the problem

with

HY=FEV,
determining the eigenvalues and the eigenvectors.

(b) Using time independent perturbation theory in A derive the first-order correction to the
eigenvectors, and the second-order correction to the eigenvalues.

(c) Expand the exact result (a) in A and compare them with what you obtained in (b).

Exercise 3. Quasi-degenerate energy levels

In this exercise we want to see what happens when two energy levels are almost equal. For this
consider two quasi-degenerate energy levels of the unperturbed Hamiltonian Hy

EV=EO 4+ EY=EO® _¢ with e small.

We want to solve the Schrédinger equation (Ho+AV) |¢y,) = Ey, |[¢y) perturbatively for n = 1, 2.
Decompose |1,) as follows
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(a) Following the steps of the derivation of the determinant condition for the degenerate case
and neglecting terms less singular than ¢! show that
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(b) Solve the above equation for E,, to get
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By = B+ {(AB) + X ia?}

where

E= (B +avi + B + Vi)
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(c) Can the perturbation make the energy levels cross ?

(d) Show that equation (1) reduces to the degenerate case in the limit e — 0.



