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Abstract

The heterotic string has been proposed for the first time in [1]. It is a mixture
(”hybris”) of the right-moving sector of the superstring and the left-moving
sector of the bosonic string. The two sectors need different space-time di-
mensions to cancel the anomalies. The matching of dimensions is done by
compactifying the exceeding ones on a compact manifold. In this case, a 16
dimensional torus is used. By considering modular invariance of the genus
one string partition function, the possible shapes of the torus are restricted
up to two. This translates in two possible gauge groups for the heterotic
string theory: E8 × E8 and SO(32).
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1 Introduction

This report is the base (and the deeper analysis of its contents) of the pre-
sentation carrying the same title, which was given in the context of the pros-
eminar Conformal Field Theory and Strings during the spring semester 2013
at the ETHZ. The proseminar was coordinated by Prof. Dr. M. Gaberdiel.

The structure of this report is very similar to that of the presentation:
in the first part, important tools for the construction of the heterotic string
are introduced, investigating the fundamental topic of modular invariance of
the one-loop partition function; the second part deals then with the effective
construction.

2 Modular Invariance

In the construction of the heterotic string, one fact will be of crucial impor-
tance: modular invariance of its partition function. Because of this property,
one can restrict the possibilities for its gauge group up to two. The first part
of this report is aimed to give an insight into this fundamental topic. Firstly,
the concept of string partition function will be introduced, and the property
of modular invariance will be explained. Secondly, the relation between the
”genus-one” string partition function and the CFT partition function on a
torus will be investigated. In this way, modular invariance of a string parti-
tion function can be transferred to a CFT partition function. This will give
a convenient frame for the construction of the heterotic string.

The following is mainly based on [2], with relevant contributions from [4].
The reader who is not interested in the technical issues needed to understand
modular invariance, can read the first and the last section of this part only.
For simplicity, the discussion is restricted to bosonic coordinates.

2.1 The string partition function

The Polyakov path integral Interactions of closed strings can be heuris-
tically represented by their joining and splitting. On the world-sheet level,
the relevant surface is a two dimensional holed surface with boundary, where
the latter represents in- and outgoing states.

The key observation is that by conformal invariance of the Polyakov action
on the world-sheet, one can conformally map the boundaries to punctures.
After the mapping, the quantum numbers of asymptotic states are imple-
mented by operators inserted at some points. For example the world-sheet
of a free propagating string, a cylinder, can be conformally mapped to the
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complex plane and by stereographic projection (which is conformal either) to
the sphere. On the sphere, the asymptotic states (boundaries) are mapped
to the two poles. This leads to the notion of vertex operator.

In the computation of string amplitudes one should consider correlations
of vertex operators on two dimensional compact oriented surfaces without
boundaries. Topologically, they are completely classified as spheres with g
handles, where the number of holes is called the genus of the surface.

One should now not be completely surprised that n-point (n asymptotic
states), g-loop amplitudes of closed oriented strings are usually computed as
in the following formal path integral, called the Polyakov path integral :

An =
∞∑
g=0

A(g)
n

=
∞∑
g=0

CΣg

∫
DhDXµ

∫
d2z1...d

2znV1(z1, z̄1)...Vn(zn, z̄n)e−S[X,h].

(1)

Here the sum runs over all topologies of the world-sheet, CΣg are constants
depending only on the world-sheet topology, h denote the metrics, X the
embeddings from the world-sheet into the target space, and the V ’s are vertex
operators. The A

(g)
0 ’s are called the genus-g partition functions. More details

can be found in [3], [4].

Redundancy of the Polyakov path integral and modular invariance
As should be known (else, see for example [4]), the action S is invariant
under conformal transformations and diffeomorphisms of the world-sheet.
For that reason, the Polyakov path-integral as written above is redundant
and highly divergent. In fact, one is integrating on infinitely many equivalent
configurations.

To compensate this, one has to divide the integration measure by the
volume of the symmetry groups generated by diffeomorphisms and Weyl
rescalings: ∫

DhDX
Vol(Diff)Vol(Weyl)

. (2)

In other words, in the absence of anomalies the integration should be
performed on a moduli space of metrics, in which metrics that can be trans-
formed into each other via diffeomorphisms and Weyl rescalings are identified.
Denoting the space of metrics on a compact two dimensional surface with
genus g by Gg, one defines the moduli space as the quotient:
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Mg =
Gg

(Diff ×Weyl)g
. (3)

Modular invariance is the invariance under the action of the so called
modular group. In general Diffg is not connected. The modular group is
defined as the quotient of Diffg with its component connected to the identity,
Diff0,

Modular Group =
Diffg
Diff0

. (4)

By construction, once that the integration is restricted to the moduli
space the string partition function must be modular invariant, since config-
urations related by diffeomorphisms are equivalent.

The next problem is to perform the restriction, i.e. to find an appropriate
integration measure on the moduli space. To that end, one has to disentangle
the integral over metrics into an integral over diffeomorphisms, an integral
over Weyl rescalings and an integral over moduli. This procedure is sketched
below.

2.2 The integration measure on the moduli space

The operator P and the dimension of the moduli space Under
reparametrizations and Weyl rescalings the metric changes as (see for ex-
ample [2])

δhαβ = −(∇αξβ +∇βξα)︸ ︷︷ ︸
Diffeo.

+ 2Λhαβ︸ ︷︷ ︸
Weyl

≡ −(Pξ)αβ + 2Λ̃hαβ,

where ∇ is the usual Christoffel connection, Λ is a function on the world-
sheet coordinates to the real numbers and ξ is a vector. P is defined as the
operator that maps vectors into symmetric traceless tensors according to

(Pξ)αβ = ∇αξβ +∇βξα − (∇γξ
γ)hαβ,

whereas 2Λ̃ = 2Λ−∇γξ
γ.

Once that a metric hαβ is fixed, not all other metrics can be generated
via Weyl rescaling and diffeomorphimsms. These are the metrics which are
reached by a change in the modular parameters. Explicitly, there are such
metrics if the operator P †, which maps traceless symmetric tensors to vectors
according to
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(P †t)α = −2∇βtαβ

has zero modes. In fact, (P †t0)α = 0 implies (Pξ, t0) = (ξ, P †t0) = 0 for
any vector ξ. The dimension of the moduli space is therefore the number of
zero modes of P †. The scalar product which was used is the canonical scalar
product in the tangent space, which will be defined below.

The operator P and the conformal Killing group In the previous
paragraph, changes in the moduli have been singled out from the possible
changes of the metrics. The next step would be to find an orthogonal decom-
position of these changes in order to obtain a suitable integration measure
on the moduli space. However, there is a complication which already at this
point can be discussed well.

If the diffeomorphisms and Weyl groups overlap, then some diffeomor-
phisms can be undone by a Weyl rescaling. In other words, there can be a
subgroup of the diffeomorphisms and Weyl groups which leaves the metric
invariant. This subgroup represent a symmetry that cannot be fixed by re-
stricting the integration on the moduli space. Therefore, one has to take this
group into account to avoid a further overcounting. It is called conformal
Killing group (CKG).

Gladly, it is not hard to find the generators of the CKG, or conformal
Killing vectors (CKVs). Consider the infinitesimal variation of the metric
above. CKVs must leave the metric unchanged: this is the case for vectors
ξ satisfying

(Pξ)αβ = 0, (5)

thus CKVs correspond to zero modes of P .

Complex coordinates and Riemannian surfaces It turns out to be
very convenient stopping the previous investigations for a while, in order to
introduce some useful language. In particular, this paragraph and the next
few are intended to present concepts related to complex manifolds which will
have great importance later. The discussion is based on both [2] and [4],
which are recommended for futher details.

A compact manifold always admits a Riemannian metric. On a world-
sheet of Minkowski signature, one can locally introduce coordinates such that
the metric is of the form

ds2 = 2e2ψ((dσ1)2 − (dσ0)2). (6)
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This is the so called ”conformal gauge”. After a Wick rotation σ0 = −iσ2

and introducing complex coordinates z = σ1 + iσ2 the metric becomes (re-
member: locally!)

ds2 = 2e2ψdzdz̄ ≡ 2hzz̄dzdz̄. (7)

Covering the manifold with patches in which the metric has the above
form, one obtains a complex manifold, which in two dimensions has the name
Riemannian surface.

In short, a Riemannian surface has by definition a set of overlapping
patches with complex coordinates {zm, z̄m} in each of them (m being the
patch index), and holomorphic transition functions zm = fmn(zn). In the
present case, holomorphicity of the transition functions is guaranteed by (see
(7))

ds2 ∝ dzmdz̄m ∀m. (8)

It follows from above that up to a Weyl rescaling (and a diffeomorphism,
but this is already contained in its definition), for any two dimensional Rie-
mannian manifold there is a Riemannian surface. Actually, something more
is true: the two sets are in one-to-one correspondence. One can prove the
remaining direction by taking the metric dzdz̄ in every patch and smooth
them in the overlaps by a partition of unity.

There are two ways of thinking about different Riemannian surfaces. Ei-
ther one chooses for each Riemannian surface the flat metric dzdz̄ in each
patch and different Riemannian surfaces have different transition functions;
or one chooses a fix coordinate system and different Riemannian surfaces
have metrics of the form

ds2 ∝ |dz + µdz̄|2 (9)

where µ = µzz̄(z, z̄) = hzz̄δhz̄z̄. µ
i,z
z̄ ≡ hzz̄∂ihz̄z̄ are called Beltrami differ-

entials.

Covariant derivatives and tensor bundles Having a Riemannian sur-
face one can define covariant derivatives. In the following, it will be always
used the Levi-Civita connection.

The non-vanishing Christoffel symbols read (recall that hzz̄ = e2ψ is the
only non-vanishing metric component)

Γzzz = hzw
1

2
(∂zhzw + ∂zhzw − ∂whzz) = ∂zψ,

Γz̄z̄z̄ = ∂z̄ψ.
(10)
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Covariant derivatives acts on tensors. Only holomorphic tensors will be
treated here. These transform under analytic coordinate transformation z →
f(z) as T (z, z̄)→ (∂zf(z))nT (f(z), f̄(z̄)). The space of tensors of rank n will
be denoted by T (n). It has a scalar product and norm defined as

(V (n),W (n)) =

∫
dz
√
h(hzz̄)nV (n)∗W (n)

||V (n)||2 = (V (n), V (n)).

(11)

The covariant derivatives act as follows:

∇(n)
z : T (n) → T (n+1)

∇(n)
z T (n) = (∂ − 2n∂φ)T (n);

(12)

and

∇z
(n) : T (n) → T (n−1)

∇z
(n)T

(n) = hzz̄∇z̄T
(n) = hzz̄∂̄T (n).

(13)

Moreover, one has the relation (∇(n)
z )† = −∇z

(n+1). Setting n = 1, one

should note (PV )zz = 2∇(1)
z Vz and (PV )zz = 2∇z

(2)V
z where P is the opera-

tor defined above.
Finally, for later purposes it should be mentioned that the Riemann cur-

vature tensor has only one independent component

Rzz̄zz̄ = 2e2ψ∂z∂z̄ψ, (14)

and that therefore the Ricci scalar curvature is

R = −4e−2ψ∂z∂z̄ψ. (15)

Quadratic differentials, Beltrami differentials and CKVs This para-
graph presents all the objects relevant for the decomposition of the tangent
space of metrics in the complex language.

Zero modes of the adjoint of ∇(+1)
z , that is −∇z

(+2), are called quadratic
differentials. Satisfying

hzz̄∇z
(+2)φzz = ∂z̄φ

i
zz = 0 (16)
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they are global analytic tensors of rank 2. Moreover, they have a natural
pairing with Beltrami differentials

(µi, φj) =

∫
d2zµizz̄ φ

j
zz. (17)

The conformal Killing vectors, which were defined to be the zero modes
of P , can now be seen as T (1) tensors spanning the kernel of ∇(+1)

z

∇(+1)
z Vz = hzz̄∂zV

z̄. (18)

They are globally defined vector fields.

The decomposition All the concepts which are needed to decompose the
space of metrics have been given now, and it is time to proceed. Start with a
metric ∝ dzdz̄. To the end of getting an orthogonal decomposition, one needs
to project the variation of the moduli parameters (Beltrami differentials) on
the space spanned by quadratic differentials, which is the moduli space. De-
noting the projector by Π =

∑
ij |φi)(φi, φj)(φj| and defining Mij = (φi, φj),

one finds:

δhzz̄ = Λhzz̄,

δhzz = ∇(+1)
z ξz +

∑
ijk

φjzzM
−1
jk (φk, µi)δτ i. (19)

Introducing the relative Jacobian, the integration over metrics becomes
therefore:

∫
Gg

∏
i

dτ 2
i

∫
DXD′ξDΛ

Vol(Diff)Vol(Weyl)

det(φ, µ)det(µ, φ)

det(φ, φ)
×

× det
′∇(+1)

z det
′∇z

(−1).

(20)

Here the prime means that the integration should not be performed on
conformal Killing vectors, whose contribution is already taken into account
in Λ.

Now, the inverse volume of the diffeomorphism not connected to the
identity can be cancelled by restricting the integration on the moduli space.
Moreover, one can decompose the volume of diffeomorphisms connected to
the identity vol(Diff)0 as

vol(Diff)0 = vol(Diff∗0)vol(CKG). (21)
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In the absence of conformal anomaly, Dξ′ andDΛ can be cancelled against
vol(Diff∗0)vol(Weyl). The final result is

∫
Mg

∏
i

dτ 2
i

∫
DX

Vol(CKG)

det(φ, µ)det(µ, φ)

det(φ, φ)
det

′∇(+1)
z det

′∇z
(−1). (22)

2.3 The torus

From now on, the relevant surface will be the torus, that is g = 1, and the
relevant partition function A

(1)
0 . The moduli space and the modular group

of the torus have already been exposed in a previous talk of this proseminar
[5]. Recall that there is only one complex modular parameter τ , and that the
moduli space is:

M1 = H/{action of PSL2(Z)} (23)

where H is the upper complex half plane without the real line, and the action
of PSL2(Z) is generated by

T : τ → τ + 1

S : τ → −1

τ
.

(24)

The moduli space can be seen as a ”fundamental region” on the upper
complex half plane

F = {z ∈ H||Re(z)|2 ≤ 1

2
, |z| ≥ 1}. (25)

The fundamental region F and the action of the two generators are de-
picted in Figure 1.

The task is now to compute the beltrami and quadratic differentials, and
to find the conformal K Killing vectors.

Beltrami-, quadratic differentials and conformal Killing vectors of
the torus The torus can be parametrized with two real variables 0 ≤
ξ1, ξ2 ≤ 1 such that the complex coordinates become z = ξ1 + τξ2, where
τ is the moduli parameter. Setting the metric ds2 = |dz2|, and changing
τ → τ + δτ keeping the parametrization fixed (the previous ”second way” of
thinking about a Riemannian surface), one finds ds2 →∼ |dz + δτ i

2Im(τ)
dz̄|2.

Therefore,
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Figure 1: The fundamental region F of the torus and the action of the mod-
ular group

µzz̄(z, z̄) =
i

2Im(τ)
.

The conformal Killing vectors can be found by means of the Ricci identity:(
∇z

(n+1)∇(n)
z −∇(n−1)

z ∇z
(n)

)
=

1

2
nR, (26)

where R is the Ricci curvature scalar, which is zero in the case of the torus
since it always admits a globally flat metric dzdz̄, which will be used in the
following. In fact, let V (1) be conformal Killing vectors, then

0 = (∇(1)
z V (1),∇(1)

z V (1))

= −(V (1),∇z
(n+1)∇(1)

z V (1))

=
1

2

(
||∇(1)

z V (1)||+ ||∇z
(1)V

(1)|| − 1

2
(V (1), RV (1))

)
=

1

2

(
||∇(1)

z V (1)||+ ||∇z
(1)V

(1)||
)
.

(27)

In the first line it has been used that CKVs are zero modes of the covariant
derivative, in the third line the Ricci equation has been used. The last line is
a consequence of the vanishing of the ricci curvature in the case of the torus.
This implies
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∂zV
(1) = ∂z̄V

(1) = 0 (28)

or in words, that CKVs are constants. In order to compute the volume
of the CKG, one notes that CKVs are spanned by the constants fields ∂ξ1
and ∂ξ2 , which generates shifts ξα → ξα + aα with 0 ≤ aα ≤ 1. The metric

on the space of the CKVs is gij =
∫ √

hhαβV
α
i V

β
j , hence

Vol(CKG) =

∫ √
det(g)da1da2 = Im(τ). (29)

Integration on the moduli Finally, one obtains for the genus-one parti-
tion function

A
(1)
0 ∝

∫
F
dτ

∫
DX

Im(τ)

1

Im(τ)2
det

′∇(+1)
z det

′∇z
(−1)e

−S[X,τ ]. (30)

This can be evaluated further (see [2]) to get∫
F
dτ

∫
DX

Im(τ)

1

Im(τ)2
Im(τ)13det

′
(�)det

′∇(+1)
z det

′∇z
(−1). (31)

where the � is the Laplace operator.
Equivalently, one could derive the right measure in the Faddeev-Popov

formalism, where the symmetries are fixed by means of ghost insertions. The
result must be clearly the same. Quadratic differentials and conformal Killing
vectors represent ghost zero-modes. One can rewrite Eq. 31 as

A
(1)
0 ∝

∫
F
dτ

1

Im(τ)

1

Im(τ)2
Im(τ)13

∫
D′XD′cD′be−S[X,τ ]−S[b,c,τ ] (32)

where c, b are ghost fields and the prime means that one should not integrate
on zero modes.

Modular invariance of the integration measure An expression for the
genus-one partition function, Eq. 32, has been finally obtained. The result
is an integral on the moduli space, with a measure carrying some factors
in the order of Im(τ). The evaluation of the integrand (a path integral
as in the form above) will be the task of the next subsection. Before, one
should note that some important information can already be extracted at this
point. In fact remember from 2.1 that the one-loop partition function must
be modular invariant. Thus, investigating the behavor of the measure under
modular transformations, one can already fix in which terms the integrand
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must transform. But the former is very easy, and will be done in a moment.
In the second part of the report, the resulting conditions for the integrand
will translate in a restriction on the possible gauge groups of the heterotic
string.

Let therefore consider an arbitrary modular transformation, that has the
form (see the generators in Eq. 24)

τ → aτ + b

cτ + d
, (33)

where a b c d are integers (nothing to do with ghost fields!) satisfying
ad− cb = 1. Observe:

d2τ → |cτ + d|−4d2τ

Im(τ)→ |cτ + d|−2Im(τ).
(34)

This means that the modular invariant integration measure is

d2τ

Im(τ)2
. (35)

Further factors of Im(τ) have to be compensated by the integrand.

2.4 String partition function, CFT partition function
and modular invariance

The remaining integrand as a CFT partition function As already
mentioned, it remains to evaluate the integrand, which is a path-integral on
the fields. There is one important fact that one should keep in mind in this
context: for conformal field theories, the partition function corresponds to
the generating functional in quantum field theory which is expected, since the
thermodynamic expression can be deduced from an Euclidean quantum field
theory with time compactified on a circle of radius R = 1

T
(T: temperature).

Given this observation, one should note that the path-integral on the
fields is something that has already been computed in a previous session
of the proseminar, namely [5]. It corresponds in fact to the CFT partition
function of the torus

Z(τ1, τ2) = TrH(e−2πτ2He2πτ1P ), (36)

where H, P generate translations in τ1, τ2. In a nutshell, the motivation
for this formula is that setting τ1 = 0 one sees that the partition function
counts the number of states propagating around τ2 weighted by the factor
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e−2πτ2H . The factor e2πτ1P comes out because on the torus, time translations
of length τ2 end up on a point displaced in space by τ1 (the torus is ”twisted”).

The fermionic and bosonic partition functions have already been treated
in [5], and cited in talk [7]. Their derivation goes clearly away from the
purposes of this report. They will be recalled and used in the next part,
where they are needed for constructing the heterotic string partition function.
There, the partition function for a compactified boson will also be introduced.

The real problem is represented by the contributions of the ghost-fields.
One finds that (see [4]) they usually cancel out two sets of uncompactified
bosons/fermions (except zero-modes), and that therefore the string one-loop
amplitude can be written as

A
(1)
0 ∝

∫
d2τ

Im(τ)2︸ ︷︷ ︸
Modular Invariant

1

Im(τ)−
D
2

+1
Z(τ, τ̄)︸ ︷︷ ︸

Z̃

. (37)

D is the number of non-compact dimensions, and Z(τ, τ̄) counts the states
in the theory without zero modes and without two sets of fermions/bosons.
One should note that this is equivalent to working in light-cone gauge since
the light-cone coordinates have no oscillator contributions.

Modular invariance The final result, which will be used to construct the
heterotic string, is the following

The torus CFT partition function Z̃(τ, τ̄) of any string theory as
defined above must be modular invariant.
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3 Construction of the heterotic string

Having acquired the tools which have been presented in the previous part,
the construction of the heterotic string results to be not so difficult. Here it
is structured as follows. At the beginning, a quick introduction explains the
motivations which lead to the heterotic string. Next, its constituent parts
are exposed. The partition function Z̃ as defined above can be then easily
computed. The requirement of its modular invariance is furher translated
into a restriction for the gauge group of the heterotic string. It will result
that there are only two possibities: one is the famous group E8 × E8, the
other SO(32). The reference is mainly [2].

3.1 Introduction

Previous talks already presented some good features of the superstring (see
[7]). In particular, after GSO projection –required by modular invariance–
the superstring’s spectrum contains no tachyons and has a graviton. How-
ever, no interaction in space-time has been considered until now. In the
standard model language, interactions are the same as gauge symmetries.
More specifically, to reproduce the standard model one has to introduce a
space-time gauge symmetry U(1)× SU(2)× SU(3).

The heterotic string attempts to add a gauge symmetry by mixing the
left-moving sector of the bosonic string with the right-moving sector of the su-
perstring (”hybris”), and compactifying the extra bosonic coordinates needed
to compensate the anomaly on a torus (remember that 16 more coordinates
are needed for the bosonic part, 26 in total, see [2]). The compactified bosons
will take the role of gauge bosons, and the result will be a 10 dimensional
string theory with a E8 × E8 or SO(32) gauge symmetry, much larger than
the standard model’s one.

3.2 The two sectors

As explained above, the heterotic string combines the left-moving sector of
the 26-dimensional bosonic string with the right-moving sector of the 10-
dimensional superstring. As such it is a string theory in 10 dimensions, with
16 internal (bosonic) degrees of freedom compactified on a torus. Therefore,
it deals with the following fields:

1. Left-moving coordinates

• 10 uncompactified bosonic fields Xµ
L(τ + σ), (µ = 0, ..., 9)
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• 16 internal bosonsXI
L(τ+σ) (I = 1, ..., 16) living on a 16-dimensional

torus

2. Right-moving coordinates

• 10 uncompactified bosons Xµ
R(τ − σ), (µ = 0, ..., 9) with their

• two-dimensional fermionic superpartners Ψµ
R(τ − σ).

Moreover, one gets left- and right-moving reparametrization ghosts b, c, b̄, c̄
and right-moving superconformal ghosts β, γ. Ghost contributions will be
only taken into account when computing the partition function.
Note that Xµ

L(τ +σ), Xµ
R(τ−σ) have common center of mass and space-time

momentum coordinates, with continuous spectra. One will see that center of
mass positions and momenta of the compactified coordinates XI are instead
subjected to discretizing conditions.

Independence of the left- and right moving sectors (bosonic string)
Recall that Xµ

R(τ −σ)+Xµ
L(τ +σ) is the general solution of the closed string

equation of motion (∂2
σ − ∂2

τ )X
µ = 0 with periodicity condition Xµ(σ, τ) =

Xµ(σ + l , τ). Coordinates of both sectors must therefore be of the form:

Xµ
R(τ − σ) =

1

2
(xµ) +

πα′

l
pµ(τ − σ) + i

√
α′

2

∑
n6=0

1

n
αµne

− 2π
l
in(τ−σ) (38)

Xµ
L(τ + σ) =

1

2
(xµ) +

πα′

l
pµ(τ + σ) + i

√
α′

2

∑
n6=0

1

n
ᾱµne

− 2π
l
in(τ+σ). (39)

In the frame of canonical quantization, the above (promoted) operators sat-
isfy

[xµ, pν ] = iηµν (40)

[αµm, α
ν
n] = [ᾱµm, ᾱ

ν
n] = mδm+nη

µν,0 (41)

[ᾱµm, α
ν
n] = 0. (42)

Note that necessarily having common center of mass position and mo-
mentum, the two sectors are not manifestly independent. In fact, calculating
the correlator between them, one gets

〈Xµ
R(z)Xν

L(w̄)〉 = −1

4
α′ηµν lnz (43)

〈Xµ
L(z̄)Xν

R(w)〉 = −1

4
α′ηµν lnz̄, (44)

15



where cylinder coordinates (z, z̄) = (e2πi(τ−σ)/l , e2πi(τ+σ)/l) are used for con-
venience. Nevertheless, only propagators for X = XR+XL matter. One sees
that redefining commutators [xµR, p

ν
L] = 0, identical correlators (and hence,

propagators) are obtained:

〈Xµ(z, z̄)Xν(w, w̄)〉 = −1

2
α′ηµν ln(z − w)(z̄ − w̄). (45)

The zero-mode dependence of XR and XL is therefore irrelevant.

Discretized momenta Momenta of the compactified coordinates are dis-
cretized. To see this, recall the case of one dimension first, which has been
treated in talk [6]. Letting x and p be the center of mass position and mo-
mentum of the coordinate respectively, single-valuedness of the wave function
exp(xp) provides

pi =
M

R
, M ∈ Z, (46)

where R is the radius of the compactified string.
If there are more dimensions to compacify, one has to identify points of

a lattice rather than points of a single line,

XI ∼ XI + 2π
D∑
i=1

nieIi = XI + 2πLI , ni ∈ Z.

Here the {ei}i=1...D are basis vectors of a lattice D dimensional lattice Λ.
For the heterotic string D = 16, as explained above. Now, similarly to
the one dimensional case one has to require single-valuedness of the wave
function exp(ixipi), where {xi, pi}{i=1,...16} are the center of mass positions
and momenta of the 16 coordinates. This implies directly that the momenta
of the compactified bosons must be vectors of the 16-dimensional lattice
Γ16 = Λ∗ dual to Λ.

Finally, a piece of notation: letting for simplicity eIi , I = 1, ..., 16 be the
basis vectors of the momenta lattice (the only one which will be used later
on), the corresponding metric will be denoted, as usual, gij ≡

∑16
I=1 e

I
i e
I
j .

3.3 Modular invariance and the gauge group of the
heterotic string

One-loop partition function The task of this paragraph is to compute
the one-loop partition function of the heterotic string, with the right amount
of contributions, by means of Eq. 36. Recall therefore from the end of the

16



first part that two sets of noncompact bosons/fermions have to be cancelled in
order to compensate the ghosts’ contributions. Moreover, recall the Virasoro
characters for fermions and bosons, whose derivations can be found in [5],
[2]:

χ8−fermions(τ) = 1
2

1
|η(τ)|4 (θ(τ)4

3 − θ(τ)4
4 − θ(τ)4

2)

χn−bosons(τ) =
(

1
|η(τ)|

)n
.

Here η(τ), θ1 ≡ θ
1/2
1/2, θ2 ≡ θ

1/2
0 , θ3 ≡ θ0

0, θ4 ≡ θ0
1/2 are the Dedekind eta-

function and the theta-functions, defined as (q = e2πiτ )

η(τ) = q
1
24

∞∏
n=1

(1− qn)

θαβ (τ) =
∑
n∈Z

eiπ(n+α)2τ+2πi(n+α)β.
(47)

In addition, for the heterotic string one needs the character of compactified
bosons. It is not difficult to derive. The trace of Eq. 36 simply counts the
states on the torus as follows

χ16−comp.bosons(τ) = 1
|η(τ)|

16∑
pL∈Γ16

q
1
2
p2
L .

Hence, taking all contributions the heterotic string partition function
without zero modes reads

Zhet(τ, τ̄) = χ8−fermions(τ)χ8−bosons(τ)χ8−bosons(τ̄)χ16−comp.bosons(τ̄)

=
1

|η(τ)|4
(
θ(τ)4

3 − θ(τ)4
4 − θ(τ)4

2

)( 1

|η(τ)|

)8(
1

|η(τ̄)|

)8

× 1

|η(τ̄)|16

∑
pL∈Γ16

q̄
1
2
p2
L

=

(
1

[η(τ̄)]24

∑
pL∈Γ16

q̄
1
2
p2
L

)(
1

[η(τ)]12

(
θ4

3(τ)− θ4
4(τ)− θ4

2(τ)
))

.

(48)

The result with zero-modes is finally
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Z̃het(τ, τ̄) =
1

(Imτ)4

(
1

[η(τ̄)]24

∑
pL∈Γ16

q̄
1
2
p2
L

)
×

×
(

1

[η(τ)]12

(
θ4

3(τ)− θ4
4(τ)− θ4

2(τ)
))

.

(49)

Action of the generators of the modular group In the previous para-
graph, the one-loop partition function of the heterotic string has been quickly
computed. At this point, however, the lattice Γ16 of the compactified mo-
menta is complely arbitrary. The next step corresponds to investigate the
effect of the generators of the modular group on the partition function. By
imposing modular invariance, this leads to some constraints for the lattice
under the form of transformation rules.

In the first part of this report it has been recalled that the generators are:

T : τ → τ + 1

S : τ → −1

τ
.

(50)

Transformations of the eta-function, the theta-functions, and Im(τ) under
the action of the modular group are known:

T : τ → τ + 1 S : τ → − 1
τ

η(τ) e
iπ
12η(τ)

√
−iτη(τ)

θ2(τ) e
πi
4 θ2(τ)

√
−iτθ4(τ)

θ3(τ) θ4(τ)
√
−iτθ3(τ)

θ4(τ) θ3(τ)
√
−iτθ2(τ)

Im(τ) Im(τ) Im(τ)
|τ |

The only factor whose transformation in yet unknown, is indeed the lattice
(or ”soliton”, since states in it are topologically stable) sum

P (τ) =
∑

pL∈Γ16

q̄
1
2
p2
L (51)

where the summation runs over all vectors of the lattice. After having im-
plemented the above transformations into the partition function Eq. 49, one
easily sees that modular invariance requries
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P (τ + 1) = P (τ) (52)

P (−1

τ
) = τ 8P (τ). (53)

Transformation of the soliton sum under T The constraints above
Eq. 52 and 53 can be translated into interesting properties of the lattice.
Starting with the first one

P (τ + 1) =
∑

pL∈Γ16

q̄
1
2
p2
Leπip

2
L = P (τ)⇒ p2

L ∈ 2Z (54)

which means that Γ16 must be an even lattice. Now, p2
L =

∑
i p

igjij =∑
i(p

i)2gii + 2
∑

i<j p
igijp

j for pi, pj ∈ Z, and hence diagonal elements of the
metric must be even integers, gii ∈ 2Z.

Transformation of the soliton sum under S The investigation of the
second equation is more subtle, but a simple trick makes things easy. Start
with the transformed soliton sum, which reads

P (−1

τ
) =

∑
pL∈Γ16

e−πi
1
τ
p2
L . (55)

Defining now

F (x) =
∑

pL∈Γ16

e−πi
1
τ

(pL+x)2 ; (56)

since the sum runs over all vectors, one has

F (x + p) = F (x) ∀p ∈ Γ16. (57)

Owning this periodicity, F can be then expanded in a Fourier series:

F (x) =
∑
q∈Γ∗16

e2πix·qF ∗(q) (58)

where

F ∗(q) =
1

vol(Γ16)

∫
unit cell

dnye−2πiy·qF (y). (59)

Inserting Eq. 56 in Eq. 58, Eq. 59 one obtains
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∑
pL∈Γ16

eπi
1
τ

(pL+x)2 =

=
∑
q∈Γ∗16

e2πix·q 1

vol(Γ16)

∫
unit cell

dnye−2πiy·q
∑

pL∈Γ16

eπi
1
τ

(pL+x)2

=
1

vol(Γ16)

∑
q∈Γ∗16

e2πix·q
∑

pL∈Γ16

∫
unit cell

dny︸ ︷︷ ︸
=
∫
Rn d

ny

e−2πi(y+pL)·qeπi
1
τ

(pL+x)2

=
1

vol(Γ16)

∑
q∈Γ∗16

e2πix·q
∫
Rn
dnye−πi(y)T 1

τ
id16×16(y)−2πi(y+pL)·q

=
1

vol(Γ16)
√

det( 1
τ
id16×16)

∑
q∈Γ∗16

e2πix·qe−2πiq2

.

(60)

In the second line it has been used that e−2πi(y+pL)·q = e−2πiy·q since q ·pL ∈
Z, and in the last step a usual Gaussian integral has been performed. Hence,
evaluating at x = 0, one finally obtaines

P (−1

τ
) =

τ 8

vol(Γ16)

∑
q∈Γ∗16

q
1
2
q2

. (61)

In other words, Γ16 must be a self-dual lattice! In fact

Γ16 = (Γ16)∗ (62)

implies detg = 1, vol(Γ) = vol(Γ)∗ = 1.

Gauge group of the heterotic string By the above, modular invariance
of the one-loop partition function requires that momenta of the internal di-
mensions must be elements of an even, self-dual Euclidean lattice. These
are very special. In 16 dimensions, one can show that the only lattices of
this kind are the direct product lattice ΓE8 × ΓE8 , where ΓE8 is the root
lattice of the exceptional simple lie group E8, and ΓD16 , the weight lattice
of Spin(32)/Z2. The proof of this fact goes away from the purposes of this
report, and will not be presented here.

Both the root lattice of E8 × E8 and the weight lattice of Spin(32)/Z2

contain 480 vectors of (length)2 = 2 which are the roots of E8 × E8 and
SO(32) respectively. This implies that the gauge group of the heterotic
string is either E8 ×E8 or SO(32). The two lattices, their respective groups
and some related facts are the object of the next subsection.
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3.4 ΓE8
× ΓE8

and ΓD16

Modular invariance has singled out two possible lattices for the compactified
momenta. These are lattices related to the weights and roots of some lie
algebras. The aim of the following paragraphs is to give a look at these
interesting objects.

The root lattice Recall (see [8]) that given a choice of a Cartan-Weyl
basis, that is a maximal set of Hermitian commuting generators HI , the
remaining generators can be diagonalized with respect to its elements:

[HI , Eα] = αIEα. (63)

The vectors αI are called roots, and taking arbitrary integer linear combina-
tions of them one gets the root lattice ΛR.

The weight lattice The weight lattice is constructed in the following way.
States which transform into a specific representation of any Lie algebra can
be denoted by

|ml, D〉 (64)

where l runs from 1 to D, the dimension of the representation. These are
eigenstates of the Cartan subalgebra generators

HI |c,D〉 = mI
l |ml, D〉 . (65)

The ml, are called the weight vectors. Observe that it follows directly from
the definition of roots that they correspond to the weights of the adjoint
representation. Arbitrary linear integer combinations of weight lattice form
the weight lattice.

A lie algebra is called simply laced if all its root vectors have the same
length, which can be normalized to 2. For simply laced groups one has that
αi ·m ∈ Z for every root and weight, and if β ·m ∈ Z ∀m, then β ∈ ΛR.
Summarizing, to the ends of this report one should retain the following:

• ΛR ⊂ Λw (since roots are the weights of the adjoint representation);

• ΛR = Λ∗w

• vol(Λ) = vol(Λ∗)−1 ⇒ vol(ΛR) = vol(Λw)−1.
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The Lie-algebra lattice There is one further interesting lattice related
to Lie algebras, which is simply called ”Lie-algebra lattice”. In order to
construct it, first note that weight vectors of a representation differ by root
vectors. In fact, the weights can be constructed from the highest weight by
acting with the ”lowering operators” Eα by Eq. 63. Now, for irreducible
representations one can define conjugacy classes: if weight vectors of two
representations differ by root vectors only, then the two representations lie
in the same conjugacy class. One obtaines therefore the coset decomposition

Λw = ΛR ⊕ (ΛR + m2)⊕ ...⊕ ...(ΛR + mNC ) (66)

where he vectors {mi}i=1...Nc , Nc being the number of conjugacy classes, are
representative for the conjugacy class. Usually the highest weight of the
lowest dimensional representation is taken as representative.

Now, if it is the case that closeness under addition of vectors is provided,
one can take only some of the conjugacy classes to form a lattice. In this
way, one gets a so called Lie-algebra lattice.

The root lattice of E8 After the previous general discussion, it is time
to consider the specific cases of the lattices and groups (or better, algebras)
relevant for the heterotic string, starting with the root lattice of E8. First of
all, E8 is an exceptional Lie algebra1 which is simply laced. As any textbook
about Lie algebras explains, it is usually constructed from the derivations on
the octonions. Its dimension is 248, and it has rank 8 (i.e., there are 8 gener-
ators of the Cartan subalgebra). The root vectors are given by the 112 (eight
dimensional) root vectors of SO(16), which is contained as a subalgebra

(...± 1, ...,±1, ...) all other entries 0,

and by the following 128 (eight dimensional) vectors(
±1

2
,±1

2
, ...,±1

2

)
even number of − signs.

It has the following Cartan matrix, which correspond to the metric of the

1I use capital letters for both the algebras and the groups. The only place in which E8

is treated as a group here, is in the expression ”gauge group”.
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root lattice

gE8
ij =



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1 −1
−1 2 −1

−1 2
−1 2

.


(67)

Since E8 has only one conjugacy class, namely the (0) (trivial) one, its root
lattice is equal to the weight lattice, which implies that it is self-dual. By
the form of its vectors, it is clear that it is also even.

The weight lattice of Spin(32)/Z2 The other relevant lattice for the het-
erotic string is the weight lattice of Spin(32)/Z2. This group is the double
cover of SO(32), and has therefore the same dimension. Consider the Lie
algebra of SO(32), denoted D16. As any Dn, it falls into four conjugacy
classes, denoted by (0), (V ) (Vector), (S) (Spinor), (C) (Conjugate spinor).
The lattice with (0) and either (S) or (C) conjugacy class is the weight lat-
tice of Spin(32)/Z2, which therefore contains the root lattice of SO(32). It
is generated by the following vectors:

(0) Clearly, the vectors of the root lattice

(S) m =
(
±1

2
,±1

2
, ...± 1

2
,
)
, with an even number of - signs, or

(C) m =
(
±1

2
,±1

2
, ...± 1

2
,
)
, with an odd number of - signs.

To see that it is self-dual, note that (taking (S), with (C) the situation
is the same since the resulting lattices are isomorphic) the weight lattice of
SO(32) is

Λw = ΛR + 0(0) ⊕ (ΛR + m(S))⊕ (ΛR + m(V ))⊕ (ΛR + m(C)). (68)

The Lie-algebra lattice is then

ΛΓD16
= ΛR + 0(0) ⊕ (ΛR + m(S)). (69)

Now, using the above exposed relations for the root and weight lattices one
obtaines
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vol(Λw) =
1

4
vol(ΛR), vol(Λw) = vol(ΛR)−1. (70)

This implies

vol(Λw) =
1

2
, vol(ΛR) = 2. (71)

On the other hand,

vol(ΓD16) =
1

2
vol(ΛR) = 1 (72)

or in other words, the Lie-algebra lattice is unimodular. Being integer, it is
also self-dual.

3.5 On-shell (massless) spectrum of the heterotic string

It is now easy to investigate the spectrum of the heterotic string. Following [2]
relatively closely, for simplicity only the massless spectrum will be presented
here. It is not much harder to work out the next levels, but the massless one
already shows most of the good features of the heterotic string.

Since the heterotic string’s Fock space corresponds to the tensor product
of the Fock spaces of the two sectors, the spectrum is easily built by taking
the tensor product of the states coming from the (once again: independent)
left and right excitations. Not all combinations, however, are allowed. The
spectrum is in fact subjected to the level-matching constraint, which will be
discussed in the following.

Left moving excitations As usual, left moving excitations contain the
tachyonic vacuum of the bosonic string, |0〉. At the massless level, one can
excite the vacuum either with compactified or uncompactified oscillators:
ᾱµ−1 |0〉, or ᾱI−1 |0〉. The former transform like space-time vectors, whereas
the latter correspond to the left-moving part of the abelian U(1)16 gauge
bosons that build the Cartan subalgebra of E8 × E8 or SO(32). There are,
moreover, states in the soliton sector with non-trivial internal momenta pL.
States |pL〉 = 2, NL = 0 are massless, pL is a root vector of E8 × E8 or
SO(32) and generate the non-Abelian gauge bosons of these groups.

Right moving excitations Right-moving excitations are simply those of
the 10-dimensional superstring, and therefore the spectrum will be space-
time supersymmetric. The NS tachyon |0〉NS is projected out ny GSO pro-
jection enforced by modular invariance. Lowest states are therefore the vector
bµ−1/2and the spinor |Sα〉.
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Left-Right level matching constraint Recall that a physical state has
to satisfy

(L0 − L̄0) |phys〉 = 0 (73)

This is because the unitary operator Uδ ≡ e2πi δ
l
(L0−L̄0 generates rigid sigma

translations, i.e. U †δX
µ(σ, τ)Uδ = Xµ(σ + δ, τ), and no point on a closed

string should be distinct. In the present case, this turns out to be equivalent
to

m2
L = m2

R ↔ NL +
1

2
p2
L − 1 =

{
NR R sector
NR − 1

2
NS sector

. (74)

The only new term with respect to the superstring is p2
L, coming from the

compactified momenta.

Massless spectrum of the heterotic string Putting the contents of the
previous paragraph together, one can finally obtain the massless spectrum
of the heterotic string. This is done, as already mentioned, by taking the
tensor product of the right- and left moving sectors subjected to the level-
matching constraint. Due to the right-moving supersymmetry, it is N = 1
supersymmetric in 10 dimensions. The massless states are of four kinds:

1. ᾱµ−1 |0〉 ⊗ bν− 1
2

|0〉NS
The components of the ten-dimensional graviton, antisymmetric tensor
and dilaton;

2. ᾱµ−1 |0〉 ⊗ |Sα〉R
Their supersymmetric partners, gaugino and dilatino;

3. ᾱI−1 |0〉 ⊗ bν− 1
2

|0〉NS and |p2
L = 2〉 ⊗ bν− 1

2

|0〉NS
The gauge bosons of E8×E8 or SO(32), where the former corresponds
to the gauge bosons of the Cartan subalgebra and the latter of the root
vectors;

4. ᾱI−1 |0〉 ⊗ |Sα〉R and |p2
L = 2〉 ⊗ |Sα〉R

Their supersymmetric partners (496), the so called gaugini.

One should note the absence of the tachyon, which has been projected out
by means of the level-matching condition, the presence of the graviton, and
the appearance of the internal gauge bosons. This summarizes the features
of the heterotic string theory.
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Relation between the E8×E8 and SO(32) theories There is one final
remark which is worthy to make. One may ask how different are the two
theories (the one based on E8 × E8, and the other on SO(32)) presented in
this report. To the end of answering this question, there is one thing that can
be computed easily. Recall that the partition functions of the compactified
bosons encode the number of the solitonic states. Hence, in order to compare
the number of states at each mass level it suffices to evaluate them. The
calculation is done in [2] and it turns out that under this point of view the
two theories are equivalent. However, the states are of course distributed in
different ways.
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4 Summary

The heterotic string introduces gauge symmetries in string theory surpris-
ingly by mixing the right-moving sector of the bosonic string with the left-
moving sector of the superstring. The exceeding bosonic dimensions are com-
pactified on a 16 dimensional torus. Bosons on the torus generate internal
shifts and thus local gauge symmetries.

Basing on modular invariance of the one-loop string partition function,
two distinct shapes of the torus can be singled out, and correspondingly two
different possible gauge groups of the theory: E8 × E8 and SO(32), which
are much bigger than the gauge group of the Standard Model.

The heterotic string served as a starting point for the attempt to re-
produce the Standard Model. Nevertheless, the heterotic string does not
reproduce it correctly so far. Unfortunately, many other attempts to com-
pactify on other manifolds and orbifolds have not lead to the desired result
either
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