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1 Integrable classical Hamiltonian systems

1.1 Defining integrability

A Hamiltonian 1d system is comprised of

• A set of fields ua(x, t), a = 1, 2, . . . ,m depending on a 1 dimensional
space coordinate x and a time t. The phase space M is the set of points
specifying the configuration of these fields at every given time.

• A Poisson bracket between phase space functionals

{F,G} =

∫
dxdy ωab(x, y|u)

δF [u]

δua(x)

δG[u]

δub(y)
,

i.e. functionals of the type F [u] =
∫
dx f(u, ux, uxx, . . . ). The “matrix

elements” ωab(x, y|u) of the Poisson bracket are typically of the form

ωab(x, y|u) =
∑
n

Pn(u, uy, uyy, . . . )∂
n
x δ(x− y)

for local Hamiltonian systems. The Poisson-bracket must satisfy the usual
conditions: be antisymmetric, satisfy the Leibniz rule and the Jacobi iden-
tity.

Example. Frequently encountered Poisson brackets

{u(x), u(y)}1 = ∂xδ(x− y) (1.1)

{u(x), u(y)}2 = [2(u(x) + u(y))∂x + ∂3
x]δ(x− y) (1.2)

{ua(x), ub(y)} = [fabcu
c(y) + ηab∂x]δ(x− y) , (1.3)
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where ηab is a symmetric matrix and fabc are antisymmetric in a, b and
satisfy the Jacobi identities.

• A Hamitonian H[u] =
∫
dxh(u, ux, uxx, . . . ) defining the time evolution

u̇a(x) = {ua(x), H[u]} .

Example. Hamiltonian systems which do not arise from a Lagrangian

mKdV : {·, ·}1 , H[v] =

∫
dx 1

2 (v4 − v2
x) → vt = 6v2vx + vxxx

KdV : {·, ·}2 , H[u] =

∫
dx 1

2u
2 → ut = 6uux + uxxx

Field theories formulated in terms of a Lagrangian have a canonical momen-
tum, Poisson structure and Hamiltonian. If L is the Lagrangian density, then
the momentum, Poisson bracket and Hamiltonian are defined by

πa :=
∂L
∂φ̇a

, {φa(x), πb(y)} := δab δ(x− y) . H[φ, π] :=

∫
dx (πaφ̇

a − L)

The e.o.m. take the usual form

φ̇a(x) =
δH[φ, π]

δπa(x)
, π̇a(x) = −δH[φ, π]

δφa(x)
.

Example. The sine-Gordon field theory is defined by the Lagrangian

L = 1
2 (∂µφ)2 − m2

β2
(1− cosβφ) = 1

2 (∂µφ)2 − m2

2 φ
2 + β2m2

4! φ4 + · · · .

The momentum and canonical Poisson structure are

π = φ̇ , {φ(x), φ̇(y)} = δ(x− y) ,

while the Hamiltonian and e.o.m. are

H[φ, π] =

∫
dx

[
1

2
(π2 + φ2

x) +
m2

β2
(1− cosβφ)

]
,

φ̈ = π̇ = {π,H[φ, π]} = φxx −
m2

β
sinβφ . (1.4)

We shall also use the light cone coordinates

τ =
t+ x

2
, ∂τ = ∂t + ∂x ,

σ =
t− x

2
, ∂σ = ∂t − ∂x . (1.5)

in which the Lagrangian takes the form

L = φτφσ −
m2

β2
(1− cosβφ) ,
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the Poisson structure is defined by

π =
∂L
∂φτ

= φσ , {φ(σ), φσ(σ′)} = δ(σ − σ′)

and the Hamiltonian structure takes a particularly simple form

H[φ] =

∫
dx

m2

β2
(1− cosβφ) ,

φτσ = πτ = {π,H[φ]} = −m
2

β
sinβφ .

Let us denote by u(x) = {ua(x)} the fields parametrizing the phase space of
a 1d Hamiltonian system. A local integral of motion is a phase space functional
I[u] which is constant in time İ = {I,H} = 0 and can be presented in the form

I[u] =

∫
dxP (x|u, ux, uxx, . . . ) ,

where P (x) is a function of u and its derivatives evaluated at x. The density
P will give rise to a local integral of motion if it is the time component of a
conserved current

∂

∂t
P (x|u, ux, . . . ) =

∂

∂x
Q(x|u, ux, . . . ) .

Thus, local integrals of motion are naturally associated to conserved currents.
There is no unanimously accepted definition of an integrable Hamiltonian

system. A definition that works well in practical applications generalizes the
concept of Liouville integrability in classical mechanics.

Definition. We shall say that a (local) 1d Hamiltonian system is integrable if
it has infinitely many local integrals of motion in involution.

If one pushes the analogy with classical mechanics even further, then one
must also require that the symplectic form vanishes on the level set specified
by the i.o.m. The lack of preciseness is however irrelevant, because there is no
analog to the Liouville theorem of classical mechanics , i.e. it is not possible to
solve the e.o.m. in a trivial way once the i.o.m. are given. The above definition
must be understood as a practical recipe for identifying integrable systems;
usually, if one can find just a few i.o.m. besides the Hamiltonian, then it is
almost certain that we are dealing with an integrable system. Let us see of few
examples of i.o.m. in non-trivial Hamiltonian systems and get a feeling of how
to search for them.

Example. The mKdV and KdV equations are invariant w.r.t. the rescalings

mKdV : t 7→ a3t , x 7→ ax , v 7→ a−1v (1.6)

KdV : t 7→ a3t , x 7→ ax , u 7→ a−2u (1.7)

We now introduce a degree corresponding to this rescaling

mKdV : deg(v) = 1 , deg(∂x) = 1

3



KdV : deg(u) = 2 , deg(∂x) = 1

and classify the i.o.m. by this degree. For example, Pn(x|v, vx, vxx, . . . ) is a
density of degree l if it transform homogeneously under the rescaling (1.7) as

Pl(x|v, vx, vxx, . . . ) 7→ a−lPl(x|v, vx, vxx, . . . ) .

One can easily check using the mKdV e.o.m. that the following expressions

P1 = v (1.8)

Q3 = 2v3 + vxx

P2 = 1
2v

2

Q4 = 3
2v

4 + vvxx − 1
2v

2
x

P4 = 1
4 (v4 − v2

x)

Q6 = v6 + v3vxx − 3v2v2
x − 1

2vxvxxx + 1
4v

2
xx

P6 = 1
6v

6 − 1
6v

2v2
x + 2

9v
3vxx + 1

12v
2
xx

define conserved currents and charges by

∂tPl = ∂xQl+2 → Il =

∫
dxPl+1 .

Similarly, the expressions bellow

P2 = u (1.9)

Q4 = 3u2 + uxx

P4 = 1
2u

2

Q6 = 2u3 + uuxx − 1
2u

2
x

P6 = 1
3u

3 − 1
6u

2
x

Q8 = 3
2u

4 + u2uxx − 2uu2
x − 1

3uxuxxx + 1
6u

2
xx .

define conserved charges of the KdV system Il =
∫
dxPl+1.

The integrals of motion can be searched systematically by making the most
general ansatz for Pl and Ql+2, which is compatible with the assigned degree.
One can prove that (m)KdV has a unique non-trivial local integral of motion at
every odd degree l. This set is complete and its elements are in involutions w.r.t.
each other. We shall later use a Lax pair approach to generate these i.o.m. and
especially to prove their involutivity.

Example. Consider the Klein-Gordon equation

φτσ = −m2V ′(φ)

for a general potential V (φ). This equation is invariant w.r.t. the rescaling

τ 7→ aτ , σ 7→ aσ , m 7→ ma−1 , φ 7→ φ .
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Introducing a grading

deg ∂τ = deg ∂σ = degm = 1 , deg φ = 0

we can organize the conserved currents by their degree, i.e.

∂τPl(σ|φσ, φσσ, . . . ) = ∂σQl(σ|φσ, φσσ, . . . ) ,

where Pl and Ql are homogeneous polynomials of degree l. At degree 2 there is
always a conserved current corresponding to the energy-momentum tensor

∂τ
(

1
2φ

2
σ

)
= ∂σ

(
−m2V (φ)

)
.

Making the most general ansatz for P3 up to total σ-derivatives

∂τ ( 1
3φ

3
σ) = φ2

σφστ = −φ2
σV
′(φ)

we explicitly see that it is not possible to get a conserved current when V 6= 0.
At degree 4, the most general ansatz for P4, up to total σ-derivatives, gives

∂τ ( 1
4φ

4
σ + αφ2

σσ) = (φ3
σ + 2αφσσ∂σ)φστ = −m2

[
φ3
σV
′ + 2αφσσφσV

′′]
= ∂σ

(
−m2φ2

σV
)

+m2(V − αV ′′)∂σ
(
φ2
σ

)
.

Thus, a non-trivial integral exists only for the potentials of the form

V (φ) = a e
φ√
α + b e

− φ√
α + const .

By a rescaling and shift of φ, this can be brought to the Sine-Gordon

VSG =
(1− cosβφ)

β2
, VShG =

cosh bφ

b2
, VL = e2bφ .

Higher order conserved currents can be searched in a similar way. Here is what
we get up to degree 6 for the sine-Gordon model

P2 = 1
2ϕ

2
σ (1.10)

Q2 = m2 cosϕ

P4 = 1
4ϕ

4
σ − ϕ2

σσ

Q4 = m2ϕ2
σ cosϕ

P6 = 1
6ϕ

6
σ − 2

3ϕ
2
σϕ

2
σσ + 8

9ϕ
3
σϕσσσ + 4

3ϕ
2
σσσ

Q6 = m2 cosϕ
(

1
9ϕ

4
σ − 4

3ϕ
2
σσ

)
,

where ϕ = βφ.

An integrable hierarchy is comprised of

• A phase space M parametrized by some fields u(x) = {ua(x)} endowed
with a Poisson-bracket {·, ·}

• Infinitely many integrals of motion {In}n∈N in involution {Im, In} = 0
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• A time evolution associated to every i.o.m.

∂

∂tm
u(x) = {u(x), Im[u]} , m = 1, 2, 3, · · · .

The different time evolutions are compatible with each other because

∂

∂tm

∂

∂tn
u(x)− ∂

∂tn

∂

∂tm
u(x) = {{u(x), In}, Im}−{{u(x), Im}, In} = {u(x), {In, Im}} = 0 .

Example. The first few equations of the mKdV hierarchy are

∂

∂t0
v(x) = {v(x), I0[v]} = 0

∂

∂t1
v(x) = {v(x), I1[v]} = vx

∂

∂t3
v(x) = −2{v(x), I3[v]} = vxxx + 6v2vx

∂

∂t5
v(x) = {v(x), I5[v]} = ∂x

(
v5 + 5

3vv
2
x + 5

3v
2vxx + 1

6vxxxx
)

The mKdV, KdV and sine-Gordon hierarchies can be identified by setting

u = v2 ± ivσ , v = 1
2ϕσ . (1.11)

The v 7→ u map is called the Miura transformation. It maps a solution of mKdV
to KdV

ut − (uxxx + 6uxu) = (2v ± i∂x)[vt − (vxxx + 6v2vx)] .

The map φ 7→ v does not send sine-Gordon solutions to mKdV solutions. The
identification is at the level of i.o.m.∫

dxPmKdVl (x) ∝
∫
dxPKdVl (x) ∝

∫
dxPSGl (x) .

Moreover, the Poisson bracket of φ induces the Poisson brackets of v and u (up
to an overall proportionality constant).

1.2 Classical sine-Gordon model

In this section we shall discuss certain remarkable particle like solutions char-
acteristic of non-linear wave equations. These are called solitons or solitary
traveling waves: a soliton is a wave which is localized in space and preserves its
shape over time.

Although we shall concentrate our discussion solely on the sine-Gordon
model (1.4), let us mention that there are many other integrable Hamiltonian
system whit solitonic solutions. Let us just mention the famous KdV soliton

u(x, t) =
2χ2

cosh2 χ(x+ 4χ2t)
.
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1.2.1 One soliton solutions

In order to find the sine-Gordon soliton solutions, one can first search for static
solution φ(x, t) = φ(x) and then perform a boost

x 7→ x− vt√
1− v2

in order to get a propagating solution. Thus, we are looking for the solutions of

φ′′ =
m2

β
sinβφ ,

subject to the b.c.
φx(±∞) = 0 , (1.12)

which is a consequence of the localization property of the soliton. But this is
the e.o.m. of the classical mechanical system

h = 1
2φ

2
x + m2

β2 (cosβφ− 1)︸ ︷︷ ︸
U(φ)

which describes the motion of a particle in a periodic potential U(φ). The
boundary condition for φ(x) is equivalent to the requirement that the particle
approaches one of the maximums of the potential U(φ) at “time” x 7→ ±∞, i.e.

βφ(±∞) ∈ 2πZ . (1.13)

With the b.c. (1.12, 1.13) we can easily evaluate the total energy h of the solution
at x→ ±∞

h =
[

1
2φ

2
x + m2

β2 (cosβφ− 1)
] ∣∣∣
x→±∞

= 0 .

Hence

x− x0 = ±
∫

dφ√
h− 2U(φ)

= ± 1

m

∫
βdφ

2 sin βφ
2

= ± 1

m
log tan

βφ

4
.

Inverting the dependence of x on φ and boosting it we get the desired soliton
and anti-soliton solutions

φs(x, t) =
4

β
tan−1 eγm(x−vt−x0) , φs̄(x, t) =

4

β
tan−1 e−γm(x−vt−x0) , (1.14)

where γ = 1/
√

1− v2. In order to compute the dispersion relation of this
solution we need the energy momentum tensor

Tµ
ν = ∂µφ

δL
δ∂νφ

− δνµL .

The energy and momentum of a classical solution φ(x, t) are the defined by

H[φ, φ̇] =

∫
dx2T00 =

∫
dx2

[
1
2 φ̇

2 + 1
2φ

2
x +

m2

β2
(1− cosβφ)

]
,

P [φ, φ̇] =

∫
dx2T01 = −

∫
dx2φ̇φx .
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Computing the dispersion relation of the soliton solution we get

H[φs] =
M√

1− v2
,

P [φs] = −
∫
dx ∂tφs∂xφs =

Mv√
1− v2

,

which coincides with that of a relativistic particle of mass

M = Ms = Ms̄ =
8m

β2
.

We recall that the dispersion relation of a relativistic massive particle takes a
simpler form

E = M cosh θ , P = M sinh θ .

in terms of the rapidity θ defined by v = sinh θ. Notice that the antisoliton
solution can be obtained from the soliton solution by the transformation

θ 7→ θ + iπ .

As we have seen, the solitons of the Sine-Gordon model interpolate between
distinct minimums of the potential V (φ). In fact, solitonic solution exist also
for non-integrable models like the φ4 field theory

L = 1
2 (∂µφ)2 − V (φ) , V (φ) =

λ

4

(
φ2 − m2

λ

)2

The soliton and anti-soliton interpolating between the two minima φ± = ±m/
√
λ

can be computed similarly

φs(x, t) =
m√
λ

tanh
γm(x− vt− x0)√

2
, φs̄(x, t) = − m√

λ
tanh

γm(x− vt− x0)√
2

.

Integrability manifest itself not in the existence of solitonic solutions, but in
their interaction properties. To study these properties one needs multisolitonic
solutions. By definition, these are classical solutions which at t → −∞ can
be approximated by a superposition of well separated 1-soliton solutions. The
question we are asking is: how do the multisolitonic solutions of integrable
systems differ from those of non-integrable systems after the scattering has
taken place, i.e. at t→∞?

1.2.2 Multisoliton solutions

In the sine-Gordon model the simplest way to generate multisolitonic solutions
is via the Backlund transformation

∂τφ2 = ∂τφ1 +
2mη

β
sin

β

2
(φ1 + φ2)

∂σφ2 = −∂σφ1 +
2m

βη
sin

β

2
(φ1 − φ2) (1.15)
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Figure 1: The two possibilities to perform the Backlund transformations of a
solution ω with spectral parameters β1 and β2.

which maps a solution φ1 to another solution φ2. This can be sean by acting
with ∂σ on the first equation and then using the second one to evaluate it

∂σ∂τ (φ2 − φ1) = mη cos
β

2
(φ1 + φ2) ∂σ(φ1 + φ2) =

2m2

β
cos

β

2
(φ1 + φ2)×

× sin
β

2
(φ1 − φ2) =

m2

β
(sinβφ1 − sinβφ2) .

Multisoliton solutions are generated by acting with the Backlung transformation
interatively on the trivial solution φ = 0. Thus, the 1-soliton solution can be
recovered by setting φ1 = 0 in eq. (1.15) and integrating

η−1∂τφ2 = −η∂σφ2 =
2m

β
sin

βφ2

2
.

The most general solution is

φ2 =
4

β
tan−1 expm

(
η−1τ − ησ − x0

)
,

where x0 is a constant of integration. If we set η = eθ and recall the definition
of light cone coordinates (1.5) we recover the soliton solution (1.14)

φs =
4

β
tan−1 exp (x cosh θ − t sinh θ − x0) . (1.16)

We can generate 2-soliton solutions by inserting instead of φ1 in eq. (1.15) the
one soliton solution φs and then integrating the differential equation for φ2.
However, this last step is not completely trivial. In fact, there is a more elegant,
purely algebraic way to generate multi-soliton solutions due to Bianchi.

Consider a classical solution φ of the sine-Gordon equation. We can generate
two new solutions φ1 and φ2 by integrating the Backlund transformation of
φ with spectral parameter η1 and, respectively, η2. If we now integrate the
Backlund transformation of φ1 with spectral parameter η2 then we get a solution
φ12. Similarly, we denote by φ21 the Backlund transformation of φ2 with spectral
parameter η1. We have represented these procedures by the diagram in fig. 1. In
general, the solutions φ12 and φ21 will depend not only on η1 and η2, but also on
some integration constants. Therefore, in general they φ12 6= φ21. However, we
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Figure 2: A commutative Bianchi diagram.

can ask the following question: is it possible to chose the integration constants
in such a way that

φ12 = φ21 = Φ?

The answer is yes! This is the Bianchi’s permutability theorem, illustrated
in fig. 2. To prove the theorem notice that if the solution Φ exists, then the
commutativity of the Backlund transformations requires that

∂τφ12 = ∂τφ1 +
2mη2

β
sin

β

2
(Φ + φ1) = ∂τφ+

2mη1

β
sin

β

2
(φ+ φ1)+

+
2mη2

β
sin

β

2
(Φ + φ1) ,

∂τφ21 = ∂τφ2 +
2mη1

β
sin

β

2
(Φ + φ2) = ∂τφ+

2mη2

β
sin

β

2
(φ+ φ2)+

+
2mη1

β
sin

β

2
(Φ + φ2) . (1.17)

Subtracting the two equations we get

η1

[
sin

β

2
(φ+ φ1)− sin

β

2
(Φ + φ2)

]
= η2

[
sin

β

2
(φ+ φ2)− sin

β

2
(Φ + φ1)

]
.

One of the solutions is given by

Φ = φ+
4

β
tan−1

[
η1 + η2

η1 − η2
tan

β

4
(φ1 − φ2)

]
. (1.18)

To finish the proof of the theorem one simply checks that the above expression
satisfies eqs. (1.17) together with

∂σφ12 = −∂σφ1 +
2m

η2β
sin

β

2
(φ1 − Φ) = ∂σφ−

2m

η1β
sin

β

2
(φ− φ1)+

+
2mη2

β
sin

β

2
(φ1 − Φ) ,

∂σφ21 = −∂σφ2 +
2m

η1β
sin

β

2
(φ2 − Φ) = ∂σφ−

2m

η2β
sin

β

2
(φ− φ2)+

+
2mη1

β
sin

β

2
(φ2 − Φ) .
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Setting in eq. (1.18) φ = 0, η1 = eθ, η2 = e−θ and

φi =
4

β
tan−1 expm

(
η−1
i τ − ηiσ

)
,

we get the soliton anti-soliton solution in the center of mass frame

φss̄(x, t) = − 4

β
tan−1 sinhmγvt

v coshmγx
. (1.19)

On the other hand, for φ = 0, η1 = eθ, η2 = −e−θ we get the soliton-soliton
solution in the center of mass frame

φss(x, t) =
4

β
tan−1 v sinhmγx

coshmγvt
.

Let us consider the ss̄ solution in more detail. At asymptotic times we have a
superposition of a soliton and an anti-soliton

φss̄(x, t) ≡

{
4
β tan−1 e−mγ[x+v(t−∆t)] + 4

β tan−1 emγ[x−v(t−∆t)] , t→ −∞
4
β tan−1 e−mγ[x+v(t+∆t)] + 4

β tan−1 emγ[x−v(t+∆t)] , t→ +∞
,

where

∆t = − log v

mγv

is essentially (half) the phase shift of the soliton and anti-soliton waves after
the scattering. The striking property of this solutions is that at both t → ±∞
it can be approximated by the same superposition s + s̄. This means that the
scattering of solitons with antisolitons does not change their asymptotic shapes.
In particular, notice that s+ s̄ 7→ s+ s̄ is the only scattering process of a soliton
with an anti-soliton!

The energy and momentum of the ss̄ solution in the center of mass frame is

E[φss̄] = 2M cosh θ , P [φss̄] = 0 .

If we treat v in eq. (1.19) as a formal variable, then we can generate a new
solution localized in the neighborhood of x = 0 by setting v = i tanϑb ∈ R

φb(x, t) = − 4

β
tan−1 sinh(tm sinϑb)

tanϑb cosh(xm cosϑb)
.

The above solution is called a breather. Its energy

E[φb] = 2M cosϑb ≤ 2M

suggests that it is an ss̄ bound state.
The general n soliton solution obtained by iterating n times the Backlund

transformation with parameters η1 = eθ1 , . . . , ηn = eθn has additive energy and
momentum

E =
∑
i

M cosh θi , P =
∑
i

M sinh θi .

The higher spin charges are also additive. Let us consider the degree 3 charges

Iσ3 =

∫
dx
[

1
4ϕ

4
σ − ϕ2

σσ −m2ϕ2
σ cosϕ

]
,
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Iτ3 =

∫
dx
[

1
4ϕ

4
τ − ϕ2

ττ −m2ϕ2
σ cosϕ

]
arising from the conserved current (1.10). Evaluating them on the solitonic
solution (1.16) we get

Iσ3 [φs] =
16m3e3θ

3
, Iτ3 [φs] =

16m3e−3θ

3
.

In general, higher spin charges of multisolitonic solutions have the form

I±s ∝
∑
i

e±sθi . (1.20)

Thus, the conservation of all these charges during the scattering process pro-
hibits soliton creation or annihilation. Moreover, the set of incoming rapidities
must be a permutation of the set of outgoing rapidities.

Let us summarize the results we got for the classical sine-Gordon model.
The sine-Gordon field φ does not correspond to a massive particle of the the-
ory. The actual particles are the soliton and anti-soliton of mass M = 8m/β2

together with the continuous spectrum of soliton-antisoliton bound states of
mass 2M cos θb. The presence of an infinite number of conservation laws (1.20)
prohibits particle creation and requires that the set of outgoing rapidities is a
permutation of the set of incoming rapidities. The only effect of the interaction
is to change the internal phases of the waves carrying the solitonic particles. We
shall see that many of these properties persist in the quantum theory.

1.3 Zero curvature representation

Our definition of a classical integrable system requires not only the existence
of an infinite number of i.o.m., but also that they are in involution w.r.t. each
other. The modern method to prove involutivity starts with the rewriting of
the e.o.m. as the consistency condition

[∂t − U, ∂x − V ] = ∂xU − ∂tV + [U, V ] = 0 (1.21)

of an overdetermined system of linear equations

∂tΨ(x, t|λ) = U(x, t|λ)Ψ(x, t|λ) , ∂xΨ(x, t|λ) = V (x, t|λ)Ψ(x, t|λ) . (1.22)

The rewriting of e.o.m. in the form (1.21) is called the zero curvature represen-
tation, while the linear system (1.22) is called the auxiliary problem.

Suppose that x lives on a circle of radius 1. The monodromy of Ψ(x, t)
around the spacial circle

Ψ(2π, t|λ) = T (λ)Ψ(0, t|λ) (1.23)

can be computed as a path ordered integral

T (λ) = P exp

∫ 2π

0

dxV (x, t|λ) . (1.24)

This is an important quantity that can be used to generate i.o.m. Indeed, the
evolution of T (t) is described by the following equation

Ṫ (λ) =

∫ 2π

0

dx

(
P exp

∫ 2π

x

dy V

)
V̇

(
P exp

∫ x

0

dy V

)

12



=

∫ 2π

0

dx

(
P exp

∫ 2π

x

dy V

)
(∂xU + [U, V ])

(
P exp

∫ x

0

dy V

)
=

∫ 2π

0

dx ∂x

[(
P exp

∫ 2π

x

dy V

)
U

(
P exp

∫ x

0

dy V

)]
= [U(2π, t|λ), T (λ)] .

Therefore, the trace of the monodromy matrix

t(λ) = trT (λ) ,

called transfer matrix, is a conserved quantity. Upon expanding in λ it generates
infinitely many i.o.m. We shall see in a moment around which point to perform
the expansion in order to get local i.o.m.

Example. The KdV equation can be represented as the zero curvature condition
of the connexion

U =

(
−ux 4λ+ 2u

4λ2 − 2λu− uxx − 2u2 ux

)
, V =

(
0 1

λ− u 0

)
. (1.25)

Explicitly, eq. (1.21) reads

∂xU − ∂tV + [U, V ] =

(
0 0

ut − 6uux − uxxx 0

)
.

Example. The zero curvature representation for sine-Gordon is

U =

(
iϕτ
4

im
2λ e
− iϕ2

im
2λ e

iϕ
2 − iϕτ4

)
, V =

(
− iϕσ4

imλ
2 e

iϕ
2

imλ
2 e−

iϕ
2

iϕσ
4

)
, (1.26)

where we recall that ϕ = βφ.

Now, the crucial ingredient to get i.o.m. in involution is to assume the ex-
istence of a “good” Poisson bracket. Suppose that the Poisson bracket of the
dynamical fields of the model are such that the Poisson bracket of the V matrix
elements can be written in the form

{V1(x|λ), V2(y|λ)} = δ(x− y)[r12(λ, µ), V1(x|λ) + V2(x|λ)] , (1.27)

where V1 = V ⊗ I, V2 = I ⊗ V . This type of Poisson brackets are called ultra-
local.1 The matrix r12 which acts on the tensor product Ψ ⊗ Ψ is called the
classical r-matrix. We assume it to be independent of x, y. Eq. (1.27) implies
the following Poisson brackets for the monodromy matrix

{T1(λ), T2(µ)} = [r12(λ, µ), T1(λ)T2(µ)] , (1.28)

which is called the Sklyanin bracket. The proof is computational. We first write

{Tij(λ), Tkl(µ)} =

∫ 2π

0

dx

∫ 2π

0

dy
δTij(λ)

δVab(x|λ)

δTkl(µ)

δVcd(y|µ)
{Vab(x|λ), Vcd(y|µ)} .

(1.29)

1Ultra-local classical Hamiltonian system are important because there is a standard way
to quantize them.
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The variation of the monodromy is

δT (λ) =

∫ 2π

0

dx
(
Pe

∫ 2π
x

dzV (z|λ)
)
δV (x|λ)

(
Pe

∫ x
0
dzV (z|λ)

)
.

Introducing the transport matrix

T (x, y|λ) = P exp

∫ y

x

dz V (z|λ)

we can write
δTij(λ)

δVab(x|λ)
= Tia(2π, x|λ)Tbj(x, 0|λ) .

Hence, we can rewrite eq. (1.29) in tensor like notations as

{T1(λ), T2(µ)} =

∫ 2π

0

dxdyT1(2π, x|λ)T2(2π, y|µ){V1(x|λ), V2(y|µ)}T1(x, 0|λ)T2(y, 0|µ) .

Using the Poisson brackets (1.27) and eliminating V via the equations

∂xT (x, 0|λ) = V (x|λ)T (x, 0|λ) , ∂xT (2π, x|λ) = −T (2π, x|λ)V (x|λ)

we arrive at the desired result

{T1(λ), T2(µ)} =

∫ 2π

0

dx∂x [T1(2π, x)T2(2π, x)r12(λ, µ)T1(x, 0)T2(x, 0)]

= [r12(λ, µ), T1(λ)T2(µ)] .

This implies the involution of transfer matrices

{t(λ), t(µ)} = 0 .

Example. Due to the presence of derivatives of the δ-function in the KdV
Poisson bracket (1.2), the matrix elements of V (x|λ) cannot satisfy (1.27). This
problem does not occur in the sine-Gordon model. In this case, the classical r-
matrix exists and is given by

r(λ, µ) = − 1

8(λ2 − µ2)


0 0 0 0
0 λ2 + µ2 −2λµ 0
0 −2λµ λ2 + µ2 0
0 0 0 0

 .

Notice that r(λ, µ) depends only on the ratio λ/µ.

Notice that the existence of a classical r-matrix is not guaranteed a pri-
ori, because the Jacobi identity for the Sklyanin bracket requires a non-trivial
consistency condition to hold

[r13(λ, ν), r23(µ, ν)] + [r12(λ, µ), r13(λ, ν) + r23(µ, ν)] = 0 .

This equation is called the classical Yang-Baxter equation.
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1.4 Generating integrals of motion

In this section we would like to illustrate on the example of the sine-Gordon
model how to use the zero curvature representation in order to generate infinitely
many local i.o.m. This will prove the integrability of the model according to
the definition given in sec. 1.1. The involutivity of i.o.m. is guaranteed by the
existence of a classical r-matrix. We shall see that the sine-Gordon model has
local as well as non-local i.o.m.

In order to simplify the calculation of the monodromy (1.24), let us perform
a gauge transformation on V

g(∂σ − V )g−1 = ∂σ − V g ⇒ V g = gσg
−1 + gV g−1 .

The gauge transformed monodromy matrix can be computed as the unique
solution of the equation

T gσ (σ, 0|λ) = V g(σ|λ)T g(σ, 0|λ)

with the initial condition T g(0, 0|λ) = I. An explicit calculation shows that

T g(σ, 0|λ) = g(σ)T (σ, 0|λ)g−1(0)

is a solution. The periodicity of g(σ) then implies that the transfer matrix is
gauge invariant

tg(λ) = t(λ) .

The gauge transformation

g =

(
e
iϕ
4 0

0 e−
iϕ
4

)

brings the matrix V for the sine-Gordon model (1.26) to a simpler form

V g =
ζ

2

(
0 eiϕ

e−iϕ 0

)
, ζ = imλ .

From the formula

T g(λ) =

∞∑
n=0

∫ 2π

0

dσ1

∫ σ1

0

dσ2 . . .

∫ σn−1

0

dσnV
g(σ1|λ) · · ·V g(σn−1|λ)V g(σn|λ)

we get the desired Taylor expansion of the transfer matrix around λ = 0

t(λ) =

∞∑
n=0

(
ζ

2

)2n

J2n ,

where J2n are non-local i.o.m. explicitly given by

J2n =

∫ 2π

0

dσ1 . . .

∫ σ2n−1

0

dσ2n2 cos

[
2n∑
k=1

ϕ(σk)(−1)k

]
.

In general, an expansion of the transfer matrix around a regular point of V g(σ|λ)
will produce non-local i.o.m.
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We shall drop the index g in the following. To generate local i.o.m. we should
carry out a Laurent expansion around a pole of V (σ|λ), in this case λ =∞. We
do this by first solving the auxiliary linear problem

Ψσ(σ|λ) = V (σ|λ)Ψ(σ|λ) . (1.30)

Once the solution Ψ is known, we can compute T (λ) with the help of eq. (1.23).
In terms of the components Ψ = (ψ, ψ̃)t, eq. (1.30) reads

ψσ =
ζ

2
eiϕψ̃ , ψ̃σ =

ζ

2
e−iϕψ .

or, equivalently,

ψσσ − iϕσψσ −
ζ2

4
ψ = 0 , ψ̃σσ + iϕσψ̃σ −

ζ2

4
ψ̃ = 0 . (1.31)

Let us rewrite these equations in terms of the logarithmic derivatives p = ψσ/ψ
and p̃ = ψ̃σ/ψ̃ as

pσ + p2 − iϕσp−
ζ2

4
= 0 , p̃σ + p̃2 + iϕσp̃−

ζ2

4
= 0 . (1.32)

Notice that p̃ can be obtained from p by changing ϕσ 7→ −ϕσ. From eq. (1.32)
it follows that p has a Laurent expansion around ζ =∞ of the following form

p = ±ζ
2

+

∞∑
n=0

pn
ζn

.

The coefficient functions pn can be determined recursively by plugging this
expansion in eq. (1.32). The two sign choices correspond to the two linearly
independent solution of (1.31). Let us choose the + sign in the following. Then
p is uniquely determined by the following recurrence relations

p0 =
iϕσ
2

(1.33)

p1 = p2
0 − p′0

pn+1 = −p′n −
n−1∑
k=1

pkpn−k ,

where n ≥ 1 and primes denote σ-derivatives. Notice that all the pn with n ≥ 1
depend solely on p1 and its derivatives. The first few terms are

p2 = −p′1 (1.34)

p3 = −p′2 − p2
1 = p′′1 − p2

1

p4 = −p′3 − 2p1p2 = (−p′′1 + 2p2
1)′

p5 = −p′4 − p2
2 − 2p1p3 = (p′′1 − 3p2

1)′′ + p′21 − 2p3
1 etc.

It is possible to prove that p2n are total derivatives.
Returning to the original variables ψ, ψ̃, we can write

ψ(σ|λ) = ψ1(0|λ) exp

∫ σ

0

dσp(σ|λ) , ψ̃(σ|λ) = ψ̃1(0|λ) exp

∫ σ

0

dσp̃(σ|λ) ,
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which immediately gives the monodromy

T (λ) =

(
e
∫ 2π
0

dσp(σ|λ) 0

0 e
∫ 2π
0

dσp̃(σ|λ)

)
. (1.35)

Now, because the eigenvalues of the monodromy are constants of motion, we
see that the arguments of the exponentials in eq. (1.35)∫ 2π

0

dσp(σ|λ) = ζπ +

∞∑
n=0

I2n+1[ϕσ]

ζ2n+1
,

generate local intergrals of motion

I2n+1[ϕσ] =

∫ 2π

0

p2n+1(σ) . (1.36)

The integrals of motion generated from p̃ are not algebraically independent

because of the relation pp̃ = ζ2

4 . Evaluating the first few local integrals (1.36)
with the help of eqs. (1.34) we recover the conserved charges (1.10) (up to a
proportionality coefficient).

Moreover, notice that the first two terms in eq. (1.33) establish the connec-
tion of sine-Gordon with mKdV via the identification p0 = iv and KdV via the
identification p1 = −(v2 + iv) = −u defined in eq. (1.11). Thus, we explicitly
see that the conserved charges (1.36) agree with the mKdV charges (1.8) if we
express the former in terms of v and with (1.9) if we express them in terms of u.
In fact, this relation indirectly proves the involutivity of the mKdV and KdV
i.o.m., which can not be proved directly with the techniques of sec. 1.3 due to
non ultra-locality issues.
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