
1 Integrability

As soon as physicists wrote down mathematical equations describing physical systems, they have
been looking for situations in which they could be solved exactly. Of course, as you all well know,
this is generically impossible. Just think about the weather or some other complicated system
like non-perturbative effects in QCD.

Of course there are cases where we do know exact solutions solutions, like free fields or the
harmonic oscillator. These models, which we can study in detail teach us a lot about our theory.
They can be used to understand mechanisms and give some insight. Of course it is a good idea
to first study an idealized situation and understand it before we go and tackle more realistic
problems.

Integrable systems are systems for which, in one way or another, we can exactly describe the
solutions. In this course we will more or less follow aspects of exactly solvable models through
various stages in history. We start with classical mechanics where a lot of important concepts
already appear. Then we move on to classical field theory, or partial differential equations. For
example, the KdV equation describing waves in shallow water.

After this we continue to the quantum case. First we will do quantum mechanics, where we
discuss spin chains, models of magnetism. We finish with quantum field theories. Along the way
we hope to illustrate the different concepts by using a lot of examples.

These are some very rough lecture notes regarding the material covered in the first three
lectures. For more details we refer the students to the literature listed on the course website.

2 Hamiltonian Mechanics and Integrability

Let us start with classical mechanics. We consider, say, n particles moving in a potential V . At
any point in time, the system is fully described by specifying the positions qi and momenta pi of
the particles. Thus, any configuration corresponds to a point in phase space M where q, p take
values. Letting the system evolve over time then describes a curve in this phase space (p(t), q(t)).

The evolution over time is described by the Hamiltonian H(p, q), which is a smooth function
on M. As always, we denote the time derivative by a dot. Then the Hamilton equations of
motion are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1)

Or, written a bit more compactly(
q̇
ṗ

)
=

(
0 1
−1 0

)(∂H
∂q
∂H
∂p

)
ẋ = J∇xH. (2)

The matrix J defines a Poisson bracket via {F,G} = 〈∇F, J∇G〉, which is written in coordinates
as

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi
. (3)

We take the Poisson bracket to be non-degenerate, i.e. if {F,G} = 0 for all G then F is constant.
The Poisson bracket satisfies the following properties

bilinearity {F, λG+ µH} = λ{F,G}+ µ{F,H},

1



skew-symmetry {F,G} = −{G,F},

Jacobi identity {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0,

Leibniz rule {F,GH} = G{F,H}+ {F,G}H.

It makes the smooth functions on M into an infinite dimensional Lie algebra. Because of these
rules it is completely defined on the basis elements

{xi, xj} = J ij , {qi, qj} = {pi, pj} = 0, {pi, qj} = δij . (4)

Then, the equations of motion simply become

q̇ = {H, q}, ṗ = {H, p}, (5)

and, in general, by the chain rule of differentiation we have

Ḟ = {H,F}, (6)

for all functions onM. In particular, the Hamiltonian is time independent and the motion takes
place on the submanifold where H = E is constant.

Now suppose we apply a coordinate transformation x→ y. We want to find out under which
conditions the system remains Hamiltonian. For the equations of motion we find

ẏi = Λikẋ
k = ΛikJ

km∇xmH = ΛikJ
kmΛnm∇ynH, (7)

where Λ = ∂y
∂x . Or, simply written in matrix form

ẏ = ΛJΛt · ∇yH. (8)

Hence the new equations of motion are Hamiltonian if and only if

ΛJΛt = J, (9)

with the new Hamiltonian H̃(y) = H(x(y)). Transformations of this form are called canonical.
In case Λ does not depend on x, then it is part of the Lie group Sp(2n,R), which is called the
symplectic group.

Thus the natural way of formulating Hamiltonian mechanics is the language of symplectic
geometry. The Poisson bracket is equivalent to the closed two-form

ω = dq ∧ dp, (10)

corresponding to the bilinear form ω(x, y) = 〈x, J−1y〉. A manifold with a non-degenerate closed
two-form is called a symplectic manifold. Thus we consider our phase space to be a symplectic
manifold.

In this language we can introduce the vector field Xf corresponding to a function f defined
implicitly by the equation

df = ω(Xf , ·) =
∂f

∂qi
∂

∂pi
− ∂f

∂pi

∂

∂qi
. (11)

Then we can write the Poisson bracket is simply as

{F,G} := ω(XF , XG). (12)

A canonical transformation is a transformation that leaves ω invariant. More explicitly, let
(p, q)→ (p′, q′), then

ω → ω′ = dq′ ∧ dp′. (13)

The Hamiltonian H is a smooth function onM and the Hamiltonian vector field XH correspond-
ing to the Hamiltonian generates the flow on the manifold.
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2.1 Integrals of motion

The key concept in the language of integrability is that of an integral of motion. Consider a set
of first order differential equations. The equations of motion in the Hamiltonian formalism are
exactly of this form. In particular, we write in coordinates

ẋ = f(x). (14)

Definition A time-independent (first) integral of motion for a Hamiltonian system is a smooth
function I defined on an open subset of M such that İ = 0 on solutions1.

Equivalently, the integral of motion satsifies {H, I} = 0. Let I1, . . . , Ik be first integrals defined
on Ui with U = ∩Ui non-empty. We call them independent if on U

rank(∂xI1, . . . , ∂xIk) = k, (15)

in particular their tangent vectors are simply independent. In general integrals of motion can
belong to a wide class of functions. For example, in the Lotka-Volterra ABC system

ẋ = x(Cy + z), ẏ = y(x+Az), ż = z(Bx+ y) (16)

we encounter the following different integrals of motion

(A,B,C) = (− 1
2 ,−

1
2 , 1), I = x2 + y2 + 1

4z
2 − 2xy + yz + xz (17)

(A,B,C) = (1, 1, 1), I = y−1(x− y)(y − z) (18)

(A,B,C) = (1, 1, 0), I = xy−1 + log 1− yz−1 (19)

(A,B,C) = (1,
√

2, 1), I =
z(y − z)

√
2+1

xy
√
2

. (20)

We see polynomial, rational, logarithmic and even transcendental functions appearing. We will
in what follows consider analytic first integrals, meaning that they can locally be expanded as a
convergent power series.

Theorem 2.1 (Poisson) Let I1,2 be two first integrals of motion, then {I1, I2} is also a (possibly
trivial) first integral.

This possibly creates a new integral. Two integrals are said to be in involution if they Poisson
commute, i.e. {I1, I2} = 0.

Example Consider a Hamiltonian H of a particle in three dimensions, which has the first two
components of the angular momentum J1,2 as first integrals. Then by Poisson’s theorem J3 is
also an integral of motion. On the other hand, if we redefine I1 = H, I2 = J3, I3 = |J |2, then we
find three first integrals that are in involution.

If our system has an integral of motion, we can obviously restrict ourselves to the level set of
that integral of motion and we have effectively removed two degrees of freedom (one p and one
q). Thus integrals of motion allow us to reduce the problem to a lower dimensional one. Doing
this a sufficient number of times leads to the notion of integrability.

The question how to find first integrals is basically something for which there is no complete
algorithm. Usually they are simply found by making an appropriate ansatz. For example, when
your Hamiltonian is polynomial, you also expect this form for you conserved quantities.

1There is also the notion of second, third etc. integral of motion. These are constant only on certain solutions
of the equations of motion.
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2.2 Integrability

Finding exact solutions of a dynamical Hamiltonian system is very difficult. Even though in
classical mechanics classes you are often only shown exactly solvable examples (harmonic oscil-
lator, planetary motion etc.), an exact solution generically does not exist. Let us specify what
we mean by an ‘exact’ solution. A system is said to be solved by quadratures if the solution can
be constructed by

• solving a finite number of algebraic equations

• computing a finite number of integrals.

Of course, in practise, obtaining a nice closed form for the solution can then still be very hard.

Example The easiest example is a simple one-dimensional harmonic oscillator with Hamiltonian

H = 1
2 (p2 + ω2q2). (21)

The corresponding equations of motion are

ṗ = ω2q, q̇ = −p, (22)

with the obvious solution

q = A sinωt+B cosωt. (23)

Without loss of generality let us set B = 0 and look at the orbits in phase space. The phase
space simply is R2 and the solution defines the curve

(q, p) = A(sinωt, ω cosωt), (24)

which is an ellipse. The energy for this solution is E = A2 is conserved and we see that the
energy determines the radius of the ellipse. Thus, the phase space is fibered into ellipses H = E.

This is a general, or perhaps defining, feature of integrable systems. There should be con-
served quantities that specify the curve in the phase space. This leads to the following definition

Definition Consider a Hamiltonian system with phase space of dimension 2n, then it is called
Liouville integrable if it possesses n independent conserved quantities Fi, which are in involution

{Fi, Fj} = 0. (25)

Conventionally, the Hamiltonian is taken to be the first conserved charge H = F1. Independence
of the functions means that at any point the gradient vectors are independent.

Of course, any one-dimensional system is integrable by this definition. And indeed, consid-
ering for example the harmonic oscillator we can write

t =

∫
dq√

2E − ω2q2
, (26)

providing the exact solution by just specifying the energy. There is a theorem that states that
any integrable system is solvable by quadratures.

Theorem 2.2 (Liouville) Any integrable system is solvable by quadratures. Furthermore, if
the level set Mf = {x ∈ M|Fi(x) = fi} is compact and connected, it is diffeomorphic to the
n-dimensional torus torus Tn, where the dimension of the phase space is 2n.
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Proof The idea is to construct a canonical coordinate transformation by using the conserved
quantities such that the equations of motion can be trivially solved.

Since we have exactly n conserved quantities we can solve Fi(p, q) = p for p. Consider the
canonical one form

α = p dq, ω = dα. (27)

This gives a well-defined one-form on Mf since we have written p = p(f, q). We then define the
so-called generating function S

S ≡
∫ m

m0

α, (28)

where we integrate along some path on Mf . In order to show that this is well-defined, we need
to show that it is independent of the chosen path. Let us first show how S can be used to find
the required canonical transformation.

First, we can define p and a new angle coordinate as partial derivatives of the generating
function

p =
∂S

∂q
, ψ =

∂S

∂f
. (29)

Then the coordinate transformation (p, q)→ (f, ψ) is canonical, since

0 = d2S(f, q) = dp ∧ dq + dψ ∧ df. (30)

Moreover, the equations of motion simply reduce to

Ḟi = {H,Fi} = 0, ψ̇i = {H,ψi} =
∂H

∂fi
≡ ωi = constant. (31)

This means that in these coordinates, the equations of motion are trivially solved since F is
constant and ψ is simply linear in time.

Let us now show invariance of S. Suppose that Mf does not have non-trivial cycles. Then
by the Stokes theorem

∆S =

∫ m0

m0

α =

∫
dα =

∫
ω = 0, (32)

since ω vanishes onMf . This is because the tangent space toMf is generated by the Hamiltonian
vector fields XFi

, which are independent. Moreover, since they mutually commute we find
ω|Mf

= 0.
In case the manifold has non-trivial cycles, then finds that the change in S after integrating

over a cycle is given by

∆cycleS =

∫
cycle

α, (33)

which is a function of Fi only (and hence constant on Mf ). In other words, the variables ψ are
multi-valued.

Finally, let us show that Mf has the topology of a torus. Since all the functions Fi are in
involution, they define an action of Rn on Mf via flows. Since all the vector fields are well-defined
and independent, this action is free and transitive. Thus we find a surjective map form Rn to
Mf . Moreover, the stabilizer froms an Abelian subgroup, which in Rn is a lattice. Hence, the
manifold is diffeomorphic to the torus.
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Notice that by defining S we have reduced the system to one quadrature and a trivial in-
tegration. Explicitly, to get S you have to solve p in terms of F . In all known examples, the
conserved quantities are algebraic in p and thus it simply reduces to solving a set of algebraic
equations.

Example Let us apply the various notions and steps of the proof to the harmonic oscillator.
First we have to find the generating function

S(E, q) =

∫ q

0

√
E − ω2q̃2dq̃ =

1

2ω

{
qω
√
E − ω2q̃2 +A arctan

[
ωq√

E − ω2q2

]}
(34)

Now let us consider the new variables that this generates. We should get the angle and the
momentum. We find

∂S

∂q
=
√
E − ω2q̃2 = p ψ =

1

2ω
arctan

[
ωq√

E − ω2q2

]
= ω θ. (35)

It exactly matches. In order to then get the solution in terms of p, q one would have to construct
the inverse transformation.

Local integrability

Locally one can always find enough first integrals, so that each system basically is locally inte-
grable. This is guaranteed by the following two results

Proposition 2.3 Consider a smooth function F : U → R2n on an open subset of M. If the
initial value problem ẋ = F (x) with x(0) = x0 has a smooth solution, then there are n independent
first integrals of motion in a neighborhood V of x0.

Proof Let x = φ(t, x0) be the local solution of the initial value problem. Locally we can invert
this solution to express the initial conditions as x0 = φ̃(t, x0). By definition the initial conditions
x0 are constant and independent.

Superintegrability

It is possible for a system to have more independent first integrals. For example a free particle
in one dimension has conserved energy and momentum. Systems for which is the case are called
superintegrable. A different example is Kepler’s motion of planets. It has conserved angular
momentum, energy but als the Runge-Lenz vector is conserved. However, these quantities can
not be all in involution.

2.3 Examples

Clearly, any one-dimensional example with conserved energy is trivially integrable. To find more
interesting examples we have to go to higher dimensions.

Kepler

We now move on to three dimensions and discuss one of the historically first examples of an
integrable system; the Kepler two-body problem of planetary motion. In terms of the Cartesian
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coordinates, the Hamiltonian is simply given by

H = 1
2 (p21 + p22 + p23)− k

r
, r =

√
x21 + x22 + x23. (36)

The system clearly has rotation invariance and it is easy to show that the angular momentum
J = x× p is conserved. As always, let us take the following conserved quantities

H =
1

2

[
p2r +

p2θ
r2

+
p2φ

r2 sin2 θ

]
+ V (r), J2 = p2θ +

p2φ

sin2 θ
, J3 = pφ. (37)

Without loss of generality, let us set ~J = (0, 0, J3), or in other words, we restrict the motion to
the plane where θ = π

2 . In this plane we find

φ̇ = {H,φ} =
pφ

r2 sin2 θ
, ⇒ pθ = r2φ̇. (38)

The is the conservation of angular momentum discovered by Kepler.
We can now construct the solution by following the proof form Liouville’s theorem. The

momenta pr, pφ are easily solved in terms of the energy E and angular momentum J

pr =

√
2(E − V )− J2

r2
, pφ = J3 ≡ J. (39)

We then use those to construct the generating function S

S =

∫
r

dr

√
2(H − V )− J2

r2
+ J

∫
φ

dφ. (40)

Then the associated angle variables are simply

ψE =
∂S

∂E
, ψJ =

∂S

∂J
(41)

and they satisfy the following trivial equations of motion

ψ̇E = 1, ψ̇J = 0, (42)

so that ψE = t. In order to transform this back to our original spherical coordinates we plug in
the explicit expression for ψE and derive

t =

∫
r

dr√
2(E − V )− J2

r2

. (43)

Similarly we get from the equation of ψJ that

φ =

∫
r

Jdr

r2
√

2(E − V )− J2

r2

= arccos
J
r −

k
J√

2E + k2

J2

. (44)

To get the familiar formulation in which we can distinguish the different types of orbits, let us
define

p =
J2

k
, e =

√
1 +

2EJ2

k2
, (45)
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which leads to

r =
p

1 + e cos θ
. (46)

This equation is called the focal equation of a conic section. When e < 1 the conic section is an
ellipse. The problem has one more conserved quantitiy; the Runge-Lenz vector

R = ~v × ~J − k~r
r
. (47)

Hence, in total there are 5 independent conserved quantities, making this problem superinter-
gable.

The Swinging Atwood machine

Consider a system where two masses M,m are connected by a string and move on pulleys. The
kinetic energy is simply given by

T = 1
2 (m+M)ṙ2 + 1

2mr
2θ̇2 (48)

and the potential energy is the gravitational one

V = gr(M −m cos θ). (49)

Thus we get the Hamiltonian

H =
1

2

[
p2r

m+M
+

p2θ
mr2

]
+ gr(M −m cos θ). (50)

It turns out that only in the case µ = M/m = 3 the model is integrable. Let us find the
second conserved quantity. First we change coordinates

r = 1
2 (ξ2 + η2), θ = 2 arctan

ξ2 − η2

2ξη
, (51)

giving for µ = 3

H =
1
8 (p2ξ + p2η) + 2g(ξ4 + η4)

ξ2 + η2
. (52)

Thus for any value of the energy H = E this allows us to write

(p2ξ + 16g ξ4 − 8E ξ2) = −(p2η + 16g η4 − 8E η2) = F = const. (53)

It can be shown that this system is only integrable for this particular mass ratio.

3 Action-angle variables

As we have shown in the Liouville theorem on integrability, the phase space for integrable sys-
tems is foliated in tori on which the motion takes place. In particular if the phase space is
2n dimensional, then the motion happens on an n-torus defined as the level surface of the n
commuting integrals of motion.
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There is a natural set of coordinates (F,ψ) which are called action-angle coordinates. The
n-torus has n fundamental cycles Cm, for which we can define constants of motion in a way
similar to the generating function of Liouville’s theorem

Im =
1

2π

∮
Cm

α. (54)

Clearly Im are functions of fi only and hence constants of motion. Furthermore, they have the
dimension of an action and are therefore called action variables.

Now consider the generating function S(I, q) and use it to introduce the angle variables and
momentum

φi =
∂S

∂Ii
, pi =

∂S

∂qi
(55)

It is quickly seen that the coordinate transformation to action-angle variables is canonical. The
angle variables φi nicely parameterize the circles of the torus in the sense that

1

2π

∫
Ci

dφj = δij . (56)

Indeed

1

2π

∫
Ci

dφj =
1

2π

∂

∂Ij

∫
Ci

dS

=
1

2π

∂

∂Ij

∫
Ci

[
∂S

∂qi
dqi +

∂S

∂Ii
dIi

]
=

1

2π

∂

∂Ij

∫
Ci

α

=
∂

∂Ij
Ii = δij , (57)

where we used that the last part of the integral in step two vanishes on the contour.
Notice also that the equations of motion in terms of the action-angle variables are once again

trivial

İn = 0, φ̇n = ωn =
∂H

∂In
. (58)

Action-angle variables play an important role in perturbation theory.

Harmonic Oscillator The phase space was simply divided in a set of ellipses in the (q, p)
described by

p = ±
√

2E − ω2q2, (59)

and therefore, the action variable is given by

I = E/ω. (60)

Then, via the generating function we find the angle variable

θ = ω arctan
q√

2I − q2
⇒ q =

√
2I sin

θ

ω
. (61)

We see that we recover our original solution.
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4 Lax pairs and r-matrix

A more modern approach to integrable system is formulated in terms of Lax pairs. Consider
two matrices L,M whose entries are functions on the phase space M. Suppose the equations of
motions can be written as

L̇ = [L,M ], (62)

then L,M are called a Lax pair for the system. A very important property is that L automatically
generates conserved quantities

Fk = trLk. (63)

This follows trivially from the equations of motion

Ḟk = k tr(Lk−1[L,M ]) = 0, (64)

by cyclicity of the trace. This directly implies that the Lax matrix L is isospectral, i.e. its
eigenvalues are constant. In particular, this allows us to solve the time dependence explicitly

L(t) = g(t)L(0)g(t)−1, M = ġ(t)g−1(t), (65)

which follows directly from the Lax equation.
Similarly, it is easy to see that a Lax pair is not unique. In fact, for any invertible matrix g,

it is easy to show that

L′ = gLg−1, M ′ = gMg−1 + ġg−1 (66)

also defines a Lax pair. Moreover, for any matrix M̃ such that [L,M − M̃ ] = 0 we find that
L, M̃ also forms a Lax pair. Any power Lk of L also satisfies the Lax equation.

Let us look at our favorite example, the harmonic oscillator. We can define the Lax pair as

L =

(
p ωq
ωq −p

)
, M =

(
0 − 1

2ω
1
2ω 0

)
. (67)

Then the Lax equation gives (
ṗ ωq̇
ωq̇ −ṗ

)
=

(
−ω2q ωp
ωp ω2q

)
. (68)

We find the Hamiltonian as H = 1
4 trL2. It is also very easy to factor out the time dependence.

Solving the equation for g gives

ġ = Mg, ⇒ g =

(
cos ωt2 − sin ωt

2
sin ωt

2 cos ωt2

)
, (69)

while the eigenvalues of L are simply ±
√
E.

The Toda system Toda derived a simple model for the dynamics of interacting particles with
repulsive exponential forces. We have the Hamiltonian

H =

N∑
i=1

[
1
2p

2
i +Xi

]
, Xi = eqi−qi+1 (70)
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The term qN+1 is not present. The Hamiltonian equations of motion are simply

q̇i = pi, ṗi = Xi −Xi−1, ṗ1 = X1, ṗN = −XN−1. (71)

Now define

ai = 1
2e

1
2 (qi−qi+1), bi = − 1

2pi, (72)

then

L =


b1 a1 0 . . . 0 0
a1 b2 a2 . . . 0 0
0 a2 b3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . aN−1 bN

 , M =


0 a1 0 . . . 0 0
−a1 0 a2 . . . 0 0

0 −a2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −aN−1 0

 (73)

is a Lax pair for the open Toda model. Let us restrict to the case where N = 3. Then we get
the conserved quantities as generated by the Lax pair

I1 = H (74)

I2 = p1 + p2 + p3 (75)

I3 = 1
3 (p31 + p32 + p33) + p1X1 + p2(X1 +X2) + p3X2. (76)

The first and second correspond to total energy and total momentum.

Furthermore, any integrable system admits a (trivial) Lax pair. To see this, we work in the
action-angle variables (I, φ) such that

İk = 0, φ̇k =
∂H

∂Ik
= ωk. (77)

Then we can define the Lax pair

L = diag(A1, A2, . . .), M = diag(B1, B2, . . .) (78)

where

Ak =

(
Ik 2Iφ
0 −Ik

)
, Bk =

(
0 ωk
0 0

)
. (79)

This construction of a Lax pair however is rather useless since it requires the action-angle variables
explicitly. And of course, if these are known, there is no need for a Lax pair.

Lax pairs depending on spectral parameters

There is an important further generalization of a Lax pair, where both L,M depend on an
additional parameter λ, called the spectral parameter. The first integrals defined in the previous
section now encompass more conserved quantities

Ik(λ) = trLk(λ) =
∑
i

Ik,iλ
i. (80)

In particular each of the coefficients Ik,i is trivially a first integral. In a sense it offers a more
compact way of writing down a Lax pair. The following proposition tells us that such a Lax pair
is equivalent to a Lax pair without spectral parameter
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Proposition 4.1 Let L(λ),M(λ) be a Lax pair depending on a spectral parameter. Suppose we

can write L =
∑a
i=1 Liλ

i and M =
∑b
i=1Miλ

i, then

L̃ =



L0 L1 . . . La 0 . . . 0 0
0 L0 L1 . . . La . . . 0 0
0 0 L0 L1 . . . . . . 0 0
...

...
...

. . .
. . .

. . .
...

...
0 0 0 0 . . . . . . L0 L1

0 0 0 0 . . . . . . 0 L0


, (81)

M̃ =



M0 M1 . . . Mb 0 . . . 0 0
0 M0 M1 . . . Mb . . . 0 0
0 0 M0 M1 . . . . . . 0 0
...

...
...

. . .
. . .

. . .
...

...
0 0 0 0 . . . . . . M0 M1

0 0 0 0 . . . . . . 0 M0


, (82)

is a Lax pair. The conserved quantities are now generated by summing along the diagonals in
the upper triangular part.

Proof Expanding the ordinary Lax equation in powers of λ gives

a∑
i=0

L̇iλ
i =

a∑
i=0

b∑
j=0

[Li,Mj ]λ
i+j . (83)

We can then simply compare order by order, which gives

L̇i =

i∑
j=0

[Lj ,Mi−j ], (84)

where Lj = Mk = 0 if j > a, k > b. It is now easily shown that these are exactly the relations

obtained from the Lax pair L̃, M̃ . Moreover, the conserved quantities

I1(λ) = trL = λitrLi (85)

I2(λ) = trL2 = L2
0 + λ(L0L1 + L1L0) + λ2(L2

1 + L0L2 + L2L0) + . . . (86)

trivially follow from summing along the diagonals of L̃, L̃2, . . ..

The above proposition shows that any λ-dependent Lax pair is equivalent to an ordinary Lax
pair, but of rather large size. In the context of field theories, where the number of degrees of
freedom tends to infinity, this of course will no longer work.

Kepler Let us return to the Kepler problem. In this case, Lax pair depends on a spectral
parameter λ and three additional parameters λk. It is given by

L =
1

2

∑
k

(
− xkẋk

λ−λk

xkxk

λ−λk

− ẋkẋk

λ−λk

xkẋk

λ−λk

)
, M =

(
0 −1
k
r3 0

)
(87)

The equations of motion can be read off by expanding around the poles λi. The components of
the angular momentum are generated by L2.
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Generating integrable systems

We can generate al new integrable systems from an existing Lax pair. Let (L,M) be a Lax pair.
Consider the generalized Lax equation

L̇ = [L,M ] + λL, (88)

where λ is some constant. Then the corresponding set of equations of motion define an integrable
system with first integrals Ik = tr(Lk)e−kλt. The resulting system in general does not come from
a Hamiltonian.

Harmonic oscillator The equations of motion corresponding to the generalized Lax equation
become

q̇ = p+ λq, ṗ = −ω2q + λp. (89)

This system of equations do not come from a Hamiltonian. Nevertheless, we can simply solve
them and get

q = etλ(A cosωt+B sinωt) (90)

and we find that I2 = e−2λt(p2 + ω2q2) is a first integral.

The r-matrix

So far we have not made any mention of the Poisson structure. But of course, for a Lax pair to
define an integrable system, the eigenvalues of L need to be in involution. This property turns
out to be equivalent to the existence of a so-called (classical) r-matrix.

Suppose we are given a Lax pair L,M , which are N ×N matrices and that the Lax matrix
L is diagonalizable

L = UΛU−1. (91)

The matrix elements λk of the diagonal matrix Λ are conserved quantities. We will not consider
the question of independence of these quantities.

Let Ei be the standard N basis vectors and let Eij be the standard matrix unities, such that

EijE
k = δkjE

i, then we can write our Lax matrix as

L = LijE
j
i , (92)

where Lij are simply the entries of the Lax matrix, which are functions on phase space. We
want to be able to compute Poisson brackets between those entries. In other words, we want to
evaluate {Lij , Lkl }. Let us embed the Lax matrix in the double tensor product

L1 ≡ L⊗ 1 = LijE
j
i ⊗ 1, L2 ≡ 1⊗ L = Lij1⊗ E

j
i . (93)

Thus, the subscript refers to the space the matrix is embedded in. Similarly, let us consider
matrices that act on the tensor product

T12 = T ijklE
k
i ⊗ Elj , T21 = T ijklE

l
j ⊗ Eki . (94)
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Then T21 is simply the permuted version of T . For any such matrix we can also take the partial
trace over one of the factors in the tensor product. For example, we have

tr1T12 = T ijkl tr(E
k
i )Elj = T ijil E

l
j . (95)

We can now conveniently put all the possible Poisson brackets between the entries of L into the
following matrix form {L1, L2}. If the eigenvalues of the Lax matrix are in involution, then the
latter Poisson bracket needs to be of a special form.

Proposition 4.2 The eigenvalues of the Lax matrix are in involution if and only if there exists
a function r12 on the space space such that

{L1, L2} = [r12, L1]− [r21, L2]. (96)

Proof Let us first prove that if (96) holds the eigenvalues Poisson commute. By the Leibniz
rule of the Poisson bracket we have that

{Ln1 , Lm2 } = [an,m12 , L1] + [bn,m12 , L2], (97)

with

an,m12 =

n−1∑
p=0

m−1∑
q=0

Ln−p−11 Lm−q−12 r12L
p
1L

q
2 (98)

bn,m12 = −
n−1∑
p=0

m−1∑
q=0

Ln−p−11 Lm−q−12 r21L
p
1L

q
2. (99)

Then we take trace of (97) and use the the trace of a commutator vanishes to obtain that the
quantities trLn are in involution. This is equivalent to the eigenvalues Poisson commuting.

On the other hand, by the Leibniz rule we can completely expand the Poisson bracket of the
matrix entries of L into nine terms

{L1, L2} ={U1Λ1U
−1
1 , U2Λ2U

−1
2 } (100)

={U1, U2}Λ1U
−1
1 Λ2U

−1
2 + U1{Λ1, U2}U−11 Λ2U

−1
2 − L1{U1, U2}U−11 Λ2U

−1
2 +

U2{U1,Λ2}Λ1U
−1
1 U−12 + U1U2{Λ1,Λ2}U−11 U−12 − L1U2{U1,Λ2}U−11 U−12 −

L2{U1, U2}U−12 Λ1U
−1
1 − L2U1{Λ1, U2}U−11 U−12 + L1L2{U1, U2}U−11 U−12 ,

where we used that {U−1, A} = U−1{U,A}U−1. Using that {Λ1,Λ2} vanishes and introducing
the following quantities

k12 = {U1, U2}U−11 U−12 , q12 = U2{U1,Λ2}U−11 U−12 , (101)

we can write

{L1, L2} = k12L1L2 + L1L2k12 − L1k12L2 − L2k12L1 − [q21, L2] + [q12, L1]. (102)

Then if we define

r12 = q12 + 1
2 [k12, L2], (103)

we can finally bring the commutation relation to the required form

{L1, L2} = [r12, L1]− [r21, L2]. (104)
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The Poisson bracket should satisfies the Jacobi identity and this of course puts some further
restrictions on the r-matrix. Namely, it should satisfy

{L1, [r12, r13] + [r12, r23] + {L2, r13} − {L3, r1}}+ cycl.perm. = 0. (105)

If the r-matrix is constant, then only the first term survives and the Jacobi identity is satisfied
if

[r12, r13] + [r12, r23] + [r23, r13] = 0. (106)

If the r-matrix is antisymmetric r12 = −r21 then the corresponding equation is called the classical
Yang-Baxter equation. Thus, even though the above proof of the existence of an r-matrix is
constructive, we are only dealing with an integrable system if and only if (105) is satisfied. In a
sense, classifying classical integrable systems corresponds to classifying solutions of this equation.

The fact that the eigenvalues of the Lax matrix commute is equivalent to the existence of
an r-matrix. Since the eigenvalues of the Lax matrix mutually Poisson commute, the quantities
In = tr(Ln) do as well. We can now show that the time evolution with respect to any of these
first integrals is naturally of Lax form.

Proposition 4.3 Let L, r be matrices such that {L1, L2} = [r12, L1] − [r21, L2]. If we take
In = tr(Ln) as conserved quantities, then the equations of motion admit a Lax representation

dL

dtn
≡ {In, L} = [Mn, L], Mn = −ntr1(Ln−11 r21). (107)

Proof From the proof of the existence of the r-matrix we had the equation

{Ln1 , Lm2 } = [an,m12 , L1] + [bn,m12 , L2]. (108)

Setting m = 1 and taking the trace over the first space proves the proposition.

It is easy to see that the r-matrix is not unique. For example you can simply add the identity
matrix to it. Furthermore, the structure of the Poisson brackets is preserved by the gauge
transformation L→ L′ = gLg−1, such that

{L′1, L′2} = [r′12, L
′
1]− [r′21, L

′
2], (109)

where

r′12 = g1g2(r12 + g−11 {g1, L2}+ 1
2 [g−11 g−12 {g1, g2}, L2])g−11 g−12 . (110)

In other words, gauge transformation leave the involution property invariant. We finish this
chapter with two examples; the Harmonic oscillator and the open Toda chain.

Harmonic Oscillator The r-matrix is most easily computed by using the variables ρ, θ such
that

p = ρ cos θ, q =
ρ

ω
sin θ. (111)

These variables are not canonical since {ρ, θ} = ω/ρ. Then L is diagonalized by

U =

(
cos 1

2θ sin 1
2θ

sin 1
2θ − cos 1

2θ

)
. (112)
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Since U depends solely on θ the commutator {U1, U2} = 0 and our general expression for the
r-matrix simplifies a lot and we find

r =
ω

2ρ2

(
0 1
−1 0

)
⊗ L. (113)

This r-matrix is a so-called dynamical r-matrix since it depends on the dynamical variables, i.e.
it is a non-trivial function on phase space.

Open Toda model The Lax matrix for the open Toda model with N particles can be written
as

L =
∑
i

biE
i
i + ai(E

i
i+1 + Ei+1

i ), (114)

where Eij are again the matrix unities and a, b are defined in (72). The r-matrix here is constant
and antisymmetric and is of the form

r =
1

4

∑
i

(Eii+1 ⊗ Ei+1
i − Ei+1

i ⊗ Eii+1). (115)

You can find r through direct computation. It is readily checked that this r-matrix satsifies the
classical Yang-Baxter equation.

5 Spectral curve

There is a close connection between integrable systems that admit a Lax pair representation
depending on a spectral parameter and Riemann surfaces. Sometimes this formulation can help
in solving the integrable model, but in general it simply gives an interesting relation between
two seemingly unrelated topics.

Riemann surfaces

A Riemann surface S is a one-dimensional smooth compact complex manifold. This means that
around each point p ∈ S there is an open set U that is diffeomorphic to the open disc around
the origin. And in each overlapping open subset the different local parameters are related by an
analytic bijection.

We will be interested in the algebraic formulation, where we define a Riemann surface via an
algebraic equation in C2. So we consider a polynomial P (x, y) in two variables and define the
Riemann surface as

S = {(x, y) ∈ C2|P (x, y) = 0}. (116)

Since we want it to be compact, we also add the point at infinity. We map it to a chart around
0 by transforming x→ x−1, y → y−1.

Suppose P has degree N in y, then generically above any point x there will be N solutions
to the defining equations. Thus, we get an N -fold covering of the complex line. Then there will
be some branch points where the solutions have higher multiplicity.

A defining topological quantity of a Riemann surface is the genus. A surface of genus g is
homeomorphic to a sphere with g handles. So a sphere has genus 0 and a torus has genus 1. For
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a curve defined by an algebraic equation you can compute the genus by the Riemann-Hurwitz
formula, which relates the genus to the degree of covering and the number of branch cuts.

We will be considering meromorphic functions on S. Finally, let us introduce the notion of
a divisor. A divisor is simply a formal sum of points with multiplicities and we simply denote it
by D =

∑
j njPj . For any meromorphic function f with zeroes at position pj with multiplicity

nj and poles at qj with multiplicty mj we define its divisor as

D(f) =
∑

njpj −
∑

mjqj . (117)

A divisor is called positive if all n are positive and m vanish. Hence a function is analytic if and
only if its divisor is positive. The so-called Riemann-Roch theorem states how big the vector
space of functions with a certain divisor is.

The Spectral curve

Consider an integrable system with Lax pair L(λ),M(λ). Then we can define a Riemann surface
via the locus of the characteristic equation

Γ : det(L− µ) = 0. (118)

This defines a Riemann surface in C2. If the Lax matrix is of size N ×N , then the equation is
of the form

(−µ)N +
∑

ri(λ, p, q)µ
i = 0. (119)

Hence this defines an N -sheeted cover of the Riemann sphere. To any given base point λ there
correspond N values µi corresponding to the different eigenvalues of L at that particular value
of the spectral parameter.

We will now try to find out the analytical properties of the eigenvectors and the Lax pair.
In fact we will try to determine how the full information of the underlying integrable system is
realized on the spectral curve.

First remember that the Lax matrix was more or less defined up to gauge transformations.
However, the spectral curve is clearly invariant under such tranformations. Furthermore, since
the eigenvalues are time-independent, the spectral curve is as well. Thus we immediately see
that the curve itself does not contain any dynamical information. Before we go any further, let
us fix the gauge on the Lax matrix by requiring that at λ =∞ it is diagonal

L(∞) = diag(a1, . . . , aN ). (120)

We will only work in the generic setting where all the ai are different.
A matrix is fully specified by giving its eigenvalues and eigenvectors. We have seen that the

eigenvalues determine the spectral curve, so let us now consider the eigenvectors. To each point
P = (λ, µ) on the curve we can assign the corresponding eigenvector

ψ(P ) =

ψ1

...
ψN

 . (121)

Eigenvectors are obviously defined up to a normalization, so we are free to pick up a convenient
one. For now we set ψ1 = 1. Since eigenvectors can be obtained by taking suitable minors of the
matrix L− µ we directly see that they are meromorphic functions on the spectral curve.
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Let us now look at the pole structure of the eigenvectors. We say that the eigenvector has a
pole if and only if one of its components has a pole. We have N points at λ =∞ and since the
matrix diagonalizes there, we simply find that the eigenvectors correspond to the standard basis
vectors. However, when we pick up the normalization ψ1 = 1 this gives a problem. Obviously at
P1 = (∞, a1)

ψ(P1) = (1,O(λ−1), . . . ,O(λ−1)), (122)

but at other points Pi we need to have

ψ(Pi) = (1,O(λ−1), . . . ,O(λ), . . . ,O(λ−1)), (123)

for it to be an eigenvector. Thus we find N −1 poles at λ =∞. These poles are completely fixed
by the asymptotic behaviour of the Lax matrix and consequently are also not dynamical.

In fact, one can show on general grounds that the total number of poles of the eigenvector ψ
is related to the genus of the spectral curve and dimension N as

#poles = g +N − 1. (124)

Having found the N−1 poles at infinity, we are only let with g poles on the curve. These contain
all the dynamical information and putting them together in a divisor, we get the so-called
dynamical divisor D. Now surprisingly, we can revert the logic. There is the Riemann-Roch
theorem that implies that for a given divisor D of degree g, there is a unique meromorphic
function that has exactly the analytic properties of the eigenvector ψ.

Let us take a step back and think about what this teaches us. The full data of our integrable
model is divided into two parts. We have the conserved quantities (action variables) that define
the spectral curve and then we basically need to specify the position of g poles (angle variables)
and that parameterizes the dynamical data of the theory. In fact this construction proved useful
in developing the method of separation of variables.

If we assume some definite form of our Lax pair L,M we can make the dynamical nature of
D more explicit. From the Lax equation we find that the time evolution of the eigenvector is
described by

(L− µ)(ψ̇ −Mψ) = 0. (125)

In other words we have

ψ̇(t, P ) = (M(λ)− c(t, P ))ψ, (126)

where c is some scalar function. If we want to keep the first component of the eigenvector always
fixed to be 1, then we get that c = M1jψj . From this you can fully fix the time evolution of the
dynamical divisor. The initial positions of the poles is fully fixed by the initial conditions of the
system and thus the system can be solved in this way.

The closed Toda chain

Let us try to clarify all the notions a bit by considering an example. Earlier we discussed the
open Toda chain, but its Lax matrix did not depend on a spectral parameter. However, if we put
the particles on a circle rather than a line, we do find that the Lax matrix becomes of spectral
form.
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Model. We view n+1 particles sitting on a circle with an potential that exponentially depends
on the relative distances. The Hamiltonian is

H =

N∑
i=1

[
1
2p

2
i +Xi

]
, Xi = eqi−qi+1 (127)

and the corresponding equations of motion are

q̇i = pi, ṗi = eqi−1−qi − eqi−qi+1 , (128)

where it is understood that (pa, qa) ≡ (pa+n+1, qa+n+1). Notice that the system has translation
symmetry qi → qi + a. We impose that the centre of mass is standing still at the origin, i.e. we
set ∑

i

pi =
∑
i

qi = 0. (129)

This leaves us with 2n degrees of freedom and hence our phase space is 2n dimensional. The
Lax pair is this time given by

L =


b1 a1 0 . . . 0 λ−1an+1

a1 b2 a2 . . . 0 0
0 a2 b3 . . . 0 0
...

...
...

. . .
...

...
λan+1 0 0 . . . an bn+1

 ,

M =


0 a1 0 . . . 0 −λ−1an+1

−a1 0 a2 . . . 0 0
0 −a2 0 . . . 0 0
...

...
...

. . .
...

...
λan+1 0 0 . . . −an 0

 (130)

It is easy to check that the equations of motion are equivalent to the Lax equation L̇ = [L,M ].
To show that this is indeed an integrable model, we also need an r-matrix. It is given by

r =
1

2

λ+ λ′

λ− λ′
+

1

λ− λ′
∑
i<j

(λ′Eij ⊗ Eji + λEji ⊗ Eij). (131)

Spectral curve. Let us now construct the spectral curve Γ coming corresponding to the closed
Toda model. The spectral curve is defined by the equation

det(L− µ) = 0. (132)

For fixed λ this is simply the characteristic equations describing the eigenvalues of L. For
concreteness, let us set n = 2. The following can be easily generalized to work for general n.

From the explicit expression for our Lax matrix we can easily find the algebraic equation that
describes our spectral curve

λ+ λ−1 = −µ3 + µ

[∑
i

a2i −
b1b2b3
bi

]
+
[
b1b2b3 − (a21b3 + a22b1 + a23b2)

]
. (133)
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This is a so-called hyperelliptic curve. The genus of this elliptic curve is 2 and hence it simply is
a double torus.

Now let us look at the pole structure. The Lax matrix has two poles, namely at λ = 0,∞.
Around these poles, we can expand the defining equation. We see that

λ = µ3(1− µ−1
∑
i

pi +O(µ−2), λ→∞ (134)

λ = µ−3(1 + µ−1
∑
i

pi +O(µ−2), λ→ 0. (135)

Eigenvectors. Let us start by writing down the explicit eigenvalue equations corresponding
to L. Let Ψ = (ψ1, ψ2, ψ3) be the eigenvector corresponding to eigenvalue µ then

p1ψ1 + a1ψ2 + λ−1a3ψ3 = µψ1,

p2ψ2 + a1ψ1 + a2ψ3 = µψ2, (136)

p3ψ3 + a2ψ2 + λa3ψ1 = µψ3.

With the help of mathematica we can compute the eigenvectors explicitly. It obviously corre-
sponds to a cubic equation. But nevertheless, we can numerically examine the pole structure.
If we fix some generic eigenvalues and normalize the eigenvectors appropriately, it is easily seen
that we find 2 additional poles as we should.

At λ = ∞ we can be more precise. Let us normalize the eigenvectors such that ψ3 = λ.
From our general discussion we should find 2 poles there. We can solve the eigenvector equations
perturbatively to highest order in λ, µ and find

ψi = eqi−q0µi(1− µ−1
i−1∑
j=0

pj +O(µ−2)), λ→∞ (137)

ψi = e−qi+q0µ−i(1 + µ−1
i−1∑
j=0

pj +O(µ−2)), λ→ 0. (138)

Thus we indeed find a pole of order 2 at infinity.
From the Lax equation we can also find the explicit time dependence of the eigenvectors at

infinity. We can write

ψi(t) = eqi(t)e−µtµi(1 +O(µ−1)), λ→∞ (139)

ψi(t) = e−qi(t)eµtµ−i(1 +O(µ−1)), λ→ 0. (140)

Finally one can solve the exact time dependence of the eigenvector by using the complex struc-
ture. The result is expressed in so-called tau-functions and can be found in the book by Babe-
lon,Bernard and Talon.
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