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1.1. Transition amplitude for a harmonic oscillator

A “classical” exercise regarding path integrals in quantum mechanics is the computation
of the transition amplitude for a harmonic oscillator.

Consider the Lagrangian
L(q, q̇) = 1

2
mq̇2 − 1

2
mω2q2, (1.1)

where q, q̇ are the position and velocity variables.

Compute the transition amplitude for the harmonic oscillator

U(qf , qi, t) := 〈qf , tf |qi, ti〉 =

∫
Dq exp

[
i

~

∫ tf

ti

dt L(q̂, ˆ̇q)

]
, (1.2)

where t := tf − ti. Show that it equals

U(qf , qi, t) =

[
mω

2π~i sin(ωt)

]1/2
exp

[
imω

2~
cos(ωt)(q2i + q2f )− 2qiqf

sin(ωt)

]
. (1.3)

Walkthrough:

a) Split up the path q(t) in n intermediate steps qk, k = 1, . . . , n− 1,

U(qf , qi, t) = lim
n→∞

∫ [n−1∏
j=1

dqj

][
nm

2π~it

]n/2
exp

[
i

~

n∑
k=1

t

n
Lk

]
, (1.4)

where q0 := qi, qn := qf and Lk = 〈qk+1|L(q̂, ˆ̇q)|qk〉.
Write the Lagrangian expectation value Lk in terms of the qk. Choose a suitable
definition of “ordering” of the operators with

〈qk|ˆ̇q|qk−1〉 =
qk − qk−1
t/n

; (1.5)

make a wise choice for V (q̂).

b) Reexpress the exponential in (1.4) as a Gaussian function of the form

exp

[
i

~

n∑
k=1

t

n
Lk

]
= exp

[
inm

2~t

(
~q TMn−1~q + ~BT~q

)]
, (1.6)

where ~q = (q1, q2, . . . , qn−1) is an (n−1)-dimensional vector, M is an (n−1)× (n−1)

matrix, ~B is an (n− 1)-dimensional vector (depending on q0 = qi, qn = qf). With this
form, you should be able to compute the integral (rather) easily.

−→
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c) Show that the determinant of Dj−1 := detMj−1 satisfies the equality

Dj+1 +Dj−1 − 2Dj

(t/n)2
= −a2Dj (1.7)

when considered as a function of the steps j. Determine the constant a, then solve
the equation.

Hint: this equation is the discretised version of a well-known equation. In order
to solve it, you can solve the continuum equations for D(t), re-express the solution
in discretised time and take the leading limit as n → ∞, with b.c. D0 = 0, D1 =
1 +O(1/n2). Why do we choose these b.c.?

Check: you should get that

Dn−1 ∼
n

ωt
sin(ωt) for n→∞ (1.8)

d) Now, if you did everything correctly, you should be left with the computation of
the coefficients of (q2i + q2f ) and of qiqf in the exponent. You can compute them by
computing the appropriate minors of the matrix Mn−1 and get the correct result.
Enjoy!

1.2
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2.1. Propagator of a free Klein–Gordon field

The aim of this exercise is to show that the Feynman propagator of a free Klein–Gordon
field yields the usual expression, well known from QFT I, when derived using the path
integral formalism

〈0|T(φ(x1)φ(x2))|0〉 = lim
T→∞(1−iε)

∫
Dφφ(x1)φ(x2) exp

(
i
∫ +T

−T d4xL
)∫

Dφ exp
(
i
∫ +T

−T d4xL
)

=

∫
d4k

(2π)4
−ie−ik(x1−x2)

k2 +m2 − iε
. (2.1)

a) Show that the following integral is given by∫
dnx exp

(
−xTMx

)
=

const.√
det(M)

, (2.2)

where the xi are the components of an n-dimensional Euclidean vector x and M is
a symmetric matrix. Carry out the integrals by diagonalising the matrix M and
redefining the vector x. Compute similarly∫

dnx x2j exp
(
−xTMx

)
, (2.3)

where xj is one of the components of the vector x. Express the result as a factor
times the integral in (2.2).

To compute (2.1) we discretise spacetime∫
Dφ→

∫
k0n>0

dRe(φ(kn)) d Im(φ(kn)),

∫
d4k

(2π)4
→ 1

L4

∑
n

. (2.4)

You can think of this discretisation as regarding the 4-dimensional spacetime on a lattice
of size L with lattice spacing, i.e. the distance between two spacetime points, L/N . In
the continuum limit, the lattice spacing goes to zero, and the lattice size goes to infinity

L/N → 0, L→∞. (2.5)

The mode-vector is kµn = 2πnµ/L, where the components nµ are integers between −N/2
and N/2. We will take the continuum limit at the end. Also we perform a discrete mode
expansion of the free scalar field

φ(x) =
1

L4

∑
n

e−iknxφ(kn). (2.6)

The individual Fourier coefficients φ(kn) are complex but the field φ(x) is real. Thus, we
have the constraint φ(kn)∗ = φ(−kn). However, we can treat the real and imaginary part
of φ(k) as independent variables if we restrict ourselves to modes with k0n > 0.

−→
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b) Insert the mode expansion of φ(x) and find the discretised equivalent to the action of
the Klein–Gordon field.

S =

∫
d4x

(
−1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ(x)2

)
. (2.7)

The result is quadratic in the real and imaginary part of φ(kn).

c) Compute the discrete equivalent of∫
DφeiS =

∏
n

√
−iπL4

k2n +m2
. (2.8)

Separate the integrations over the imaginary and real part of φ and make use of the
results obtained in problem a). When recombining both parts you should find the
correct result.

d) Now compute the discretised version of (2.1) by inserting the mode expansion for
φ(x1)φ(x2). Make use of the symmetry of the integrand (even or odd in φ) to maintain
only non-vanishing terms. Can you relate your expressions to what you found in
problem a)? Finally, take the continuum limit and recover the Feynman propagator.

2.2
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3.1. Generating functionals

Consider a Lagrangian for massless scalars with a quartic interaction

L = L0 + Lint, L0 = −1
2
∂µφ ∂

µφ− 1
2
m2φ2, Lint = − 1

24
λφ4. (3.1)

The interacting generating functional is then

Z[j] = exp

[
i

∫
d4xLint

(
−iδ
δj(x)

)]
Z0[j], (3.2)

expressed in terms of the free generating functional

Z0[j] =

∫
Dφ exp

[
i

∫
d4x

(
L0 + j(x)φ(x)

) ]
. (3.3)

a) Show that

Z0[j] = Z0[0] exp

[
i

2

∫
d4y1 d

4y2 j(y1)GF(y1, y2)j(y2)

]
, (3.4)

where GF(x−y) is exactly the Feynman propagator (and not just any Green function).

b) Compute the vacuum contributions to Z[j] to order λ2,

Z[0]

Z0[0]
=

1

Z0[0]
exp

[
−i
∫
d4xLint

(
−iδ
δj(x)

)]
Z0[j]

∣∣∣∣
j=0

= 1 + λ

∫
dxC1GF(x, x)2

+ λ2
∫
dx dy

[
C2,1GF(x, x)2GF(y, y)2

+ C2,2GF(x, x)GF(y, y)GF(x, y)2 + C2,3GF(x, y)4
]

+O(λ3), (3.5)

being particularly careful in the computation of the combinatorial factors C1, C2,1,
C2,2, C2,3. These factors can be computed either from the functional derivative ex-
pression or as symmetry factors of the related diagrams.

Describe graphically each term and identify connected and disconnected terms. Then
show that the functional W [0] with

W [j] := −i log

[
Z[j]

Z0[0]

]
(3.6)

generates only the connected contributions to the vacuum amplitude.

−→
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3.2. Berezin integral

Throughout this exercise, the symbol θj will indicate an odd (i.e. anti-commuting) real
variable. We will study some general properties of Berezin integration over functions f(θ).

a) We know from the lecture that the fermionic delta function for a single odd variable
can be written as

δ(θ − η) = θ − η. (3.7)

In order to generalise this notion, we first have to define the notion of multidimen-
sional Berezin integral. Given a set of odd variables θ1, θ2, . . . , θn, we define the
n-dimensional Berezin measure as

dnθ := dθn dθn−1 . . . dθ1, (3.8)

so that the following identity holds:∫
dnθ θ1 θ2 . . . θn = 1. (3.9)

Define the multidimensional delta function as

δ0|n(θ − η) =
n∏
i=1

(θi − ηi) = (θ1 − η1) . . . (θn − ηn). (3.10)

Show that, with these definitions,∫
dnθ δ0|n(θ − η) f(θ) = f(η). (3.11)

b) Consider a function f(θ), where θ = (θ1, θ2, . . . , θn). Show that, under a non-singular
linear transformation (M is real and Grassmann even)

η = Mθ, (3.12)

the following identity is satisfied:∫
dnη f(η) =

1

det(M)

∫
dnθ f(θ), (3.13)

meaning that, under a change of variable, a Berezin integral (over purely odd coordi-
nates) transforms with the inverse Jacobian.

c) Consider the integral ∫
dnθ exp

(
1
2
θiAijθj

)
, (3.14)

where A is an n × n real, skew-symmetric matrix. Compute the integral for n even.
Show that it vanishes for n odd.

Hint: recall that any real, anti-symmetric matrix can be brought to a block diagonal
form via an orthogonal transformation.

3.2
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4.1. Schwinger–Dyson equation

Consider a free massive scalar field with Lagrangian

L0 = −1
2
∂µφ ∂

µφ− 1
2
m2φ2. (4.1)

The path integral is invariant under a linear shift of the field φ(x)→ φ(x)+ε(x). Use this
property to show that the correlation functions satisfy the classical equations of motion
up to contact terms, i.e.

(−∂2 +m2)〈φ(x)φ(x1) . . . φ(xn)〉 = −i
n∑
k=1

〈φ(x1) . . . δ
4(x− xk) . . . φ(xn)〉. (4.2)

4.2. Generating functionals

Consider now the Lagrangian of a massive scalar field φ with quartic interaction

L = L0 + Lint, L0 = −1
2
∂µφ ∂

µφ− 1
2
m2φ2, Lint = − 1

24
λφ4. (4.3)

The generating functional with sources j(x) is then

Z[j] = Z0[0] exp

[
i

∫
d4xLint

(
−iδ
δj(x)

)]
exp

[
i

2

∫
d4y1d

4y2 j(y1)GF(y1 − y2)j(y2)
]
,

(4.4)
where GF(x) is the Feynman propagator. In the last exercise sheet you convinced yourself
that Z[j] produces vacuum contributions. Furthermore, you saw that the functional

W [j] = −i logZ[j] (4.5)

could be used to generate only the connected graphs.

a) Compute Z[j] and W [j] at O(λ) and O(j4), i.e. drop any contributions with more
than one vertex or more than four sources. Hint: The entire exercise can be solved
graphically.

b) Convince yourself graphically that the contributions to the four-point correlation
function at O(λ) arise correctly from

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = Z[j]−1
δ

δj(x1)

δ

δj(x2)

δ

δj(x3)

δ

δj(x4)
Z[j]

∣∣∣∣
j=0

(4.6)

and that the connected contributions arise from

δ

δj(x1)

δ

δj(x2)

δ

δj(x3)

δ

δj(x4)
W [j]

∣∣∣∣
j=0

. (4.7)

c) Determine the connected contributions at O(λ2) with four external legs.

−→
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4.3. Effective action

Graphically compute the effective action G[φ] for the above model defined by (4.3) at
O(λ2) ignoring vacuum bubbles and tadpoles.

You may start with W [j] given by the graphs

W [j] = 1
2

− 1
24
λ + 1

72
λ2

− i
16
λ2 − 1

12
λ2 + . . . . (4.8)

Throughout the calculation you should ignore any vacuum bubble graph, tadpole graph
and graph with more than two interaction vertices.

a) Compute the field functional φ[j] = δW [j]/δj.

b) Determine the inverse functional j[φ] by demanding that j[φ[j]] = j or φ[j[φ]] = φ.

Hint: Use the result you obtained in part a). Substitute graphically the result you
obtained at leading order in λ into the all higher order terms, and continue like this
order by order in λ. Immediately drop terms of O(λ3).

c) Compute W [j[φ]] and Ssrc[φ, j[φ]] =
∫
d4xφ(x)j[φ](x) by graphically substituting the

result you obtained for j[φ] in b).

d) Take the difference G[φ] = W [j[φ]]−Ssrc[φ, j[φ]]. Convince yourself that all remaining
terms in G[φ] are 1PI.

4.2



Quantum Field Theory II Problem Set 5
ETH Zurich, FS13 B. Mistlberger, M. Rosso, Prof. N. Beisert

5.1. Lie Algebras

An algebra is a vector space A over a field K together with a bilinear operation A×A→ A.
A Lie algebra g is an algebra whose operator is a so-called Lie bracket denoted by [·, ·]Lie.
A Lie bracket must satisfy the properties (A,B,C ∈ g and a, b ∈ K)

• bilinearity

[aA+ bB,C]Lie = a[A,C]Lie + b[B,C]Lie,

[C, aA+ bB]Lie = a[C,A]Lie + b[C,B]Lie, (5.1)

• anti-symmetry
[A,B]Lie = −[B,A]Lie, (5.2)

• Jacobi identity

[A, [B,C]Lie]Lie + [C, [A,B]Lie]Lie + [B, [C,A]Lie]Lie = 0. (5.3)

The matrix algebras sl(N), so(N) and sp(N) are equipped with the matrix commutator
as bilinear operation, [·, ·]Lie = [·, ·]. The elements of the algebras are

• sl(N): traceless N ×N matrices,

• so(N): N ×N matrices that are anti-symmetric w.r.t. a non-degenerate symmetric
metric M , AT = −MAM−1,

• sp(N): N × N matrices that are anti-symmetric w.r.t. a non-degenerate anti-
symmetric matrix E, AT = −EAE−1.

Show that the constraints for so(N) and sp(N) are self-consistent, i.e. compare ATT to A.
Show that these matrix algebras are indeed algebras and Lie algebras.

5.2. Quadratic Casimir Invariant

Consider the basis Ta of generators of a simple Lie algebra g. One can define a unique
invariant symmetric bilinear form called Killing form satisfying

K(Ta, Tb) = K(Tb, Ta), K([Ta, Tb]Lie, Tc) +K(Ta, [Tb, Tc]Lie) = 0. (5.4)

The Killing form can be constructed as a trace of two generators in some representation

K(Ta, Tb) = kab, Tr(R(Ta)R(Tb)) = BRkab, (5.5)

where BR is a representation-dependent proportionality factor. For a semi-simple Lie
algebra the Killing form is invertible and we can find a central element C2 := kabTaTb of
the enveloping algebra U(g) that commutes with all elements of U(g).

Show that for an irreducible representation R, the dimension DR of R, the dimension Dad

of the adjoint representation and the eigenvalue CR
2 characterising R(C2) = CR

2 idR are
related by

DadBR = DRCR
2 . (5.6)

−→
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5.3. Tensor Product Representation

Representations of a Lie algebra can be combined to give bigger representations via direct
sums

R1⊕2(a) =

(
R1(a) 0

0 R2(a)

)
(5.7)

and tensor products
R1⊗2(a) = R1(a)⊗ id2 + id1 ⊗R2(a). (5.8)

a) Check that the tensor product of two representations is again a representation. Here
R1, R2 are proper representations of g.

b) Define a permutation P on the tensor product of two identical vector spaces V ⊗ V
by

P (v1 ⊗ v2) = v2 ⊗ v1. (5.9)

Then the projectors onto the symmetric and anti-symmetric sub-spaces V± ⊂ V⊗V
are given by P± = 1

2
(id ± P ). Show that this projector allows to rearrange the

tensor product of two identical representations as the direct sum of the symmetric
and anti-symmetric representation R±

R⊗R = R+ ⊕R−, R± = P±(R⊗R)P±. (5.10)

c) More concretely: Define a basis vα for the space V, and write the representation R
as a matrix in this basis, i.e.

R(a)vα = R(a)α
βvβ. (5.11)

Can you now write the components of R⊗R and R± in the basis vα ⊗ vβ of V⊗ V?

5.2
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6.1. Completeness relation and Casimirs for su(N)

The special unitary algebra su(N) is defined as the commutator algebra on the space

su(N) := {N ×N anti-hermitian traceless matrices }. (6.1)

Let Ta = T def
a , a = 1, . . . N2 − 1, be an imaginary basis for this vector space su(N) =

span{iTa}, or, in other words, a basis for hermitian traceless matrices.

The (non-degenerate) Killing metric kab can be obtained from the T def
a as

tr(T def
a T def

b ) = Bdefkab. (6.2)

The structure constants fab
c are defined as usual, [Ta, Tb] =: ifab

cTc. For su(N) there is a
similar set of symmetric constants dab

c obtained from the defining representation

{T def
a , T def

b } =: dab
cT def
c + 2

Bdef

N
kab. (6.3)

The quadratic and cubic Casimir elements (of the enveloping algebra) are defined as

C2 := kabTaTb, C3 := dabcTaTbTc. (6.4)

a) Let X be a generic N ×N complex matrix. Prove the completeness relation

kab tr(T def
a X)T def

b = Bdef

(
X − 1

N
tr(X) id

)
. (6.5)

Hint: consider the space of N×N complex matrices as a N2-dimensional vector space
over C and find a suitable basis by extending the basis of su(N).

b) Let X be a generic N ×N complex matrix. Knowing the previous identity, eq. (6.5),
prove the completeness relation

kabT def
a XT def

b = Bdef

(
tr(X) id− 1

N
X

)
. (6.6)

c) Show that the symmetric structure constants dab
c are traceless in the first two indices,

kabdab
c = 0. (6.7)

d) Show that the Casimir invariants kabT def
a T def

b = Cdef
2 iddef and dabcT def

a T def
b T def

c =
Cdef

3 iddef for the defining representation are given by

Cdef
2 =

N2 − 1

N
Bdef, Cdef

3 =
(N2 − 4)(N2 − 1)

N2
(Bdef)2. (6.8)

−→
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6.2. Simple Lie groups and simple Lie algebras

You know that a simple Lie group is a connected non-abelian Lie group with no proper
connected normal subgroups. We want to understand what this condition means in terms
of the Lie algebra of the group. In order to do this, we will have to introduce some
additional algebraic notion. In this exercise, we will always consider simply connected Lie
groups, so that the exponential map is a covering map.

a) A subalgebra is a subset of an algebra which is closed under multiplication. In the
case of a Lie algebra, this means that, given an algebra g, a subalgebra h obeys

h ⊆ g : [h, h] ⊆ h. (6.9)

Show that the exponential map maps a subalgebra h into a subgroup H of G.

Hint: recall the Baker–Campbell–Hausdorff formula

exp(X) exp(Y ) = exp

(
X + Y +

1

2
[X, Y ] +

1

12

(
[X, [X, Y ]]− [Y, [X, Y ]]

)
+ . . .

)
, (6.10)

where the dots denote an infinite sum of nested Lie brackets of X, Y .

b) An ideal is a subalgebra h ⊆ g with the property that

[h, g] ⊆ h. (6.11)

A proper ideal is a nonempty ideal not coincident with the whole algebra g.

Show that if a group is simple, its Lie algebra contains no proper ideals.

Hint: it is enough to work with infinitesimal elements of the group, i.e.

a := exp(εA) ' id +εA+O(ε2). (6.12)

6.3. Analysis of so(3) and so(2, 1)

Consider the defining representations of the real Lie algebras so(3), so(2, 1):

so(3) := {M ∈ R3×3 : MI3 + I3M
T = 0},

so(2, 1) := {M ∈ R3×3 : MI2,1 + I2,1M
T = 0},

(6.13)

where

I3 =

1 0 0
0 1 0
0 0 1

 , I2,1 =

1 0 0
0 1 0
0 0 −1

 . (6.14)

a) Choose a (sensible) basis for the defining representation of both algebras and show
that they are simple Lie algebras.

b) Compute the Killing form for both algebras. How do you explain the difference in
the signature?

c) Compute the Casimir invariants for so(3) in the defining and in the adjoint represen-
tation.

6.2



Quantum Field Theory II Problem Set 7
ETH Zurich, FS13 B. Mistlberger, M. Rosso, Prof. N. Beisert

7.1. SU(N) gauge theory

Let us introduce a group-valued smooth function U(x, y), called comparator, that allows
to relate the gauge phase of fields at different points in spacetime. The comparator
satisfies U(x, x) = 1 and transforms under a gauge transformation V (x) as

U(x, y)→ V (x)U(x, y)V −1(y). (7.1)

We can use the comparator to define a covariant derivate by

nµDµψ(x) = lim
ε→0

1

ε

[
ψ(x+ nε)− U(x+ nε, x)ψ(x)

]
, (7.2)

where nµ is an arbitrary vector and ψ(x) is a field. Expanding the comparator around
unity yields

U(x+ εn, x) = 1 + iεnµAµ(x) +O(ε2). (7.3)

a) Consider V (x) to be an abelian gauge transformation. How does the gauge field Aµ(x)
have to transform such that Dµ is truly a covariant derivative satisfying

V (x)Dµψ(x) = D′µV (x)ψ(x)? (7.4)

b) You can construct a gauge-invariant quantity by using the comparator to connect a
space-time point to itself in a non-trivial way

W (x) = U(x, x+ εn)U(x+ εn, x+ εn+ εm)U(x+ εn+ εm, x+ εm)U(x+ εm, x). (7.5)

Expand W (x) and compare the O(ε2) term to the abelian field-strength [Dµ, Dν ] =
iFµν .

Consider now V (x) to be a non-abelian gauge transformation.

c) How does the non-abelian gauge field transform under a gauge transformation such
that the definition of the covariant derivative (7.2) is unchanged?

d) How does the non-abelian field-strength tensor [Dµ, Dν ] = iFµν transform under a
gauge transformation? Compare to the abelian case.

e) Show that the quantity tr(FµνF
µν) is gauge invariant.

−→

7.1



7.2. Chromodynamics

The chromodynamics Lagrangian is given by

L = ψ̄(iγµDµ −m)ψ − 1

2g2YM

tr(FµνF
µν), (7.6)

where Fµν is the field-strength tensor of a SU(3) gauge field Aµ in the defining represen-
tation and ψ is 3-vector of Dirac fields.

a) Write down the equations of motion for the fields.

b) Show that the fermionic current (Jµ)αβ = −ψ̄βγµψα is covariantly conserved

[Dµ, J
µ] = 0. (7.7)

c) Expand the terms in the Lagrangian in terms of the gauge field Aµ = gT def
a Aaµ and

interpret pictorially the individual terms.

d) Can you write down a Lagrangian for a scalar field that is invariant under SU(3)?

7.2



Quantum Field Theory II Problem Set 8
ETH Zurich, FS13 B. Mistlberger, M. Rosso, Prof. N. Beisert

8.1. Path integral gauge fixing

We will consider some gauge fixing different from the standard Landau gauge seen during
the lecture

a) Consider the action for pure electrodynamics

SED =

∫
d4x

[
−1

4
FµνF

µν

]
. (8.1)

Perform the gauge fixing via the Faddeev–Popov method, using the nonlinear gauge
condition

G[A,Ω] = ∂µA
µ + ζAµA

µ −Ω. (8.2)

Compute the propagator for the photon field and for the ghost field (it is enough to
invert the kinetic operators appearing in the action).

Is the ghost field decoupled in this gauge? Show that in the limit ζ → 0 the Lorenz
gauge is restored.

b) Consider the action for pure Yang–Mills theory

SYM =

∫
d4x

[
−1

4
F a
µνF

aµν

]
. (8.3)

Perform the gauge fixing via the Faddeev–Popov method, using the axial gauge con-
dition

G[A,Ω]a = nµAaµ −Ωa, (8.4)

where nµ is some fixed four vector. The possible choices are

• n2 = 0, light-light gauge, e.g. nµ = (1, 0, 0, 1);

• n2 > 0, spatial gauge, e.g. nµ = (0, 0, 0, 1);

• n2 < 0, temporal gauge, e.g. nµ = (1, 0, 0, 0).

Compute the propagator for the photon field and for the ghost field (it is enough to
invert the kinetic operators appearing in the action).

Does the ghost field decouple from gauge fields in this gauge?

−→

8.1



8.2. Passarino–Veltman reduction

We will study a method to reduce one loop tensor integrals to linear combinations of one
loop scalar integral. The integrals are defined in D dimension. Specifically, we define the
integrals as

A0(m
2) :=

∫
dDk

(2π)D
1

k2 +m2
, (8.5)

B0,µ,µν(p;m
2
1,m

2
2) :=

∫
dDk

(2π)D
1, kµ, kµkν

[k2 +m2
1][(k − p)2 +m2

2]
. (8.6)

For simplicity, we have omitted the iε term from the propagators. Furthermore, we shall
omit the arguments of the scalar functions B which are always (p;m2

1,m
2
2).

The idea is to reduce the integrals Bµ, Bµν to a linear combination of A0, B0 integrals
with suitable coefficients. The first step is to decompose the tensor integrals according to
the Lorentz structure; the only allowed possibility for the two tensor integrals is

Bµ = pµB1, (8.7)

Bµν = pµpνB21 + ηµνB22, (8.8)

where B1, B21, B22 are to-be-determined linear combinations of A0’s and B0’s.

a) Express B1 in eq. (8.7) as a linear combination of A0(m
2
1), A0(m

2
2) and B0.

Hint: Write Bµ as the integral of eq. (8.6), multiply both sides of eq. (8.7) times pµ

and then rewrite the numerator of the integrand as a linear combination of m2
1,m

2
2, p

2

as well as the factors in the denominator of the integrand.1

Check that

2p2B1 = A0(m
2
1)− A0(m

2
2) + (m2

1 −m2
2 − p2)B0. (8.9)

b) For the rank-2 tensor integrals, we can obtain a 2 × 2 linear system of equations by
multiplying both sides of eq. (8.8) times ηµν and pµ, respectively (recall that we are
working with dimensional regularisation).

• Repeat the steps for the manipulation of the numerator of the integrands. Pay
attention when handling the numerator of the equation obtained as pν times
eq. (8.8), (you should be able to express the RHS in terms of Bµ and of pµA0).

N.B.: recall the integral ∫
dDk

(2π)D
kµ

k2 +m2
= 0. (8.10)

• Show that the linear system expressing B21, B22 in terms of the scalar integrals
A0, B0 is

p2B21 +DB22 = X1A0(m
2
2) +X2B0, (8.11)

p2B21 +B22 = Y1A0(m
2
2) + Y2B1, (8.12)

where X1, X2, Y1, Y2 depend on m1,m2, p
2. Determine X1, X2, Y1, Y2.

1The reduction of the numerator of the integrand to a sum of m2
1,m

2
2, p

2 and the denominators is
generally possible only with one loop integrals; at higher loops, the reduction to scalar integrals is much
more complicated.

8.2
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9.1. Feynman’s parametrisation of loop integrals

Prove the following identity, which is used to combine the denominators of integrands in
loop integrals:

1

Da1
1 . . . Dan

n

=
Γ(
∑n

j=1 aj)

Γ(a1) . . .Γ(an)

∫ 1

0

dx1 . . .

∫ 1

0

dxn
δ(1−

∑n
j=1 xj)x

a1
1 . . . xanm

[x1D1 + . . .+ xnDn]a1+...+an
. (9.1)

Hint: carry out the proof by induction, starting from n = 2; to prove the n = 2 case,
you will need the following definition for the Gaussian hypergeometric function 2F1 (for
Re(c) > Re(b),Re(a) > 0, |z| < 1):

2F1(a, b; c; z) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dx xb−1(1− x)c−b−1(1− zx)−a

=
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
. (9.2)

Hint: show that

2F1(a+ b, a; a+ b; z) = (1− z)−a. (9.3)

9.2. Renormalisation of φ3 scalar theory

Consider a scalar theory in D = 6 with cubic interaction, with Lagrangian

L = −1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ

6
φ3. (9.4)

a) Derive the Feynman rules for the theory. Show, by power counting, that the theory
is renormalisable in D = 6.

b) Compute the one-loop self energy of the field in dimensional regularisation.

Recall that the theory is formulated in D = 6, so we regularise UV divergencies by
computing the diagram in D = 6− 2ε dimensions, ε > 0.

c) Identify the divergent contributions in the one-loop self energy; compute the needed
mass and field renormalisation counterterms that renormalise the divergencies of the
self energy.

d) Compute the one loop vertex contribution. Identify the divergent part, and compute
the required counterterm.

9.1
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10.1. Asymptotic symmetries

Consider a theory (in D = 4) with two interacting real scalar fields φ1, φ2, with Lagrangian

L = −1
2
(∂φ1)

2 − 1
2
(∂φ2)

2 − 1
24
λ(φ4

1 + φ4
2)− 1

4
ρ φ2

1φ
2
2, (10.1)

with λ > 0 and 3ρ ≥ −λ.

We want to compute the one-loop beta functions for the two couplings ρ, λ. We use
dimensional regularisation to compute the loop integrals, introducing the mass scale µ to
give the correct mass dimension to both ρ and λ.

For the special value λ = 3ρ the theory possesses a global O(2) symmetry that rotates
the two fields among themselves. We will see that this symmetry can be restored in the
UV.

a) First draw all the diagrams involved in the one loop correction of the vertices; pay
attention to the symmetry factors.

b) Write all the loop integrals. They should all be of the form V (s), V (t) or V (u), where

s = −(p1 + p2)
2, t = −(p1 − p3)2, u = −(p1 − p4)2 (10.2)

are the usual Mandelstam variables for an elastic 2 → 2 process and V (−k2) is the
loop integral with four external legs and two internal scalar propagators.

c) Define the counterterms such the tree level result receives no one-loop correction at
the point s = t = u = µ2. Then compute

βλ(ρ, λ) := µ
∂

∂µ
λ, βρ(ρ, λ) := µ

∂

∂µ
ρ. (10.3)

d) Compute the evolution equation for the ratio λ/ρ in the one-loop approximation —
that is, compute the function

βλ/ρ(λ, ρ) := µ
∂

∂µ

(
λ

ρ

)
. (10.4)

Show that for 1 < λ/ρ < 3 the theory flows in the UV to a point where the O(2)
global symmetry is restored.

−→

10.1



10.2. Callan–Symanzik equations in dimensional regularisation

Let us consider a quantum field theory with just a single massless field φ (with bare
dimension d) and a single dimensionless coupling constant λ, at a regularisation scale µ.
We consider the n-point correlation function Gn(pk, λ, µ), depending on the momenta pk.

Let Ḡn(pk, λ̄, µ, ε) be the bare correlation function, that depends on the bare coupling λ̄
and on the regulator ε. The renormalised correlation function will be written in terms of
the bare one as

Ḡn(pk, λ̄, µ, ε) = N(λ̄)nGn(pk, λ(λ̄), µ, ε), (10.5)

where Gn is finite, with the divergencies of Ḡn absorbed into the definition of the renor-
malised coupling λ(λ̄) and of the wave function renormalisation N(λ̄). Recall that the
Callan–Symanzik equation has the general form(

µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγ(λ)

)
Gn(pk, λ, µ) = 0 (10.6)

for a generic n-point correlation function Gn.

a) Assuming that the Callan–Symanzik equation holds for Ḡn, show that

β̄(λ̄) = −2ελ̄, γ̄(λ̄) = 0. (10.7)

b) Show that it holds also for Gn, with coefficients

β(λ(λ̄)) = β̄(λ̄)
∂λ

∂λ̄
, γ(λ(λ̄)) = γ̄(λ̄) +

β̄(λ̄)

N(λ̄)

∂N

∂λ̄
. (10.8)

c) Now, consider the perturbative expansion of the coupling constant and of the wave
function renormalisation which have the general form

λ(λ̄) = λ̄+ λ̄2
(
b1
ε

+ b2 + b3ε+ . . .

)
+ . . . , (10.9)

N(λ̄) = 1 + λ̄

(
c1
ε

+ c2 + c3ε+ . . .

)
+ . . . . (10.10)

Compute β(λ) and γ(λ) and check that they are finite.

d) Now, consider the next perturbative order, that is

λ(λ̄) = λ̄+ λ̄2
(
b1
ε

+ b2 + b3ε+ . . .

)
+ λ̄3

(
a1
ε2

+
a2
ε

+ a3 + . . .

)
. . . , (10.11)

N(λ̄) = 1 + λ̄

(
c1
ε

+ c2 + c3ε+ . . .

)
+ λ̄2

(
d1
ε2

+
d2
ε

+ d3 + . . .

)
+ . . . . (10.12)

Compute β(λ) to order λ3 and γ(λ) to order λ2 and show that their finiteness implies
that the coefficients entering the two loop corrections are not independent of the lower
order ones.

Why can we say that, whatever renormalisation scheme we choose, the leading order
of the beta function for the coupling is universal?

e) Consider higher loop corrections and show schematically what happens to the higher
order coefficients. Pay particular attention to the role of the lower perturbative orders.

f) Consider higher-loop corrections and show schematically what happens to the higher-
order coefficients. Pay particular attention to the role of the lower perturbative orders.

10.2
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11.1. Ward–Takahashi identity

The Ward–Takahashi identities in QED are the extension of the conservation of the
Noether current for the U(1) global symmetry

Nµ(x) = −qψ̄(x)γµψ(x) (11.1)

to correlation functions. Let be the Noether current for the global U(1) current of elec-
trodynamics. The Ward–Takahashi identity reads

∂µz 〈Nµ(z)ψ(x1)ψ̄(y1) . . . ψ(xn)ψ̄(yn)Aν1(z1) . . . Aνp(zp)〉

= −q〈ψ(x1)ψ̄(y1) . . . ψ(xn)ψ̄(yn)Aν1(z1) . . . Aνp(zp)〉
n∑
i=1

(
δ4(z − yi)− δ4(z − xi)

)
.

(11.2)

Define the full propagator for the electron as

−iG(k)δ4(k − p) :=

∫
d4y d4z 〈ψ(y)ψ̄(z)〉eip·z−ik·y. (11.3)

and the electromagnetic vertex function V µ(k, l) as∫
d4x d4y d4z e−i(p·x+k·y−l·z)〈Nµ(x)ψ(y)ψ̄(z)〉 =: iqG(k)V µ(k, l)G(l)δ4(p+ k − l). (11.4)

a) Show that the Ward–Takahashi identity implies that

(p− k)µV
µ(k, p) = iG−1(k)− iG−1(p). (11.5)

b) Define the counterterms Z1 as

V µ(p, p) := (Z1)
−1γµ (11.6)

(notice that V (p, p) is the vertex in the limit of zero momentum of the photon) and
Z2 as the residue of G(p) around the pole in m. Show that, with these definitions,

Z1 = Z2. (11.7)

−→

11.1



11.2. The axial anomaly in two-dimensional QED

Consider massless quantum electrodynamics realised in two spacetime dimensions

L = ψ̄(iγµDµ)ψ − 1
4
F µνFµν . (11.8)

In this scenario the Lorentz indices are µ ∈ {0, 1} and the Dirac matrices satisfy

{γµ, γν} = −2ηµν . (11.9)

Here we choose them to be 2× 2 matrices

γ0 =

(
0 −i
i 0

)
, γ1 =

(
0 i
i 0

)
. (11.10)

The two components of the spinor ψ satisfy the Dirac equation separately. The matrix
γ3 is the two-dimensional analog of γ5 in four dimensions

γ3 = 1
2
εµνγ

µγν = γ0γ1, (11.11)

where εµν is the totally anti-symmetric tensor in two dimensions. It satisfies

γµγ3 = εµνγν . (11.12)

In this exercise we consider the spinor field ψ to be quantised and the electromagnetic
field Aµ to take some fixed classical configuration.

a) Convince yourself using the equations of motion that this leads to the separate con-
servation of the vector and axial current

JµV = ψ̄γµψ, JµA = ψ̄γ3γµψ. (11.13)

b) Calculate the one-loop correction to 〈Nµ
V(p)〉 using dimensional regularisation to linear

order in the gauge field A. In other words, compute the graph

Nµ
V(p) Aν(−p) . (11.14)

Check that the current is still conserved at the one-loop level. How do you interpret
your result in terms of renormalisation?

c) Show that the axial current is no longer conserved at the quantum level. To this end
compute 〈Nµ

A(p)〉 at one loop and at linear order in A

Nµ
A(p) Aν(−p) . (11.15)

How could this happen? At which point of your calculation did you introduce this
quantum anomaly?

Hint: Use (11.12) to relate the axial to the vector current. Do not use (11.10) and
(11.11)!

d) Can you spot the anomaly in position space, i.e. in 〈∂·NV(x)〉 vs. 〈∂·NA(x)〉?
Hint: No regularisation is required here.

11.2
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12.1. The Higgs mechanism in the standard model

In this exercise we review the Higgs mechanism in the standard model. Let us regard
first of all the mass terms of matter fields. Consider the first lepton generation, i.e. the
electron and its neutrino. The electroweak gauge group is SU(2)I × U(1)Y (isospin and
hypercharge). The left- and right-handed leptons appear in different structures in the
Lagrangian. The left-handed fermions form a doublet with respect to SU(2)I

LL :=

(
νL
eL

)
, L′L = exp(iθaIa)LL, (12.1)

where the Ia = 1
2
σa are the generators of SU(2)I in the fundamental representation (σa

are the Pauli matrices). The right-handed electron forms a singlet under SU(2)I .

e′R = eR. (12.2)

To first approximation we will not need a right-handed neutrinos.

Under U(1)Y the fields transform as

L′L = e−iθ/2LL, e′R = e−iθeR. (12.3)

a) Why is a mass-term of the form

Lmass := −me(ēLeR + h.c.) (12.4)

not allowed?

b) In order to assign a mass to our fields we introduce a new scalar field H. This field
couples to the electron and neutrino as

LYukawa := yL̄LHLR + h.c., (12.5)

where y is the coupling constant. How does the field H have to transform to maintain
gauge invariance?

c) Now, that you have shown that H transforms as a doublet under SU(2)I , find the
according gauge transformation U to bring H into the following form

UH = U

(
H+

H0

)
=

(
0
Hr

)
, (12.6)

where Hr is real. This specific gauge is usually referred to as unitary gauge.

−→

12.1



d) We add a potential for the scalar field

Lpot = µ2(H†H)− 1
2
λ(H†H)2. (12.7)

The minimum of the potential is the vacuum expectation value of the field v := 〈Hr〉.
Find the minima of the potential and show that for µ2 > 0 the minimum is at v 6= 0.

e) We choose µ2 > 0 and redefine Hr in order to make the physical degrees of freedom
more obvious Hr = (v + η)/

√
2. η is now the physical Higgs boson field. Write down

(12.5) in terms of the Higgs field and the vacuum expectation value. You will see that
the fermions acquire a mass term. Write down the fermion mass in terms of y and v.
What is the coupling of the Higgs boson to the fermions in terms of me and v?

The standard model Lagrangian density also contains a kinetic term for the Higgs doublet

Lkin := −(DµH)†(DµH). (12.8)

The covariant derivative acting on the Higgs doublet involves the gauge fields for the
SU(2)I and U(1)Y symmetry W a

µ and Bµ, respectively

Dµ = ∂µ − igIaW a
µ − ig′Y Bµ. (12.9)

In the following you should try to find the masses and the couplings to the Higgs boson
of the physical standard model fields.

f) Diagonalise the quadratic term by introducing the physical fields

W+
µ = (W−

µ )† =
1√
2

(W 1
µ − iW 2

µ), Z0
µ =

gW 3
µ − g′Bµ√
g2 + g′2

, Aµ =
gBµ + g′W 3

µ√
g2 + g′2

. (12.10)

The hypercharge of the Higgs boson is Y = 1
2
. Now you can read off the masses and

couplings of the theory by comparing your results to

(DµH)†(DµH) = 1
2
(∂µη)2 +m2

WW
+
µ W

−,µ + 1
2
m2
ZZ

0,µZ0
µ

+ ρWηW
+
µ W

−,µ + 1
2
λWη

2W+
µ W

−,µ

+ 1
2
ρZηZ

0,µZ0
µ + 1

4
λZη

2Z0,µZ0
µ. (12.11)

g) The original doublet H included 4 degrees of freedom. What did the introduction of
the vacuum expectation value v do to them? Which symmetry was broken? Where
are the degrees of freedom hidden after spontaneous symmetry breaking? Why did
the photon field Aµ not acquire a mass term? Why does it couple to the vector
currents, but not to the axial currents?

12.2
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