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Prof. R. Teyssier

Exercise 1. Rarefaction Waves

Figure 1: Some mechanism imposes velocities uR and uL in two parts of an initially quiescent fluid. This triggers
rarefaction waves/fans, which spread out over time. Before the rarefaction waves hit, the fluid state is (uL, c0)
and (uR, c0), respectively. Once the wave passes, the fluid has state (u?, c?).

In this exercise we consider a one-dimensional fluid initially at rest with constant sound speed
c0 everywhere. Some mechanism sets the flow in motion such that for x > 0, the fluid moves
with velocity uR(x, t) (right), and for x < 0, it moves with velocity uL(x, t) (left). The leads to
a left- and a right-running rarefaction fan/wave moving with velocity u− c and u+ c launched
from x = 0 at t = 0; cf. figure 1. We are interested in the state of the fluid between the two
rarefaction waves – the ?-state characterized by the sound speed c? and velocity u?.

(a) Firstly, we have to find a way to relate some state of the fluid to another state. For a
barotropic equation of state p(ρ) = Cργ , show how density ρ and pressure p of two states
(p, ρ) and (p0, ρ0) in an isentropic (reversibly adiabatic) flow are related.

(b) Write down the one-dimensional equation for mass and momentum conservation, use den-
sity ρ, pressure p, position x, velocity u, and time t. Show that they can be rewritten
as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (1)

and

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0. (2)

(c) We will now rewrite the equations for mass and momentum conservation in terms of some
variable α±. If we can show that α± is conserved across rarefaction waves, we can relate
the state of the fluid outside of the rarefaction wave to the ?-state between the waves.

Using the sound speed

c2s =
γp

ρ
, (3)

1



show that (2) can be written as

∂u

∂t
+ u

∂u

∂x
+
c2s
ρ

∂ρ

∂x
= 0. (4)

Hint: You may want to figure out what ∂p/∂x can be rewritten to.

(d) Show that

1

cs

∂cs
∂x

=
1

ρ

∂ρ

∂x

(
γ − 1

2

)
, and

1

cs

∂cs
∂t

=
1

ρ

∂ρ

∂t

(
γ − 1

2

)
, (5)

and demonstrate that (1) and (4) can be written as

∂

∂t

(
2

γ − 1
cs

)
+ u

∂

∂x

(
2

γ − 1
cs

)
+ cs

∂u

∂x
= 0, (6)

and

∂u

∂t
+ u

∂u

∂x
+ cs

∂

∂x

(
2

γ − 1
cs

)
= 0. (7)

Hint: You might need to reuse your previous result for ∂p/∂x, and calculate ∂p/∂t.

(e) We are now in a position to define the variables α±. Let

α+ = u+
2

γ − 1
cs, and α− = u− 2

γ − 1
cs, (8)

and use the mass and momentum equations (6) and (7) to derive

∂α+

∂t
+ (u+ cs)

∂α+

∂x
= 0, and

∂α−

∂t
+ (u− cs)

∂α−

∂x
= 0. (9)

(f) Sketch the left- and right-running rarefaction waves moving with velocity u− cs and u+ cs
in a (x, t) diagram. In the same diagram, sketch α− and α+. Note that α+ crosses the left
running rarefaction wave, while α− crosses the right running rarefaction wave. Why?

(g) We can only proceed if we can show that α± is conserved across the rarefaction waves. So,
determine whether α± = α±(x(t), t) are conserved.

(h) Given the previous, write down equations relating the left state (uL, c0), the right state
(uR, c0), and the ?-state (u?, c?) between the two rarefaction waves. Investigate and inter-
pret (u?, c?) in the following cases.

(i) What happens for uR = −uL?

(ii) What happens for uR = uL?

(iii) Under what conditions is c? ≤ 0.
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Exercise 2. Sedov-Taylor Blast Wave

Figure 2: A blast wave of size rsh is expanding into a region characterized by ρ1, u1, P1 with velocity Ush.
Directly behind the shock, conditions are ρ2, u2, and P2. Further behind the shock, conditions are u(r, t), ρ(r, t),
and P (r, t).

Explosions such as those of supernovae of atomic bombs generate strong blast waves. In this
exercise, we consider a simple blast wave generated by injecting a finite amount of energy E
into a singular point in a fluid characterized by a uniform density ρ1, as well as velocity u1
and pressure P1. Once injected, a blast wave will propagate in a spherically symmetric fashion
outwards along the radial coordinate r. In this exercise, we derive the velocity field u(r, t),
pressure P (r, t), and density ρ(r, t) far behind the shock, cf. figure 2.

(a) Write the Euler equations for the conservation of mass, momentum, and energy in the
absence of external forces. Assuming spherical symmetry, derive the Euler equations in
spherical coordinates.

To proceed later, make sure to write out the total energy E = E(ρ, ε, ~u), where ε is the
specific internal energy, and ~u the velocity vector. To obtain ε, assume an ideal gas.

(b) We now want to non-dimensionalize the spherical Euler equations obtained in the previ-
ous task. Since the problem is spherically symmetric, the only relevant coordinate in the
problem is the radial distance r (and of course the time t).

Given the energy injected E, the undisturbed density ρ1, and time t, perform dimensional
analysis to recover the non-dimensional radius ξ = ξ(r, ρ1, E, t). Also write down ξ0 at the
shock front rsh.

(c) Let us introduce the non-dimensional density α(ξ), velocity v(ξ), and pressure p(ξ). Use
dimensional arguments to show that

ρ(r, t) = ρ2 α(ξ), (10)

u(r, t) =
r

t
v(ξ), (11)

P (r, t) = ρ1
r2

t2
p(ξ). (12)
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(d) Given the appropriate jump conditions across the shock (which you will learn about in a
later lecture), we introduce numerical convenience factors in (10), (11), and (12). Using

ρ(r, t) = ρ2 α(ξ), (13)

u(r, t) =

(
4

5(γ + 1)

)
r

t
v(ξ), (14)

P (r, t) =

(
8

25(γ + 1)

)
ρ1
r2

t2
v(ξ), (15)

rewrite the spherical Euler equations to obtain the non-dimensional form of the mass,
momentum, and energy equation as

−ξdα

dξ
+

2

γ + 1

[
3αv + ξ

d

dξ
(αv)

]
= 0, (16)

−v − 2

5
ξ

dv

dξ
+

4

5(γ + 1)

(
v2 + vξ

dv

dξ

)
= −2

5

(
γ − 1

γ + 1

)
1

α

(
2p+ ξ

dp

dξ

)
, (17)

and

−2(p+αv2)− 2

5
ξ

d

dξ
(p+αv2)+

4

5(γ + 1)

{
5v(γp+ αv2) + ξ

d

dξ

[
v
(
γp+ αv2

)]}
= 0. (18)

To do this properly, you might need the following relations

ρ2
ρ1

=
γ + 1

γ − 1
,

∂

∂t
= −2

5

ξ

t

d

dξ
,

∂

∂r
=
ξ

r

d

dξ
. (19)

(e) We are now left with three equations (16), (17), and (18), and three unknown derivatives
dα/dξ, dv/dξ, and dp/dξ, which we can solve for. Knowing these, we can then pick a
numerical integration scheme of choice to recover α(ξ), v(ξ), and p(ξ) by integrating from
ξ = ξ0 to ξ = 0.

However, we do not actually know the shock position ξ0, and therefore have no idea where
to start the integration. However, we can guess a value for ξ0, integrate (16), (17), and
(18) to obtain α(ξ), v(ξ), and p(ξ), and then check if the result is reasonable.

Additionally, we must rescale α(ξ), v(ξ), and p(ξ) to their relevant dimensional counter-
parts. To this end, note that

ρ(r, t)

ρ2
= α(ξ),

u(r, t)

u2
=

r

rsh
v(ξ),

P (r, t)

P2
=

(
r

rsh

)2

p(ξ), (20)

where you should have obtained r/rsh in (b).

Implement a numerical integration scheme of your choice, use it to calculate α(ξ), v(ξ),
and p(ξ). Then plot ρ/ρ2, u/u2, and P/P2 from some ξ0 of your choice to ξ = 0. Use
γ = 5/3.

Hint: Due to the numerical factors introduced in (13), (14), and (13), we have nice initial
conditions for the integration – α(ξ0) = v(ξ0) = p(ξ0) = 1.
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Hint: The differential equations (16), (17), and (18) are rather unwieldy.1 Usage of a CAS
such as Maple or Mathematica to solve for the derivatives is probably not a bad idea unless
you enjoy tracking down that one elusive minus sign. Hand in any notebooks though!

Hint: You will need at least a second order accurate integration scheme (so the standard
Euler method will not cut it) with ≥ 4096 sampling points. Be careful as you approach
ξ = 0.

(f) While your result might look reasonable, we have to check whether we actually have chosen
ξ0 as the actual shock position. In fact, energy conservation gives the constraint

32

25(γ2 − 1)

∫ ξ0

0

(
p(ξ) + α(ξ)v(ξ)2

)
ξ4 dξ = 1. (21)

Numerically evaluate (21) for your solution of α(ξ), v(ξ), and p(ξ). If (21) is not fulfilled,
iterate on your guess of ξ0 until it is (to some accuracy).

1Sedov actually solved this system of equations analytically.
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