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Exercise 1. Virial theorem with stress

In this task we want to generalize the virial theorem for the case with non-zero stress field σ.
In that case the linear momentum equation applies

ρ
dv

dt
= ρg +∇ · σ . (1)

We start by introducing the scalar moment of inertia for a continuous mass distribution

I =

∫
V

dV ρ(r) |r|2 , (2)

and the scalar virial

G =

∫
v

dV ρ(r) g(r) · r . (3)

Take the 2nd (total) time derivative of I, identify the kinetic energy K and the virial G in the
expression and get the final result

1

2

d2I

dt2
= 2K +G−

∫
V

dV Tr
{
σ
}

+

∫
∂V

dS σ · n · r . (4)

Hint: use the divergence theorem ∫
V

dV ∇ · F =

∫
∂V

dS F · n (5)

to rewrite the term
∫
V dV

(
∇ · σ

)
· r into the 2 last terms in Eq.(4).

Exercise 2. Equilibrium equations in spherical coordinates

In equilibrium, the stress tensor of an elastic material within the linear regime has to satisfy the
vector equation

∇ · σ + ρg = 0 . (6)

Although it is undoubtedly the most elegant way to use the coordinate-independent description
whenever it is possible, in practice one often has to stick to some set of coordinates. It is usually
convenient to choose coordinates which in a sense ”match” the problem. In this task you are
encouraged to write the equation Eq.(6) in components using the spherical coordinates (r, θ, φ).

You may follow the derivation of the equilibrium equations using the cylindric coordinates in
the lecture notes. Recall the general formula

∇ · σ =
1

h1h2h3

(
∂

∂q1

(
h2h3T 1

)
+

∂

∂q2

(
h1h3T 2

)
+

∂

∂q3

(
h1h2T 3

))
, (7)

with stress field T i =
∑

j σijej (which we use only as an auxiliary quantity in this derivation).
Further recall that

hi =
√
gii , (8)

1



where g is the metric tensor. For the spherical coordinates this has a diagonal form diag
(
1, r2, r2 sin2 θ

)
,

thus
h1 = 1 , h2 = r , h3 = r sin θ . (9)

The covariant derivatives of the orthonormal basis in spherical coordinates are given by1

∂

∂θ
er = eθ ,

∂

∂θ
eθ = −er ,

∂

∂φ
eφ = − sin θ er − cos θ eθ , (10)

∂

∂φ
er = sin θ eφ ,

∂

∂φ
eθ = cos θ eφ . (11)

The derivation is straightforward: do the derivatives in Eq.(7) and collect terms for each basis
vector separately. Use the symmetry σij = σji to simplify the results. You shall get

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrφ
∂φ

+
1

r
(2σrr − σθθ − σφφ + σrθ cot θ) + ρgr = 0 , (12)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθφ
∂φ

+
1

r
[(σθθ − σφφ) cot θ + 3σrθ] + ρgθ = 0 , (13)

∂σrφ
∂r

+
1

r

∂σθφ
∂θ

+
1

r sin θ

∂σφφ
∂φ

+
1

r
(2σθφ cot θ + 3σrφ) + ρgφ = 0 . (14)

Exercise 3. Equilibrium of a planet/star

In this task we will use the above set of equations. We assume that the planet or star is
spherically symmetric, thus any quantity may depend only on the radius r. Assume that the
external pressure at the outer radius R of the object is pext.

3.1. Show that a solution with pure isotropic stress exists. Write the equation which has to
be satisfied. Note that the density is in general a function of the strain (depends on compression);
in this case you may treat it as a function of the position.

3.2. Use the equation derived in the previous subtask to recover the virial theorem from the
first task in its special form.

1We do not write those which are zero. To verify the equations you may either use intuitive geometric approach
or you may express the unit vectors in cartesian coordinates, perform the derivatives in cartesian coordinates and
then reexpress the result using the spherical basis.
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