Exercise 1. Tidal Tensor and Tidal Work

In this exercise we want to study the tidal force acting on a planet B which is moving on an orbit around a very large planet (or sun) A. We work in the cartesian coordinates with the planet B in its origin and the planet A at $z=-D$, the z direction pointing away from the planet A.

Figure 1: Geometry of the system
a) Suppose we have a particle with mass m at $\vec{r}=(x, y, z)$, find an expression for the graviational force \vec{F}_{g} induced by planet B (the graviation of planet A is neglected)!
b) Typical values of $|\vec{r}|$ are much smaller than D. Therefore it is convenient to do a Taylor expansion of \vec{F}_{g} about $\vec{r}=0$ up to first order, i.e.

$$
\begin{equation*}
F_{g, i}=F_{g, i}(\vec{r}=0)+\frac{\partial F_{g, i}}{\partial r_{j}}(\vec{r}=0) \cdot r_{j}=F_{0, i}+T_{i j} r_{j} \quad\left(r_{i}=x, y, z\right) \tag{1}
\end{equation*}
$$

where we introduced the tidal tensor T. Calculate the tidal tensor! Since the frame of reference is rotating the constant force \vec{F}_{0} is compensated. Why? Show that the total force acting on the particle is given by $\vec{F}_{t o t}=T \vec{r}$!

So far we considered particles with a mass m, next we want to go to the continuum where each volume element $d^{3} r$ has a mass $d m=\rho d^{3} r$ ($\rho \equiv$ const). The force acting on them is $d \vec{F}_{t o t}$ (where the former mass m has been replaced by $\rho d^{3} r$).
c) The force $d \vec{F}_{t o t}$ induces a strain on each particle of the planet A which gives rise to a deformation $(\vec{u} \neq 0)$. The dynamics are described by the dynamical equilibrium equation

$$
\begin{equation*}
\rho d^{3} r \frac{d \vec{u}}{d t}=d \vec{F}_{t o t} \tag{2}
\end{equation*}
$$

Show that the volume change $d V / V=\nabla \cdot \vec{u}$ is constant for all t ! What do you conclude if $d V / V=0$ at $t=t_{0}$?

Hint: Take the divergence on both sides of the dynamical equilibrium equation.

As the planet deforms its shape, the infinitesimal volume elements move in the presence of a force, i.e. internal work is performed. Our goal is to compute this internal work. In order to do so, we introduce the infinitesimal tidal potential $d \phi$

$$
\begin{equation*}
d \phi=-\frac{1}{2} \vec{r}^{T} T^{\prime} \vec{r} \rho d^{3} r \quad\left(T^{\prime}=T / m \text { from }(\mathrm{b})\right) \tag{3}
\end{equation*}
$$

of the volume element $d^{3} r$. The internal work is then given by the difference of the total tidal potential between the undisturbed and the disturbed planet shape. Thus, we need a parametrization of the volume which allows us to describe distortions but such that the volume is constant.
d) Verify that the tidal potential induces the total force, i.e. $-\nabla d \phi=d \vec{F}_{t o t}$!
e) Let us consider the following parametrization of the planet in spherical coordinates

$$
\begin{equation*}
r_{\gamma}(\theta, \phi)=R_{0}+R_{0} \gamma\left(3 \cos ^{2} \theta-1\right) \tag{4}
\end{equation*}
$$

Show that the volume V_{γ} enclosed by r_{γ} is independent of γ up to first order in γ,

$$
\begin{equation*}
V_{\gamma}=\int d \Omega \int_{0}^{r_{\gamma}(\theta, \phi)} d r r^{2}=V_{\gamma=0}+\mathcal{O}\left(\gamma^{2}\right) \tag{5}
\end{equation*}
$$

Hint: In order to avoid to compute all the following angular integrals, use the so-called spherical harmonic functions $Y_{l m}(\theta, \phi)$! Two examples of spherical harmonic functions are given by

$$
\begin{equation*}
Y_{00}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}} \quad, \quad Y_{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \tag{6}
\end{equation*}
$$

These functions have a very useful property, namely they fulfill

$$
\begin{equation*}
\int d \Omega Y_{l m}(\theta, \phi) Y_{l^{\prime} m^{\prime}}(\theta, \phi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{7}
\end{equation*}
$$

Thus, express all functions on θ, ϕ in terms of spherical harmonics and use their property in order to calculate the angular integrals!
f) The total potential ϕ_{γ} corresponding to the shape r_{γ} can be written as

$$
\begin{equation*}
\phi_{\gamma}=\int_{V_{\gamma}} d \phi \tag{8}
\end{equation*}
$$

Verify and find β such that

$$
\begin{equation*}
d \phi=\beta r^{2} Y_{20}(\theta, \phi) \underbrace{d \phi d \theta \sin \theta d r r^{2}}_{=d \Omega d r r^{2}} \tag{9}
\end{equation*}
$$

and compute

$$
\begin{equation*}
\phi_{\gamma}=\int d \Omega \int_{0}^{r_{\gamma}(\theta, \phi)} r^{2} d r \beta r^{2} Y_{20}(\theta, \phi)! \tag{10}
\end{equation*}
$$

g) Find an expression for $\Delta \phi_{\gamma}=\phi_{\gamma=0}-\phi_{\gamma}$ and replace the parameter γ by the measurable quantity $\Delta h=r_{\max }-r_{\min }$! On earth (earth in orbit around the sun) we have $\Delta h \approx 18 m$ while on Io (moon of Jupiter in orbit around Jupiter) we have $\Delta h=100 \mathrm{~m}$. Find the necessary data and calculate $\Delta \phi_{h}$ for the earth and Io! What happens with the energy which is released by the distortion of the planets shape?

