Exercise 1. Waves in an inhomogeneous medium

In this exercise we want to study the behaviour of p -waves in an elastic medium with a spatially dependent mass density.
a) Consider two elastic media (1 and 2) which are separated by a plane at $x=0$, see Fig. 1 . The characteristics $\lambda_{1,2}, \mu_{1,2}, \rho_{1,2}$ of the two media are constant but differ from each other.

Figure 1: Two media separated by a plane.

The solutions for the scalar function ϕ (with $\vec{u}=\nabla \phi$) are plane waves on both sides but with different wave vectors $\left|k_{1}\right| \neq\left|k_{2}\right|$. An elastic wave ϕ_{i} hits the wall under an angle α and splits into two waves, a reflected wave ϕ_{r} and a transmitted wave ϕ_{t}. The goal is to calculate the ratio t, r of the amplitudes for $\alpha=0$,

$$
\begin{equation*}
t=\frac{A_{t}}{A_{i}}, \quad r=\frac{A_{r}}{A_{i}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi_{i} & =A_{i} e^{i\left(\omega t-k_{1} x\right)} \\
\phi_{r} & =A_{r} e^{i\left(\omega t+k_{1} x\right)} \\
\phi_{t} & =A_{t} e^{i\left(\omega t-k_{2} x\right)}
\end{aligned}
$$

(i) Show that the continuity equations for ϕ at the interface $x=0$ are given by

$$
\begin{equation*}
\left.\partial_{x} \phi_{1}\right|_{x=0}=\left.\partial_{x} \phi_{2}\right|_{x=0},\left.\quad c_{1}^{2} \rho_{1} \partial_{x}^{2} \phi_{1}\right|_{x=0}=\left.c_{2}^{2} \rho_{2} \partial_{x}^{2} \phi_{2}\right|_{x=0} \tag{2}
\end{equation*}
$$

Hint: The continuity conditions for ϕ at the interfaces are determined by the continuity condition on the displacement $u(x, t)$ and the continuity condition on the normal force $\vec{T}=\overline{\bar{\sigma}} \vec{e}_{x}$.
(ii) Find t and r and use the abbreviation $\mathcal{C}=\rho c$!
b) Next we focus on the ratio between the amplitudes of the wave $u(x, t)$ which is given by

$$
\begin{equation*}
\bar{t}=\frac{u_{t}}{u_{i}}=\frac{c_{1}}{c_{2}} t=\frac{2 \mathcal{C}_{1}}{\mathcal{C}_{1}+\mathcal{C}_{2}} \tag{3}
\end{equation*}
$$

and try to generalize the result to the case of a material with a smoothly varying mass density $\rho(x)$. In order to do so, start from the expression for \bar{t} and derive a differential equation for $I(x)$, the amplitude of the wave $u(x, t)$. Solve the differential equation!
Hint: The ratio \bar{t} describes now how the amplitudes at infinitesimaly close points are connected, i.e.

$$
\begin{equation*}
\bar{t}=\frac{I(x+d x)}{I(x)}=\frac{I(x)+\partial_{x} I(x) d x}{I(x)}=1+\frac{\partial_{x} I(x)}{I(x)} d x \tag{4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\mathcal{C}_{1} \rightarrow \mathcal{C}(x), \quad \mathcal{C}_{2} \rightarrow \mathcal{C}(x+d x)=\mathcal{C}(x)+\partial_{x} \mathcal{C}(x) d x \tag{5}
\end{equation*}
$$

c) Unfortunately we were very naive and the result from (b) is wrong from a general point of view. Why? In case one needs the exact result, what would you have to do technically? For the case that $1 / c(x)=a-b x$ it turns out that the result from (b) is in very good agreement with the exact results for $\omega \gg \omega_{\text {crit }}$ whereas for $\omega<\omega_{\text {crit }}$ we have a large descrepancy and the exact result shows even oscillations in ω. Try to find out what is happening! Estimate $\omega_{\text {crit }}$ out of simple values as the characteristic lengh l (e.g. the distance between extremal points in $1 / c(x))$, the wave length $\lambda=2 \pi / k$ and the average sound velocity c_{0}.

Exercise 2. Love waves

Love waves belongs together with the Rayleigh waves to the so-called surface waves. In this exercise we would like to calculate the dispersion relation and afterwards we study the behaviour of a Gaussian wave packet moving in a dispersive material.
a) The dispersion relation of Love waves is defined by the equation

$$
\begin{equation*}
\tan \left(k_{1} H\right)=\frac{\mu_{2}}{\mu_{1}} \frac{k_{2}}{k_{1}} \tag{6}
\end{equation*}
$$

where k_{1}, k_{2} are given by

$$
\begin{equation*}
k_{1}^{2}=\frac{\omega^{2}}{c_{1}^{2}}-k^{2}, \quad k_{2}^{2}=k^{2}-\frac{\omega^{2}}{c_{2}^{2}} \tag{7}
\end{equation*}
$$

For each ω there exists several solutions. However, in this exercise we concentrate on the 0 -th solution. In the lecture, we have seen that for the 0 -th solution we have

$$
\begin{equation*}
\frac{\omega}{k}=c \approx c_{1} \Rightarrow k_{1} H \ll 1 \tag{8}
\end{equation*}
$$

Calculate the dispersion relation $\omega(k)$ of the 0 -th mode! Expand it up to third order in k and show that $\omega / k \neq \partial \omega / \partial k$, i.e. the material is dispersive.
Hint: For small x the tangent behaves like $\tan x \approx x$. Furthermore, we introduce the dimensionless values s, q and α as

$$
\begin{equation*}
s=\frac{c}{c_{1}}, \quad q=\frac{c_{2}}{c_{1}}, \quad \alpha=H k \frac{\mu_{2}}{\mu_{1}} \tag{9}
\end{equation*}
$$

b) Let us consider a general dispersive material with $\omega=\omega_{k}$. In order to see the influence of a dispersive material on an elastic wave, we want to study a Gaussian wave packet moving through a medium. The wave is given by

$$
\begin{equation*}
u(x, t)=\int \frac{d k}{2 \pi} A(k) e^{i\left(\omega_{k} t-k x\right)} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
A(k)=\sqrt{2 \pi} L e^{-\frac{1}{2} L^{2}\left(k-k_{0}\right)^{2}} \tag{11}
\end{equation*}
$$

(i) Calculate $u(x, t)$ for a non-dispersive material, i.e. $\omega=c k$! What is the velocity of the Gaussian? What about the width?
(ii) Calculate $u(x, t)$ for a dispersive material! What is the velocity of the Gaussian? What about the width? Interpret your results!

