The Heterotic String

Andrea Ferrari

ETH Zürich

27.05.2013
Outline of this presentation

1. Introduction
2. Modular Invariance
3. Construction of the Heterotic String
4. Lie theory and lattices
5. Spectrum
Introduction

- Use many topics of previous talks to construct the heterotic string
 - Lie theory, modular invariance, superstrings, compactification...

- Heterotic string has been believed to be a starting point for reproducing the standard model
 - No tachyon, graviton, gauge symmetry (⇒ interactions)
Part I: Modular Invariance
String perturbation expansion

\[A_n = \sum_{g=0}^{\infty} A^{(g)}_n \]

\[= \sum_{g=0}^{\infty} C_{\Sigma_g} \int \mathcal{D}h \mathcal{D}X^\mu \int d^2z_1 \ldots d^2z_n V_1(z_1, \bar{z}_1) \ldots V_n(z_n, \bar{z}_n) e^{-S[X,h]} \]
Introduction Modular Invariance Construction of the Heterotic String Lie theory and lattices Spectrum

String perturbation expansion

\[A_n = \sum_{g=0}^{\infty} A_n^{(g)} \]

\[= \sum_{g=0}^{\infty} C_{\Sigma g} \int \mathcal{D} h \mathcal{D} X^{\mu} \int d^2 z_1 ... d^2 z_n V_1(z_1, \bar{z}_1) ... V_n(z_n, \bar{z}_n) e^{-S[X, h]} \]

From now on: concentrate on the one-loop vacuum amplitude

\[A_0^{(1)} \sim \int_{\text{Torus}} \mathcal{D} h \mathcal{D} X^{\mu} e^{-S[X, h]} \]
Recall: Polyakov action is invariant under Weyl rescalings and diffeomorphisms of the world-sheet

\[\begin{align*}
\text{Diffeo.} & \quad \delta X^\mu = \xi^\alpha \partial_\alpha X^\mu, \\
& \quad \delta h_{\alpha\beta} = -(\nabla_\alpha \xi_\beta + \nabla_\beta \xi_\alpha) \\
\text{Weyl} & \quad \delta X^\mu = 0 \\
& \quad \delta h_{\alpha\beta} = 2\Lambda h_{\alpha\beta}
\end{align*} \]

\(\Rightarrow \) Because of overcounting, path integral is highly divergent!
Redundancy and Modular Invariance

Try to compensate the overcounting

\[\int \frac{Dh}{\text{Vol}(\text{Diff})\text{Vol}(\text{Weyl})} \]

⇒ Integration should be performed on a moduli space of metrics

\[\mathcal{M}_g = \frac{\{\text{metrics}\}}{\{\text{Weyl}\} \times \{\text{diffeomorphisms}\}} \]

and the one-loop partition function must be modular invariant.
Tangent space decomposition

How to perform this in practice?

- Base space: modular parameters.
- Tangent space: Weyl and Diffeo.

\[
\delta h_{\alpha\beta} = \delta \Lambda h_{\alpha\beta} + \nabla_\alpha \xi_\beta + \nabla_\beta \xi_\alpha + \sum_i \delta \tau_i \frac{\partial}{\partial \tau_i} h_{\alpha\beta}
\]

Weyl Diffeo. Moduli parameters

Define operator \(P \) (later purpose):

\[
(P\xi)_{\alpha\beta} = \nabla_\alpha \xi_\beta + \nabla_\beta \xi_\alpha - (\nabla_\gamma \xi_\gamma) h_{\alpha\beta}
\]

Restrict integration to the slice above. Torus: next slide
Moduli space of the torus

Restriction to the slice of modular parameters for one-loop vacuum amplitude $A_0^{(1)}$. World-sheet is a torus. Recall: one modular parameter τ

$$\mathcal{M}_1 = \mathbb{H}/\{\text{action of } \text{PSL}_2(\mathbb{Z})\}$$

How to obtain that?

- Teichmueller space (conformally inequivalent tori)
- Generators of the modular group (global diffeomorphisms)

$$T : \tau \rightarrow \tau + 1$$

$$S : \tau \rightarrow -\frac{1}{\tau}$$
The Fundamental Region

Result: inequivalent metrics reside on the fundamental region \mathcal{F}

$$\mathcal{F} = \{ z \in \mathbb{H} | |\text{Re}(z)|^2 \leq \frac{1}{2}, \ |z| \geq 1 \}$$
Orthogonal decomposition

Now, how to divide the measure in a suitable way?

- Need a notion of orthogonality:

\[(\delta h^{(1)}, \delta h^{(2)}) = \int \sqrt{h^{\alpha\gamma} h^{\beta\delta}} \delta h^{(1)}_{\alpha\beta} \delta h^{(2)}_{\gamma\delta}\]

- Decompose metric orthogonally into Weyl+Diffeo+Moduli. Yields Jacobian \(\mathcal{J}\)

\[\mathcal{D} h = \mathcal{J} \mathcal{D}\{\text{Weyl}\} \mathcal{D}\{\text{Diffeo}\} d\tau\]

- Would like to cancel out Weyl+Diffeo by further restricting integration on the fundamental region
Conformal Killing Group

Problem: Diffeo. and Weyl overlap. Restricting the integration does not completely eliminate the overcounting.

- Recall operator P:

$$ (P\xi)_{\alpha\beta} = \nabla_\alpha \xi_\beta + \nabla_\beta \xi_\alpha - (\nabla_\gamma \xi^\gamma) h_{\alpha\beta} $$

 \begin{align*}
 \text{Diffeo.} & \\
 \text{Weyl.} &
 \end{align*}

- Zero modes: ”Conformal Killing Vectors”. Form the ”Conformal Killing Group”.

⇒ have to divide integration measure by the ”volume” of the CKG.
Conformal Killing Group of the Torus

- Conformal Killing Group of the Torus (CKG): $U(1) \times U(1)$.
- Generators: vector fields ∂_z and $\partial_{\bar{z}}$.
- Volume:

$$\text{Vol}(\text{CKG}) \sim \text{Im}(\tau)$$

- Nice remark: by the Riemann-Roch theorem,

$$\dim_C(\text{CKG}) = \{\text{number of moduli parameters}\}$$
Finally: the integration measure

From Vol(CKG) and zero-mode Jacobians, one obtains

\[\int \frac{d^2\tau}{(\text{Im}\tau)^3} \]

However, measure by itself not modular invariant. Let \(\tau \rightarrow \frac{a\tau + b}{c\tau + d} \) be an arbitrary modular transformation. Then:

\[d^2\tau \rightarrow |c\tau + d|^{-4} d^2\tau \]
\[\text{Im}(\tau) \rightarrow |c\tau + d|^{-2}\text{Im}(\tau) \]

\[\Rightarrow \text{Only } \frac{d^2\tau}{(\text{Im}\tau)^2} \text{ is modular invariant.} \]
Recall \(A_0^{(1)} \sim \int_{\text{Torus}} \mathcal{D} h \mathcal{D} X^\mu e^{-S[X,h]} \). We have decomposed the integration on the metrics. What about the rest?

- Recall that partition function of CFT’s on a Torus corresponds to the generating functional of a QFT with time compactified on a circle of radius \(R = \frac{1}{T} \) (temperature).

- Here: similar situation.

Nevertheless, should take some care with zero-modes and contributions

\[
(i.e. \int \frac{d^D p}{(2\pi)^D} \langle p | e^{-\pi \alpha \text{Im}(\tau)p^2} | p \rangle \sim \frac{1}{\sqrt{\text{Im}(\tau)}})
\]

and non-zero modes of Jacobian
Let $Z^*(\tau, \bar{\tau})$ denote the usual CFT partition function counting contributions in light-cone gauge but without those of zero-modes. Then:

$$A_0^{(1)} \sim \int_{\mathcal{F}} \frac{d^2 \tau}{(\text{Im} \tau)^2} \frac{\text{Im}(\tau)^{-\frac{D}{2}+1} Z^*(\tau, \bar{\tau})}{Z}$$

where D is the number of non-compact dimensions.

For any string theory, $Z(\tau, \bar{\tau})$ as defined above must be modular invariant.
Part II: Construction of the Heterotic String
Motivation

Recall: would like to reproduce the Standard Model.
Starting point:
 - Superstrings have no tachyons, contain bosons and fermions
 - Would like another feature: interactions. Try to implement gauge symmetries.
Note/recall: left- and right-moving sectors of the string are independent. E.g.

\[[\bar{\alpha}_m^\mu, \alpha_n^\nu] = 0 \]

Idea: try to combine bosonic string and superstring.
Basic idea

- Take bosonic right-moving sector and supersymmetric left moving sector
- Recall: anomalies cancel in different space-time dimensions (26 and 10)
- Match dimensions by compactification!
 → Compactify 16 bosonic dimensions on a torus

Result:
- Result: String theory in 10D with gauge symmetry
1. **Left-moving coordinates**
 - 10 uncompactified bosonic fields $X_{\mu}^L(\tau + \sigma)$, ($\mu = 0, \ldots, 9$)
 - 16 internal bosons $X_{L}^I(\tau + \sigma)$ ($I = 1, \ldots, 16$) living on a torus

2. **Right-moving coordinates**
 - 10 uncompactified bosons $X_{\mu}^R(\tau - \sigma)$, ($\mu = 0, \ldots, 9$) with their
 - fermionic superpartners $\Psi_{\mu}^R(\tau - \sigma)$

How do the compactified coordinates look like? Consider compactified space (next slide).
Internal coordinates: discretized momenta

Recall one coordinate: single valuedness of the wave function
\[\exp(i x p) \Rightarrow \text{discretized momenta} \]

\[X^{25} \sim X^{25} + 2\pi R L, \quad L \in \mathbb{R} \]

\[p^{25} = \frac{M}{R}, \quad M \in \mathbb{Z} \]

Here: 16 coordinates

\[X^I \sim X^I + 2\pi \sum_{i=1}^{D} n^i e_i = X^I + 2\pi L^I, \quad n^i \in \mathbb{Z} \]

where the \(\{e_i\}_{i=1}^{D} \) are basis vectors of a lattice \(\Lambda \).

Momenta of additional bosons must be vectors of its 16-dimensional dual lattice \(\Gamma_{16} = \Lambda^* \).
Basic definitions of lattices

Definition: Lattice

A *n-dimensional lattice* \(\Gamma_n \) is a set of points in \(\mathbb{R}^n \) which can be written as integer combination of a set of basis vectors

\[
\Gamma_n = \{ x = \sum x^i e_i | x^i \in \mathbb{Z} \}
\]

Definition: Dual lattice

The *dual lattice* \(\Gamma_n^* \) is the lattice defined as

\[
\Gamma_n^* = \{ y | (y, x) \in \mathbb{Z}, \ x \in \Gamma_n \}
\]

Definition: Even lattice

A lattice is called *even* if for any two vectors \(x, y \in \Gamma \), \((x, y) \in 2\mathbb{Z} \).
one-loop partition function

Recall Virasoro characters for bosons and fermions:

\[
\chi_{8-\text{fermions}}(\tau) = \frac{1}{2} \frac{1}{|\eta(\tau)|^4} \left(\theta(\tau)^4_3 - \theta(\tau)^4_4 - \theta(\tau)^4_2 \right)
\]

\[
\chi_{n-\text{bosons}}(\tau) = \left(\frac{1}{|\eta(\tau)|} \right)^n
\]

In addition, compactified bosons \((q = e^{2\pi i \tau})\):

\[
\chi_{16-\text{comp.bosons}}(\tau) = \frac{1}{|\eta(\tau)|^{16}} \sum_{p_L \in \Gamma_{16}} q^{\frac{1}{2} p_L^2}^2
\]
one-loop partition function

\[
Z^*_\text{het}(\tau, \bar{\tau}) = \chi_{8\text{-fermions}}(\tau)\chi_{8\text{-bosons}}(\tau)\chi_{8\text{-bosons}}(\bar{\tau})\chi_{16\text{-comp.bosons}}(\bar{\tau})
\]

\[
= \frac{1}{|\eta(\tau)|^4} \left(\theta(\tau)^4_3 - \theta(\tau)^4_4 - \theta(\tau)^4_2 \right) \left(\frac{1}{|\eta(\tau)|} \right)^8 \left(\frac{1}{|\eta(\bar{\tau})|} \right)^8
\]

\[
\times \frac{1}{|\eta(\bar{\tau})|^{16}} \sum_{p_L \in \Gamma_{16}} \bar{q}^2 \frac{1}{2} p_L^2
\]

\[
= \left(\frac{1}{[\eta(\bar{\tau})]^{24}} \sum_{p_L \in \Gamma_{16}} \bar{q}^2 \frac{1}{2} p_L^2 \right) \left(\frac{1}{[\eta(\tau)]^{12}} \left(\theta^4_3(\tau) - \theta^4_4(\tau) - \theta^4_2(\tau) \right) \right)
\]
By the previous discussion, the full partition function (with zero modes!)

\[
Z_{\text{het}}(\tau, \bar{\tau}) = \frac{1}{(\text{Im}\tau)^4} \left(\frac{1}{[\eta(\bar{\tau})]^{24}} \sum_{p_L \in \Gamma_{16}} \bar{q}^{\frac{1}{2}} p_L^2 \right) \times \\
\times \left(\frac{1}{[\eta(\tau)]^{12}} \left(\theta_3^4(\tau) - \theta_4^4(\tau) - \theta_2^4(\tau) \right) \right)
\]

has to be modular invariant.
Modular Invariance

Recall: generators of the modular group

\[T : \tau \rightarrow \tau + 1 \]
\[S : \tau \rightarrow -\frac{1}{\tau} \]

We know

<table>
<thead>
<tr>
<th>(T : \tau \rightarrow \tau + 1)</th>
<th>(S : \tau \rightarrow -\frac{1}{\tau})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta(\tau))</td>
<td>(e^{\frac{i\pi}{12}} \eta(\tau))</td>
</tr>
<tr>
<td>(\theta_2(\tau))</td>
<td>(e^{\frac{\pi i}{4}} \theta_2(\tau))</td>
</tr>
<tr>
<td>(\theta_3(\tau))</td>
<td>(\theta_4(\tau))</td>
</tr>
<tr>
<td>(\theta_4(\tau))</td>
<td>(\theta_3(\tau))</td>
</tr>
</tbody>
</table>
Modular Invariance

- Only term of Z_{het} whose transformation we don't know is the "soliton sum"

$$P(\tau) \equiv \sum_{p_L \in \Gamma_{16}} q^{\frac{1}{2}p_L^2}$$

- Requiring modular invariance of Z_{het} leads to

$$P(\tau + 1) = P(\tau)$$

$$P\left(-\frac{1}{\tau}\right) = \tau^8 P(\tau)$$

- Translates into constraints on the allowed lattices!
The lattice Γ_{16}

Claim

Γ_{16} must be an even, self-dual lattice
The lattice Γ_{16}

Theorem

In 16 dimensions, the only even, self-dual lattices are the direct product lattice $\Gamma_{E_8} \times \Gamma_{E_8}$, where Γ_{E_8} is the root lattice of E_8, and $\Gamma_{D_{16}}$, the Lie algebra lattice of $SO(32)$ with the (0) and (S) conjugacy classes (or weight lattice of $\text{Spin}(32)/\mathbb{Z}_2$).
Part III: Lie Theory and Lattices
Let g be a Lie-algebra. Recall:

- Cartan subalgebra: set of commuting generators H^I
- Diagonalize remaining generators E^α with respect to its elements

$$[H^I, E^\alpha] = \alpha^I E^\alpha$$

- Vectors α^I are called roots

Arbitrary integer linear combinations of roots \Rightarrow root lattice Λ_R.
Weight lattice Λ_w

- Take a particular representation of a Lie Group G. States can be denoted by

$$|m_l, D\rangle \quad l \in \{1...D\}$$

D: the dimension of the representation.

- Eigenstates of the Cartan subalgebra generators

$$H^l |c, D\rangle = m^l_l |m_l, D\rangle$$

m_l are eigenvalues of the H^l: weight vectors.

Arbitrary integer linear combinations of weight vectors \Rightarrow weight lattice Λ_w.
The Lie-algebra lattice

Observation:

- $\Lambda_R \subset \Lambda_w$
- $\Lambda_R = \Lambda_w^*$
- $\text{vol}(\Lambda) = \text{vol}(\Lambda^*)^{-1}$

Overall note that

- $\Lambda_w = \Lambda_R \oplus (\Lambda_R + m_2) \oplus \ldots \oplus (\Lambda_R + m_{N_c})$, where $\{m_i\}_{i=1\ldots N_c}$ are representatives of conjugacy classes

Take only a subset of the conjugacy classes, closed under addition of all lattice vectors \Rightarrow Lie algebra lattice
E_8 and Γ_{E_8}

What is E_8?

- An exceptional simple simply-laced Lie algebra
- Has dimension 248, rank 8
- Has only one conjugacy class $\Rightarrow \Gamma_{E_8}$ self-dual

What are its root vectors?

- 112 (8 dimensional) root vectors of D_8

 \[(... \pm 1, ..., \pm 1, ...) \text{ all other entries 0} \]

- following 128 (8 dimensional) vectors

 \[\left(\pm \frac{1}{2}, \pm \frac{1}{2}, ..., \pm \frac{1}{2} \right) \text{ even number of ” − ” signs} \]
Spin(32/\mathbb{Z}_2) and Γ_{D_{16}}

- Spin(32)/\mathbb{Z}_2 is the double cover of SO(32) ⇒ they have same dimension
- Recall that Lie algebra of SO(32), denoted D_{16}, has four conjugacy classes: trivial (0), Vector (V), Spinor (S), Conjugate spinor (C)
- Weight vectors of \text{Spin}(32)/\mathbb{Z}_2:
 - (0) ⇔ root lattice of SO(32)
 \[(k_1...k_n), \ k_i \in \mathbb{Z}, \sum_{i=1}^{n} k_i = \text{even}\]
 - (S): \textbf{m} = (±\frac{1}{2}, ±\frac{1}{2}, ... ± \frac{1}{2}), with an even number of "-" signs
Spin\((32/\mathbb{Z}_2)\) and \(\Gamma_{D_{16}}\)

How to see that \(\Gamma_{D_{16}}\), Lie algebra lattice of \(SO(32)\), is self-dual? Consider weight lattice \(\Lambda_w\) and root lattice \(\Lambda_R\) of \(SO(32)\)

- \(\Lambda_w = \Lambda_R + 0(0) \oplus (\Lambda_R + m_S) \oplus (\Lambda_R + m_V) \oplus (\Lambda_R + m_C)\)
- \(\Lambda_{\Gamma_{D_{16}}} = \Lambda_R + 0(0) \oplus (\Lambda_R + m_S)\)
- \(\text{vol}(\Lambda_w) = \frac{1}{4} \text{vol}(\Lambda_R), \quad \text{vol}(\Lambda_w) = \text{vol}(\Lambda_R)^{-1}\)
- \(\Rightarrow \text{vol}(\Lambda_w) = \frac{1}{2}, \quad \text{vol}(\Lambda_R) = 2\)
- \(\text{vol}(\Gamma_{D_{16}}) = \frac{1}{2} \text{vol}(\Lambda_R) = 1 \Rightarrow \text{unimodular}\)
- Consider vectors of \((S)\): it is integer
- self-dual \(\Leftrightarrow\) unimodular and integer
Part IV: Spectrum
Spectrum and the level matching condition

- Spectrum is constructed by taking the tensor product of right- and left-moving excitations
- Right-moving sector: $\mathcal{N} = 1$ supersymmetric in 10 dimensions
- Level matching condition

\[
m_L^2 = m_R^2 \iff N_L + \frac{1}{2} p_L^2 - 1 = \begin{cases} N_R & \text{R sector} \\ N_R - \frac{1}{2} & \text{NS sector} \end{cases}
\]
The Massless States

1. Components of graviton, antisymmetric tensor and dilaton (NS-sector):
 \[\bar{\alpha}^\mu_{-1} |0\rangle \otimes b^{\nu}_{-\frac{1}{2}} |0\rangle_{NS} \]

2. Supersymmetric partners gaugino, dilatino (R-sector):
 \[\bar{\alpha}^\mu_{-1} |0\rangle \otimes |S^\alpha\rangle_R \]

3. The gauge bosons of \(E_8 \times E_8 \) or \(SO(32) \)
 - \[\bar{\alpha}^I_{-1} |0\rangle \otimes |S^\alpha\rangle_R \] Gauge bosons of the Cartan subalgebra
 - \[|p^2_L = 2\rangle \otimes |S^\alpha\rangle_R \] Root vectors

4. 496 supersymmetric partners, gaugini:
 \[\bar{\alpha}^I_{-1} |0\rangle \otimes |S^\alpha\rangle_R \text{ and } |p^2_L = 2\rangle \otimes |S^\alpha\rangle_R \]
Conclusions

- Singled out two distinct compactifications (on a torus) for the heterotic string from the modular invariance of the one-loop vacuum amplitude
- Many attempts to compactify on other manifolds/orbifolds
- Does any other heterotic String Theory reproduce the Standard Model? Unfortunately, not yet completely
Books:

Article:

Thank you!