Superstrings

 ETH Proseminar in Theoretical Physics

 ETH Proseminar in Theoretical Physics}

ImRe Majer

May $13^{\text {th }}, 2013$

Outline

1 Neveu-Schwarz-Ramond formulation

- Building up the spectrum
- GSO projection

2 Modular invariance

- Spin structures
- Partition function

3 Green-Schwarz formulation

- Supersymmetry
- Building up the spectrum

Outline

1 Neveu-Schwarz-Ramond formulation

- Building up the spectrum
- GSO projection

2 Modular invariance

- Spin structures
- Partition function

3 Green-Schwarz formulation

- Supersymmetry
- Building up the spectrum

NSR action

Light cone gauge fixing

The Neveu-Schwarz-Ramond action in light cone gauge

$$
S_{N S R}^{\prime} \cdot c \cdot=-\frac{1}{2 \pi} \int d^{2} \sigma\left(\partial_{\alpha} X^{i} \partial^{\alpha} X^{i}-i \bar{\psi}^{i} \rho^{\alpha} \partial_{\alpha} \psi^{i}\right)
$$

$$
\text { transverse coordinates } i=1, \ldots, 8
$$

- ψ^{i} is a worldsheet Majorana 2-spinor
- ψ^{i} is a spacetime vector
- $\mathrm{SO}(8)$ rotational symmetry $\Longrightarrow \psi^{i}$ is an $\mathbf{8}_{\mathrm{v}}$ representation of $\mathrm{SO}(8)$

Building up the spectrum

Tools for generating the spectrum

Open string or the right-moving part of a closed string. Creation and annihilation operators:

- $X^{i}: \quad \alpha_{-n}^{i}$ and $\alpha_{n}^{i} \quad n \in \mathbb{Z}$
- $\psi^{i}: \quad\left\{\begin{array}{lll}d_{-m}^{i} \text { and } d_{m}^{i} & m \in \mathbb{Z} & \text { for } \mathrm{R} \text {-sector } \\ b_{-r}^{i} \text { and } b_{r}^{i} & r \in \mathbb{Z}+\frac{1}{2} & \text { for NS-sector }\end{array}\right.$

The mass ${ }^{2}$ operator:

$$
\begin{array}{ll}
\alpha^{\prime} m^{2}=\underbrace{\sum_{n>0} \alpha_{-n}^{i} \alpha_{n}^{i}}_{N^{(\alpha)}}+\underbrace{\sum_{m>0} m d_{-m}^{i} d_{m}^{i}}_{N^{(d)}}-\frac{1}{2} & \text { for NS-secto } \\
\alpha^{\prime} m^{2}=\underbrace{\sum_{n>0} \alpha_{-n}^{i} \alpha_{n}^{i}}_{N^{(\alpha)}}+\underbrace{\sum_{r>0} r b_{-r}^{i} b_{r}^{i}}_{N^{(b)}} & \text { for R-sector }
\end{array}
$$

Building up the spectrum

Ground states

NSR formulation: All creation/annihilation operators are spacetime vectors.
■ Bosons \longrightarrow bosons

- Fermions \longrightarrow fermions
- Ground state determines the type of spectrum (bosonic or fermionic) built on it

■ NS-sector (spacetime bosons)
■ Scalar ground state (bosonic): $|0\rangle$

- Tachyonic: $\alpha^{\prime} m^{2}=-\frac{1}{2}$
- R-sector (spacetime fermions)
$■\left\{d_{0}^{\mu}, d_{0}^{\nu}\right\}=\eta^{\mu \nu} \Longrightarrow$ spinor of $\mathrm{SO}(1,9)$
- Spinor ground state (fermionic): $|c\rangle \chi^{c}(k)$

$$
\chi^{c}(k) \text { is a spinor, } k \text { is the momentum }
$$

■ Massless: $\alpha^{\prime} m^{2}=0$
■ $D=10 \Longrightarrow 2^{D / 2}=32$ complex components: $c=1, \ldots, 32$

Constraints on the R ground state

Impose two constraints simultaneously on the R ground state!
1 Majorana constraint
2 Weyl constraint
Also, ground state spinor satisfies the Dirac equation.
3 Dirac equation
Each condition will reduce the degrees of freedom from the original 64 (32 complex) by a factor of two:

$$
32 \text { complex } \xrightarrow{\text { Majorana }} 32 \text { real } \xrightarrow{\text { Weyl }} 16 \text { real } \xrightarrow{\text { Dirac equation }} 8 \text { real }
$$

Crucial for spacetime supersymmetry!

Constraints on the R ground state

Majorana constraint

1 Majorana constraint: reality condition on the spinor field

- The massless Dirac equation:

$$
i \Gamma^{\mu} \partial_{\mu} \chi=0
$$

$\Gamma^{\mu}-10$ generally complex 32 dimensional Dirac matrices.
■ If all Dirac matrices are real or imaginary ("Majorana representation"), then possible to impose reality on χ. ("Majorana spinor")

- This is possible in $D=2,3,4(\bmod 8)$.
- Construct imaginary Dirac matrices just for $D=10$!

SO(8) Clifford algebra

- Spinor representation of $\mathrm{SO}(8): \lambda=\left(\lambda_{s}^{a}, \lambda_{c}^{\bar{a}}\right)$

Reducible $\mathbf{8}_{\mathbf{s}} \oplus \mathbf{8}_{\mathbf{c}}$ representation $\begin{aligned} & a=1, \ldots, 8 \text { spinor index } \\ & \bar{a}=1, \ldots, 8 \\ & \text { conjugate spinor index }\end{aligned}$

- The SO(8) transformations can be constructed with the help of the Dirac matrices, which obey the Clifford algebra.

$$
\begin{gathered}
\left\{\gamma^{i}, \gamma^{j}\right\}=2 \delta^{i j} \\
\gamma^{i}=\left(\begin{array}{cc}
0 & \gamma_{\gamma \bar{a}}^{i} \\
\gamma_{\bar{a} a}^{i} & 0
\end{array}\right)_{16 \times 16} \quad i, j=1, \ldots, 8 \quad \text { vector index }
\end{gathered}
$$

- Real, symmetric $\gamma_{a \bar{a}}^{i}$ matrices constructed from the Pauli matrices:

$$
\begin{aligned}
& \gamma_{a \bar{a}}^{1}=i \sigma_{2} \otimes i \sigma_{2} \otimes i \sigma_{2} \\
& \gamma_{a \bar{a}}^{3}=\mathbb{1} \otimes \sigma_{3} \otimes i \sigma_{2} \\
& \gamma_{a \bar{a}}^{5}=\sigma_{3} \otimes i \sigma_{2} \otimes \mathbb{1} \\
& \gamma_{a \bar{a}}^{7}=i \sigma_{2} \otimes \mathbb{1} \otimes \sigma_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{a \bar{a}}^{2}=\mathbb{1} \otimes \sigma_{1} \otimes i \sigma_{2} \\
& \gamma_{a \bar{a}}^{4}=\sigma_{1} \otimes i \sigma_{2} \otimes \mathbb{1} \\
& \gamma_{a \bar{a}}^{6}=i \sigma_{2} \otimes \mathbb{1} \otimes \sigma_{1} \\
& \gamma_{a \bar{a}}^{8}=\mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1}
\end{aligned}
$$

SO $(1,9)$ Clifford algebra

- The $\left(2^{5}=32\right)$-dimensional Dirac matrices of the $\mathrm{SO}(1,9)$ spinor representation obey the Clifford algebra as well:

$$
\left\{\Gamma^{\mu}, \Gamma^{\nu}\right\}=-2 \eta^{\mu \nu} \quad \mu, \nu=0, \ldots, 9
$$

■ $\mathrm{SO}(8)$ is the transverse subgroup of $\mathrm{SO}(1,9)$. Use γ^{i} matrices to build the Γ^{μ} matrices

$$
\begin{aligned}
& \Gamma^{0}=\sigma_{2} \otimes \mathbb{1}_{16} \\
& \Gamma^{i}=i \sigma_{1} \otimes \gamma^{i} \quad i=1, \ldots, 8 \\
& \Gamma^{9}=i \sigma_{3} \otimes \mathbb{1}_{16}
\end{aligned}
$$

- γ^{i} are all real $\Longrightarrow \Gamma^{\mu}$ are all imaginary The Majorana representation is possible!

$$
\chi: 32 \text { complex } \longrightarrow 32 \text { real components }
$$

Constraints on the R ground state

Weyl constraint

2 Weyl constraint: the spinor field has definite chirality

- Define chirality operator: $\Gamma_{11}=\Gamma^{0} \Gamma^{1} \ldots \Gamma^{9}$
- Anticommutes with all the other Dirac matrices and squares to identity:

$$
\left\{\Gamma_{11}, \Gamma^{\mu}\right\}=0 \quad\left(\Gamma_{11}\right)^{2}=1
$$

■ Spinor of definite chirality ("Weyl spinor"):

$$
\Gamma_{11} \chi= \pm \chi
$$

- By demanding positive or negative chirality, again eliminate half of the degrees of freedom

$\chi: \mathbf{1 6}_{\mathrm{s}} \oplus \mathbf{1 6}_{\mathrm{c}}$	\longrightarrow	$\lambda: \mathbf{8}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{c}}$
32 real	\longrightarrow	16 real

- Note: Majorana and Weyl constraints are only compatible in $D=2(\bmod 8)$ dimensions.

Constraints on the R ground state

Dirac equation

3 Dirac equation (massless):

$$
i \Gamma^{\mu} \partial_{\mu} \chi=0
$$

■ For Weyl spinors $\lambda=\left(\lambda_{s}, \lambda_{c}\right)$, this reduces to

$$
\begin{array}{ll}
\left(\partial_{0} \pm \partial_{9}\right) \lambda_{s}^{a}+\gamma_{a \bar{a}}^{i} \partial_{i} \lambda_{c}^{\bar{a}}=0 & a=1, \ldots, 8 \\
\left(\partial_{0} \mp \partial_{9}\right) \lambda_{c}^{\bar{a}}+\gamma_{\bar{a} a}^{i} \partial_{i} \lambda_{s}^{a}=0 & \bar{a}=1, \ldots, 8
\end{array}
$$

for chirality $\Gamma_{11} \chi= \pm \chi$

- The spinor and the conjugate spinor representations are not independent for a definite chirality!

$$
\begin{array}{clc}
\lambda: \mathbf{8}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{c}} & \longrightarrow \lambda_{\mathrm{s}}: \mathbf{8}_{\mathrm{s}} \text { or } \lambda_{\mathrm{c}}: \mathbf{8}_{\mathrm{c}} \\
16 \text { real } & \longrightarrow & 8 \text { real components }
\end{array}
$$

$\left.\begin{array}{rl}+ & + \text { chirality } \rightarrow \text { Choose } \mathbf{8}_{\mathrm{s}} \\ & - \text { chirality } \rightarrow \text { Choose } \mathbf{8}_{\mathrm{c}}\end{array}\right\}$ form $\mathbf{8}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{c}}$ multiplet

Open string spectrum

Without GSO projection

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	little group	representation contents with respect to the little group
NS-sector (bosons)			
$-\frac{1}{2}$	$\|0\rangle$ 1	SO(9)	1
0	$b_{-1 / 2}^{i}\|0\rangle$ 8_{v}	SO(8)	8 v
$+\frac{1}{2}$	$\begin{array}{cc} \hline \alpha_{-1}^{i}\|0\rangle & b_{-1 / 2}^{i} b_{-1 / 2}^{j}\|0\rangle \\ \mathbf{8}_{\mathbf{v}} & \mathbf{2 8} \end{array}$	SO(9)	36
+1	$\begin{gathered} b_{-1 / 2}^{i} b_{-1 / 2}^{j} b_{-1 / 2}^{k}\|0\rangle \\ 56_{\mathbf{v}}^{k} \\ \alpha_{-1}^{i} b_{-1 / 2}^{j}\|0\rangle \\ \mathbf{1} \oplus \mathbf{2 8} \oplus \mathbf{3 5}_{\mathbf{v}} \\ b_{-3 / 2}^{i}\|0\rangle \\ \mathbf{8}_{\mathbf{v}} \end{gathered}$	SO(9)	$84 \oplus 44$
R-sector (fermions)			
0	$\begin{gathered} \|a\rangle \\ \mathbf{8}_{\mathbf{s}} \\ \|\bar{a}\rangle \\ \mathbf{8}_{\mathrm{c}} \end{gathered}$	SO(8)	$\begin{aligned} & 8_{\mathrm{S}} \\ & 8_{\mathrm{c}} \end{aligned}$
+1	$\alpha_{-1}^{i}\|a\rangle$ $d_{-1}^{i}\|\bar{a}\rangle$ $\mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6} \mathbf{c}$ $\mathbf{8}_{\mathbf{s}} \oplus \mathbf{5 6} \mathbf{s}$ $\alpha_{-1}^{i}\|\bar{a}\rangle$ $d_{-1}^{i}\|a\rangle$ $\mathbf{8}_{\mathbf{s}} \oplus \mathbf{5 6}_{\mathbf{s}}$ $\mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6}_{\mathbf{c}}$	SO(9)	$\begin{aligned} & 128 \\ & 128 \end{aligned}$

[^0]
GSO projection

Why are we not satisfied?

Several properties of the NSR model so far which are not so tempting:

- Tachyon
- Anticommuting operators map bosons to bosons
- No spacetime supersymmetry: \#bosons $\neq \#$ fermions on the same mass levels
- Conflict with modular invariance

Gliozzi, Scherk and Olive (GSO): truncate the spectrum
Will seem arbitrary at first, but the GSO projection is required by modular invariance.

GSO projection

Truncation of the NS-sector

Let $\left|\varphi_{0}\right\rangle$ be a bosonic state.

$$
|\varphi\rangle=b_{-r_{1}}^{i_{1}} b_{-r_{2}}^{i_{2}} \cdots b_{-r_{n}}^{i_{n}}\left|\varphi_{0}\right\rangle
$$

$b_{-r_{i}}^{i}$ are spacetime vectors \Longrightarrow for $\forall n,|\varphi\rangle$ is bosonic.
■ \mathbf{n} is even: product of the anticommuting operators is commuting commuting operator: bosons \longrightarrow bosons

■ \mathbf{n} is odd: product of the anticommuting operators is anticommuting anticommuting operator: bosons \longrightarrow bosons

GSO projection: discard those with n odd.
Still have a choice in $\left|\varphi_{0}\right\rangle$ states of reference. Appealing requirements:

- Get rid of the tachyon!

■ \#bosons = \#fermions on the same mass levels!
Formally:

- Define quantum number: $G=-(-1)^{F} \quad$ where $F=\sum_{r=1 / 2}^{\infty} b_{-r}^{i} b_{r}^{i}$

■ Demand: $G|\varphi\rangle=+|\varphi\rangle$

GSO projection

Truncation of the R-sector

NS-sector truncation: all mass levels exist in both the fermionic and the bosonic sector, but still \#bosons $\neq \#$ fermions on the same mass levels. GSO projection: eliminate half of the R-sector! Formally:

■ Generalize the chirality operator Γ_{11} for massive levels:

$$
\bar{\Gamma}=\Gamma_{11}(-1)^{F} \quad \text { again } F=\sum_{m=1}^{\infty} d_{-m}^{i} d_{m}^{i}
$$

- Demand: $\bar{\Gamma}|\chi\rangle= \pm|\chi\rangle$
- $\left\{\bar{\Gamma}, d_{n}^{\mu}\right\}=0 \Longrightarrow$ Projection depends on the ground state. For the ground state $\bar{\Gamma}=\Gamma_{11} \Longrightarrow$ Only keep the states built onto the + or - chirality massless Weyl spinors.
- Note: This does not mean that the massive states are Weyl spinors. Massive spinors cannot be Weyl!

Open string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	$\begin{gathered} G(\mathrm{NS}) \\ \bar{\Gamma}(\mathrm{R}) \\ \hline \end{gathered}$	little group	representation contents with respect to the little group
NS-sector (bosons)				
$-\frac{1}{2}$	$\begin{gathered} \|0\rangle \\ \mathbf{1} \end{gathered}$	-1	SO(9)	1
0	$\begin{gathered} b_{-1 / 2}^{i}\|0\rangle \\ 8_{v} \end{gathered}$	+1	SO(8)	8 v
$+\frac{1}{2}$	$\begin{array}{cc} \hline \alpha_{-1}^{i}\|0\rangle & b_{-1 / 2}^{i} b_{-1 / 2}^{j}\|0\rangle \\ \mathbf{8 v}_{\mathbf{v}} & \mathbf{2 8} \end{array}$	-1	SO(9)	36
+1		+1	SO(9)	$84 \oplus 44$
R-sector (fermions)				
0	$\|a\rangle$ 8s $\|\bar{a}\rangle$ 8_{c}	$\begin{aligned} & +1 \\ & -1 \end{aligned}$	SO(8)	$\begin{aligned} & 8_{\mathrm{s}} \\ & 8_{\mathrm{c}} \end{aligned}$
+1	$\alpha_{-1}^{i}\|a\rangle$ $d_{-1}^{i}\|\bar{a}\rangle$ $\mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6} \mathbf{c}$ $\mathbf{8}_{\mathbf{s}} \oplus 56_{\mathbf{s}}$ $\alpha_{-1}^{i}\|\bar{a}\rangle$ $d_{-1}^{i}\|a\rangle$ $\mathbf{8}_{\mathbf{s}} \oplus \mathbf{5} 6_{\mathbf{s}}$ $\mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6}_{\mathbf{c}}$	$\begin{aligned} & +1 \\ & -1 \end{aligned}$	SO(9)	$\begin{aligned} & 128 \\ & 128 \end{aligned}$

$$
i, j, k=1 \ldots, 8 \quad a, \bar{a}=1, \ldots, 8
$$

Open string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	$\begin{gathered} G(\mathrm{NS}) \\ \bar{\Gamma}(\mathrm{R}) \\ \hline \end{gathered}$	little group	representation contents with respect to the little group
NS-sector (bosons)				
	10)			
2	1			
0	$\begin{gathered} b_{-1 / 2}^{i}\|0\rangle \\ 8_{v} \end{gathered}$	+1	SO(8)	8 v
1	$\alpha^{i},\|0\rangle \quad b^{i} b^{j}{ }^{(10\rangle}$			
2	8 v \% 28			
+1		+1	SO(9)	$84 \oplus 44$
R-sector (fermions)				
0	$\begin{gathered} \hline\|a\rangle \\ \mathbf{8}_{\mathrm{s}} \\ \|\bar{a}\rangle \\ \mathbf{8}_{\mathrm{c}} \\ \hline \end{gathered}$	$\begin{aligned} & +1 \\ & -1 \end{aligned}$	SO(8)	$\begin{aligned} & 8_{\mathrm{s}} \\ & 8_{\mathrm{c}} \end{aligned}$
+1	$\alpha_{-1}^{i}\|a\rangle$ $d_{-1}^{i}\|\bar{a}\rangle$ $\mathbf{8}_{\mathbf{c}} \oplus \mathbf{5} \mathbf{6}_{\mathbf{c}}$ $\mathbf{8}_{\mathbf{s}} \oplus \mathbf{5 6}_{\mathbf{s}}$ $\alpha_{-1}^{i}\|\bar{a}\rangle$ $d_{-1}^{i}\|a\rangle$ $\mathbf{8}_{\mathbf{s}} \oplus \mathbf{5 6}_{\mathbf{s}}$ $\mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6}_{\mathbf{c}}$	$\begin{aligned} & +1 \\ & -1 \end{aligned}$	SO(9)	$\begin{aligned} & 128 \\ & 128 \end{aligned}$

$$
i, j, k=1 \ldots, 8 \quad a, \bar{a}=1, \ldots, \varepsilon
$$

Open string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	$\begin{gathered} G(\mathrm{NS}) \\ \bar{\Gamma}(\mathrm{R}) \\ \hline \end{gathered}$	little group	representation contents with respect to the little group
NS-sector (bosons)				
	10)			
2	1			
0	$\begin{gathered} b_{-1 / 2}^{i}\|0\rangle \\ \mathbf{8}_{\mathbf{v}} \end{gathered}$	+1	SO(8)	8 v
1	$\alpha^{i},\|0\rangle \quad b^{i} b^{j}{ }^{(10\rangle}$			
2	8 v \% 28			
+1		+1	SO(9)	$84 \oplus 44$
R-sector (fermions)				
0	\|a) 8s \|ā)	+1	SO(8)	8 s
	$8_{\text {c }}$			
+1	$\begin{array}{cc} \alpha_{-1}^{i}\|a\rangle & d_{-1}^{i}\|\bar{a}\rangle \\ \mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6}_{\mathbf{c}} & \mathbf{8 s}_{\mathbf{s}} \oplus \mathbf{5 6}_{\mathbf{s}} \\ \alpha^{i}\|\bar{a}\rangle & d^{i}\|a\rangle \\ \hline \end{array}$	+1	SO(9)	128

$$
i, j, k=1 \ldots, 8 \quad a, \bar{a}=1, \ldots, \varepsilon
$$

Open string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	$\begin{gathered} G(\mathrm{NS}) \\ \bar{\Gamma}(\mathrm{R}) \\ \hline \end{gathered}$	little group	representation contents with respect to the little group
NS-sector (bosons)				
	10)			
2	1			
0	$\begin{gathered} b_{-1 / 2}^{i}\|0\rangle \\ \mathbf{8}_{\mathbf{v}} \end{gathered}$	+1	SO(8)	8 v
1	$\alpha^{i},\|0\rangle \quad b^{i} b^{j}{ }^{(10\rangle}$			
2	8 v \% 28			
+1		+1	SO(9)	$84 \oplus 44$
R-sector (fermions)				
0	$\|a\rangle$ 8_{s} $\|\bar{a}\rangle$ 8_{C}	-1	SO(8)	$8_{\text {c }}$
+1	$\alpha^{i}\|a\rangle$ $d^{i}\|\bar{a}\rangle$ $8_{\mathrm{c}} \oplus 5_{\mathrm{c}}$ $\mathbf{8}_{\mathrm{s}} \oplus 6_{\mathrm{s}}$ $\alpha_{-1}^{i}\|\bar{a}\rangle$ $d_{-1}^{i}\|a\rangle$ $\mathbf{8}_{\mathrm{s}} \oplus 56_{\mathrm{s}}$ $\mathbf{8}_{\mathrm{c}} \oplus 6_{\mathrm{c}}$	-1	SO(9)	128

$$
i, j, k=1 \ldots, 8 \quad a, \bar{a}=1, \ldots, 8
$$

Closed string spectrum

Tensoring together states

Closed string spectrum: tensor product of the left- and right-movers Bosons: (NS,NS) and (R,R) Fermions: (NS,R) and (R,NS)

- $L_{0}=\tilde{L}_{0} \Longrightarrow m_{L}^{2}=m_{R}^{2}$
\Longrightarrow only states of the same mass levels can be tensored together
- GSO projection: separately for left- and right-movers
- type IIA theory

■ NS-sector: $G_{L}=G_{R}=+1$

- R-sector: $\bar{\Gamma}_{L}=-\bar{\Gamma}_{R}=1$
- type IIB theory
- NS-sector: $G_{L}=G_{R}=+1$
- R-sector: $\bar{\Gamma}_{L}=\bar{\Gamma}_{R}=1$
- Only the massless level is different!

Closed string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	$\begin{aligned} & \hline G_{L}(N S) \\ & \bar{\Gamma}_{L}(R) \\ & \hline \end{aligned}$	$\begin{gathered} \hline G_{R}(N S) \\ \bar{\Gamma}_{R}(R) \\ \hline \end{gathered}$	little group	representation contents with respect to the little group
(NS,NS)-sector (bosons)					
-2	$\begin{aligned} \|0\rangle_{L} & \otimes\|0\rangle_{R} \\ 1 & \otimes 1 \end{aligned}$	-1	-1	SO(9)	1
0	$\begin{aligned} \tilde{b}_{-1 / 2}^{i}\|0\rangle_{L} & \otimes b_{-1 / 2}^{j}\|0\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} & \otimes \mathbf{8}_{\mathbf{v}} \end{aligned}$	+1	+1	SO(8)	$1 \oplus 28 \oplus 35 \mathrm{v}$
(R,R)-sector (bosons)					
0	$\begin{aligned} \|a\rangle_{\mathrm{L}} & \otimes\|b\rangle_{R} \\ \mathbf{8}_{\mathbf{s}} & \otimes \mathbf{8}_{\mathbf{s}} \\ \|\bar{a}\rangle_{\mathrm{L}} & \otimes\|\bar{b}\rangle_{R} \\ \mathbf{8}_{\mathbf{c}} & \otimes \mathbf{8}_{\mathbf{c}} \\ \|\bar{a}\rangle_{\mathrm{L}} & \otimes\|b\rangle_{R} \\ \mathbf{8}_{\mathbf{c}} & \otimes \mathbf{8}_{\mathbf{s}} \\ \|a\rangle_{\mathrm{L}} & \otimes\|\bar{b}\rangle_{R} \\ \mathbf{8}_{\mathbf{S}} & \otimes \mathbf{8}_{\mathbf{c}} \end{aligned}$	$+1$ -1 -1 $+1$	$+1$ -1 $+1$ -1	SO(8)	$\begin{gathered} 1 \oplus 28 \oplus 35_{\mathrm{s}} \\ 1 \oplus 28 \oplus 35_{\mathrm{c}} \\ \mathbf{8}_{\mathrm{v}} \oplus 56_{\mathrm{v}} \\ \mathbf{8}_{\mathrm{v}} \oplus 56_{\mathrm{v}} \end{gathered}$
(R,NS)-sector (fermions)					
0	$\begin{gathered} \|a\rangle_{\mathrm{L}} \otimes b_{-1 / 2}^{i}\|0\rangle_{\mathrm{R}} \\ \mathbf{8}_{\mathbf{s}} \otimes \mathbf{8}_{\mathbf{v}} \\ \|\bar{a}\rangle_{\mathrm{L}} \otimes b_{-1 / 2}^{i}\|0\rangle_{\mathrm{R}} \\ \mathbf{8}_{\mathbf{c}} \otimes \mathbf{8}_{\mathbf{v}} \end{gathered}$	$+1$ -1	$+1$ $+1$	SO(8)	$\begin{aligned} & \mathbf{8}_{\mathrm{c}} \oplus 56_{\mathrm{c}} \\ & \mathbf{8}_{\mathrm{s}} \oplus 56_{\mathrm{s}} \end{aligned}$
(NS,R)-sector (fermions)					
0	$\begin{gathered} \tilde{b}_{-1 / 2}^{i}\|0\rangle_{L} \otimes\|a\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} \otimes \mathbf{8}_{\mathbf{s}} \\ \tilde{b}_{-1 / 2}^{i}\|0\rangle_{\mathrm{L}} \otimes\|\bar{a}\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} \otimes \mathbf{8}_{\mathbf{c}} \end{gathered}$	$+1$ $+1$	$+1$ -1	SO(8)	$\begin{aligned} & 8_{c} \oplus 56_{c} \\ & 8_{s} \oplus 56_{s} \end{aligned}$

Closed string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their SO(8) representation contents	$\begin{gathered} \hline G_{L}(\mathrm{NS}) \\ \bar{\Gamma}_{\mathrm{L}}(\mathrm{R}) \\ \hline \end{gathered}$	$\begin{gathered} \hline G_{R}(N S) \\ \bar{\Gamma}_{R}(R) \\ \hline \end{gathered}$	little group	representation contents with respect to the little group
(NS,NS)-sector (bosons)					
	$\|0\rangle^{*} \otimes\|0\rangle_{0}$				
	$1 \otimes 1$				
0	$\begin{aligned} \tilde{b}_{-1 / 2}^{i}\|0\rangle_{L} & \otimes b_{-1 / 2}^{j}\|0\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} & \otimes \mathbf{8}_{\mathbf{v}} \end{aligned}$	+1	+1	SO(8)	$1 \oplus 28 \oplus 35 \mathrm{v}$
(R,R)-sector (bosons)					
0	$\begin{aligned} \|a\rangle_{L} & \otimes\|b\rangle_{R} \\ \mathbf{8}_{\mathbf{s}} & \otimes \mathbf{8}_{\mathbf{s}} \\ \|\bar{a}\rangle_{\mathrm{L}} & \otimes\|\bar{b}\rangle_{R} \\ \mathbf{8}_{\mathbf{C}} & \otimes \mathbf{8}_{\mathbf{C}} \\ \|\bar{a}\rangle_{\mathrm{L}} & \otimes\|b\rangle_{R} \\ \mathbf{8}_{\mathbf{c}} & \otimes \mathbf{8}_{\mathbf{s}} \\ \|a\rangle_{\mathrm{L}} & \otimes\|\bar{b}\rangle_{\mathrm{R}} \\ \mathbf{8}_{\mathbf{S}} & \otimes \mathbf{8}_{\mathbf{C}} \end{aligned}$	$+1$ -1 -1 $+1$	$+1$ -1 $+1$ -1	SO(8)	$\begin{gathered} 1 \oplus 28 \oplus 35_{\mathrm{s}} \\ 1 \oplus 28 \oplus 35_{\mathrm{c}} \\ \mathbf{8}_{\mathrm{v}} \oplus 56_{\mathrm{v}} \\ \mathbf{8}_{\mathrm{v}} \oplus 56_{\mathrm{v}} \end{gathered}$
(R,NS)-sector (fermions)					
0	$\begin{gathered} \|a\rangle_{\mathrm{L}} \otimes b_{-1 / 2}^{i}\|0\rangle_{R} \\ \mathbf{8}_{\mathbf{s}} \otimes \mathbf{8}_{\mathbf{v}} \\ \|\bar{a}\rangle_{\mathrm{L}} \otimes b_{-1 / 2}^{i}\|0\rangle_{R} \\ \mathbf{8}_{\mathbf{c}} \otimes \mathbf{8}_{\mathbf{v}} \end{gathered}$	$+1$ -1	$+1$ $+1$	SO(8)	$\begin{aligned} & 8_{c} \oplus 56_{c} \\ & 8_{s} \oplus 56_{s} \end{aligned}$
(NS,R)-sector (fermions)					
0	$\begin{gathered} \tilde{b}_{-1 / 2}^{i}\|0\rangle_{L} \otimes\|a\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} \otimes \mathbf{8}_{\mathbf{s}} \\ \tilde{b}_{-1 / 2}^{i}\|0\rangle_{\mathrm{L}} \otimes\|\bar{a}\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} \otimes \mathbf{8}_{\mathbf{c}} \end{gathered}$	$\begin{aligned} & +1 \\ & +1 \end{aligned}$	$+1$ -1	SO(8)	$\begin{aligned} & 8_{c} \oplus 56_{c} \\ & 8_{s} \oplus 56_{s} \end{aligned}$

Closed string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	$\begin{gathered} G_{L}(N S) \\ \bar{\Gamma}_{L}(R) \\ \hline \end{gathered}$	$\begin{aligned} & \hline G_{R}(N S) \\ & \bar{\Gamma}_{R}(R) \end{aligned}$	little group	representation contents with respect to the little group
(NS,NS)-sector (bosons)					
	$\|0\rangle^{*} \otimes\|0\rangle$				
	$1 \otimes 1$				
0	$\begin{aligned} \tilde{b}_{-1 / 2}^{i}\|0\rangle_{L} & \otimes b_{-1 / 2}^{j}\|0\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} & \otimes \mathbf{8}_{\mathbf{v}} \end{aligned}$	+1	+1	SO(8)	$\mathbf{1} \oplus \mathbf{2 8} \oplus 35 \mathrm{v}$
(R,R)-sector (bosons)					
	$\|a\rangle_{,} \otimes\|b\rangle_{0}$ $8_{\mathbf{s}} \otimes 8_{\mathbf{s}}$ $\|\bar{a}\rangle_{,} \otimes\|\bar{b}\rangle_{\mathbf{c}}$				
0	$\begin{gathered} 8_{\mathrm{c}} \otimes \mathrm{~B}_{\mathrm{c}} \\ \|\bar{a}\rangle_{+} \otimes\|b\rangle_{\mathrm{C}} \end{gathered}$			SO(8)	
	$\begin{aligned} & 8_{\mathrm{c}} \otimes 8_{\mathrm{s}} \\ &\|a\rangle_{\mathrm{L}} \otimes\|\bar{b}\rangle_{\mathrm{R}} \\ & \mathbf{8}_{\mathrm{S}} \otimes 8_{\mathrm{c}} \end{aligned}$	+1	-1		$8 \mathrm{v} \oplus \mathrm{F}_{\mathrm{v}}$
(R,NS)-sector (fermions)					
0	$\begin{gathered} \|a\rangle_{L} \otimes b_{-1 / 2}^{i}\|0\rangle_{R} \\ 8 \mathrm{~s} \otimes 8_{\mathrm{v}} \\ \|\bar{a}\rangle_{\mathrm{V}} \otimes b^{i}\|0\rangle_{\mathrm{o}} \end{gathered}$	+1	+1	SO(8)	$8_{c} \oplus{ }^{56}{ }_{c}$
	$8_{c} \otimes 8_{v}$				
(NS,R)-sector (fermions)					
	$\tilde{b}^{i}{ }^{\text {a }}\|0\rangle_{,} \otimes\|a\rangle_{\circ}$				
0	$\begin{gathered} \mathbf{8}_{\mathbf{v}} \otimes \mathbf{8}_{\mathbf{s}} \\ \tilde{b}_{-1 / 2}^{i}\|0\rangle_{\mathrm{L}} \otimes\|\bar{a}\rangle_{\mathrm{R}} \\ \mathbf{8}_{\mathbf{v}} \otimes 8_{\mathbf{c}} \end{gathered}$	+1	-1	SO(8)	$8 \mathrm{~s} \oplus \mathrm{Fb}_{\mathrm{s}}$

Closed string spectrum

With GSO projection

$\alpha^{\prime} m^{2}$	states and their SO(8) representation contents	$\begin{gathered} \hline G_{L}(N S) \\ \bar{\Gamma}_{L}(R) \\ \hline \end{gathered}$	$\begin{gathered} \hline G_{R}(\mathrm{NS}) \\ \bar{\Gamma}_{R}(\mathrm{R}) \\ \hline \end{gathered}$	little group	representation contents with respect to the little group
(NS,NS)-sector (bosons)					
	$\|0\rangle_{1} \otimes\|0\rangle_{0}$				
	$1 \otimes 1$				
0	$\begin{aligned} \tilde{b}_{-1 / 2}^{i}\|0\rangle_{L} & \otimes b_{-1 / 2}^{j}\|0\rangle_{R} \\ \mathbf{8}_{\mathbf{v}} & \otimes \mathbf{8}_{\mathbf{v}} \end{aligned}$	+1	+1	SO(8)	$1 \oplus 28 \oplus 35 \mathrm{v}$
(R,R)-sector (bosons)					
	$\begin{gathered} \|a\rangle_{L} \otimes\|b\rangle_{R} \\ 8_{\mathbf{s}} \otimes 8_{\mathbf{s}} \\ \|\bar{a}\rangle_{\perp} \otimes\|\bar{b}\rangle \end{gathered}$	+1	+1		$1 \oplus 28 \oplus 35 \mathrm{~s}$
0	$8_{c} \otimes 8_{c}$ $\|\bar{a}\rangle_{,} \otimes\|b\rangle$			SO(8)	
	$\begin{gathered} 8_{\mathrm{c}} \otimes \mathrm{8}_{\mathrm{s}} \\ \|a\rangle, \otimes\|\bar{b}\rangle \end{gathered}$				
	$8_{s} \otimes 8_{c}$				
(R,NS)-sector (fermions)					
0	$\begin{gathered} \|a\rangle_{L} \otimes b_{-1 / 2}^{i}\|0\rangle_{R} \\ 8_{\mathbf{s}} \otimes 8_{\mathrm{v}} \\ \|\bar{a}\rangle_{\mathrm{V}} \quad \otimes b^{i}\|0\rangle_{\mathrm{o}} \end{gathered}$	+1	+1	SO(8)	${ }^{8} \mathrm{c} \oplus \mathrm{Fb}^{\text {c }}$
	$8_{\mathrm{c}} \otimes 8_{\mathrm{v}}$				
(NS,R)-sector (fermions)					
0	$\begin{gathered} \tilde{b}_{-1 / 2}^{i}\|0\rangle_{L} \otimes\|a\rangle_{R} \\ 8_{\mathbf{v}} \otimes 8_{\mathbf{s}} \\ \tilde{b}^{i} \quad\|0\rangle_{-} \otimes\|\bar{a}\rangle_{0} \end{gathered}$	+1	+1	SO(8)	${ }^{8} \mathrm{c} \oplus{ }^{\text {56 }}$ c
	$8_{\mathrm{v}} \otimes 8_{\mathrm{c}}$				

Closed string spectrum

Massless spectrum of type II theories

Massless spectrum:

Type IIA Bosons: $\left[1 \oplus 28 \oplus 35_{v}\right] \oplus\left[8 v \oplus 56_{v}\right]$

Fermions:
$\left[8_{\mathrm{c}} \oplus \mathbf{5 6}_{\mathrm{c}}\right] \oplus\left[8_{\mathrm{s}} \oplus \mathbf{5 6}_{\mathrm{s}}\right]$

Type IIB Bosons: $\left[\mathbf{1} \oplus \mathbf{2 8} \oplus 35_{\mathrm{v}}\right] \oplus\left[\mathbf{1} \oplus \mathbf{2 8} \oplus 35_{\mathrm{s}}\right]$

Fermions:
$\left[\mathbf{8}_{\mathrm{c}} \oplus \mathbf{5 6}_{\mathrm{c}}\right] \oplus\left[\mathbf{8}_{\mathrm{c}} \oplus \mathbf{5 6}_{\mathrm{c}}\right]$

- 1 - dilaton
- 28 - rank 2 antisymmetric tensor
- 35 v - graviton
- $\mathbf{8}_{\mathrm{v}}$ - vector
- $\mathbf{5 6}_{\mathrm{v}}$ - rank 3 antisymmetric tensor
- $8_{\mathrm{s} / \mathrm{c}}$ - dilatinos of opposite chirality
- $\mathbf{5 6}$ s/c - gravitinos of opposite chirality
- $35_{\text {s }}$ - rank 4 self-dual antisymmetric tensor

Outline

1. Neveu-Schwarz-Ramond formulation

- Building up the spectrum
- GSO projection

2 Modular invariance

- Spin structures
- Partition function

3 Green-Schwarz formulation

- Supersymmetry
- Building up the spectrum

Spin structures

Investigate loop partition functions (vacuum bubbles):

- Supersymmetric theory: the loop partition functions vanish due to equal positive and negative contributions respectively from bosons and fermions.
- g-loop vacuum bubble worldsheet is conformally equivalent to a class of Riemann surfaces of genus g
■ Riemann surface of genus g : $2 g$ uncontractible loops.
- ψ-field: periodicity or antiperiodicity for each of the loops: $2^{2 g}$ choices, $2^{2 g}$ different spin structures
- Even/odd spin structures: Number of zero modes of the chiral Dirac operator $\left(\nabla_{z}\right.$ or $\left.\nabla_{\bar{z}}\right)$ is even/odd
Investigate only the one-loop partition function.

Spin structures

One-loop vacuum bubble worldsheet: conformally equivalent to a class of torii.

- Four possible spin structures corresponding to boundary conditions along the two loops: $(+,+),(+,-),(-,+)$, and $(-,-)$
- Put globally flat metric onto torus: $\nabla_{z} \rightarrow \partial_{z}$
- Only global zero mode: constant spinor $\Longrightarrow(+,+)$ boundary condition

$$
\begin{aligned}
& (+,+) \rightarrow 1 \text { zero mode: odd } \\
& (+,-) \rightarrow 0 \text { zero mode: even } \\
& (-,+) \rightarrow 0 \text { zero mode: even } \\
& (-,-) \rightarrow 0 \text { zero mode: even }
\end{aligned}
$$

Spin structures

Higher genus Riemann surfaces

Two statements:

1 For a given spin structure, the number of chiral Dirac zero modes is a topological invariant modulo two.
2 The number of chiral Dirac zero modes is additive modulo two when gluing together two Riemann surfaces.

The number of even and odd spin structures on an arbitrary Riemann surface of genus g (from spin structure on torus and 2):

■ Odd: $\sum_{m \text { odd }}\binom{g}{m} 3^{g-m}=2^{g-1}\left(2^{g}-1\right)$
■ Even: $\sum_{m \text { even }}\binom{g}{m} 3^{g-m}=2^{g-1}\left(2^{g}+1\right)$

Spin structures

Back to the torus

Recall:

- Parametrize torus by $\xi^{1}, \xi^{2} \in[0,1]$
- Complex coordinates: $z=\xi^{1}+\tau \xi^{2}, \quad \bar{z}=\xi^{1}+\bar{\tau} \xi^{2}$

■ Modular transformations of τ (Teichmüller parameter)

$$
\tau \longrightarrow \frac{a \tau+b}{c \tau+d}
$$

lead to locally conformally equivalent tori.

- Generator of modular transformations:

$$
\begin{array}{ll}
S: \tau \longrightarrow-1 / \tau & \Longrightarrow\left(\xi^{1}, \xi^{2}\right) \longrightarrow\left(-\xi^{2}, \xi^{1}\right) \\
T: \tau \longrightarrow \tau+1 & \Longrightarrow\left(\xi^{1}, \xi^{2}\right) \longrightarrow\left(\xi^{1}+\xi^{2}, \xi^{2}\right)
\end{array}
$$

Spin structures

Boundary conditions under modular transformations

- Four possible boundary conditions (spin structures)

$$
\begin{aligned}
& \psi\left(\xi^{1}, \xi^{2}\right)= \pm \psi\left(\xi^{1}+1, \xi^{2}\right) \quad(\text { NS or R-sector }) \\
& \psi\left(\xi^{1}, \xi^{2}\right)= \pm \psi\left(\xi^{1}, \xi^{2}+1\right)
\end{aligned}
$$

- How do the boundary conditions transform under modular transformations?

$$
\begin{array}{ccl}
& & (+,-) \longrightarrow(-,+) \\
& (+,+) \longrightarrow(+,+), & (-,+) \longrightarrow(+,-) \\
& & (-,-) \longrightarrow(-,-) \\
& & \\
& \\
& (+,-) \longrightarrow(+,-) \\
& (+,+) \longrightarrow(+,+), & (-,+) \longrightarrow(-,-) \\
& (-,-) \longrightarrow(-,+)
\end{array}
$$

- Even and odd spin structures transform irreducibly under modular transformations.
■ Invariance under global diffeomorphisms \Longrightarrow Need modular invariant expression for the partition function!

Partition function

Recall the bosonic partition function on a torus:

$$
Z(\tau)=\operatorname{Tr} e^{2 \pi i \tau H}
$$

Generalize this to the fermionic field:

$$
\begin{array}{ll}
Z^{++}(\tau)=\eta_{++} \operatorname{Tr} e^{2 \pi i \tau H_{R}}(-1)^{F} & Z^{+-}(\tau)=\eta_{+-} \operatorname{Tr} e^{2 \pi i \tau H_{R}} \\
Z^{-+}(\tau)=\eta_{-+} \operatorname{Tr} e^{2 \pi i \tau H_{N S}}(-1)^{F} & Z^{--}(\tau)=\eta_{--} \operatorname{Tr} e^{2 \pi i \tau H_{N S}}
\end{array}
$$

On symbols and notations:

- $Z^{ \pm \pm}$: contribution of the corresponding spin structure for a left-mover
- $\eta_{ \pm \pm}$: phase factor which ensures the modular invariant combination
- $(-1)^{F}$: For anticommuting variables, the trace ensures antiperiodicity over ξ^{2}, so insertion of $(-1)^{F}$ will result in the desired periodicity.
- $H_{R}=\sum_{m=1}^{\infty} m d_{-m}^{i} d_{m}^{i}+\frac{1}{3} \quad$ and $\quad H_{N S}=\sum_{r=1 / 2}^{\infty} r b_{-r}^{i} b_{r}^{i}-\frac{1}{6}$

Partition function

After some calculations:

$$
\begin{array}{ll}
Z^{++}(\tau)=\eta_{++} \frac{\theta_{1}^{4}(\tau)}{\eta^{4}(\tau)} & Z^{+-}(\tau)=\eta_{+-} \frac{\theta_{2}^{4}(\tau)}{\eta^{4}(\tau)} \\
Z^{-+}(\tau)=\eta_{-+} \frac{\theta_{4}^{4}(\tau)}{\eta^{4}(\tau)} & Z^{--}(\tau)=\eta_{--} \frac{\theta_{3}^{4}(\tau)}{\eta^{4}(\tau)}
\end{array}
$$

where $\theta_{i}(\tau)$ are the Jacobi theta functions and η is Dedekind's eta function.

- $\theta_{1} \equiv 0$
- Recall the modular transformation propterties

$$
\begin{aligned}
& \theta_{2}(-1 / \tau)=(-i \tau)^{1 / 2} \theta_{4}(\tau) \\
& \theta_{3}(-1 / \tau)=(-i \tau)^{1 / 2} \theta_{3}(\tau) \\
& \theta_{4}(-1 / \tau)=(-i \tau)^{1 / 2} \theta_{2}(\tau) \\
& \eta(-1 / \tau)=(-i \tau)^{1 / 2} \eta(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{2}(\tau+1)=e^{i \pi / 4} \theta_{2}(\tau) \\
& \theta_{3}(\tau+1)=\theta_{4}(\tau) \\
& \theta_{4}(\tau+1)=\theta_{3}(\tau) \\
& \eta(\tau+1)=e^{i \pi / 12} \eta(\tau)
\end{aligned}
$$

Partition function

Determining phases by modular invariance

Determine the phase factors by requiring modular invariance of the partition function separately for left- and right-movers!

$$
Z(\tau)=Z_{\text {ferm }}(\tau) Z_{\text {bos }}(\tau)=\left[Z^{++}(\tau)+Z^{+-}(\tau)+Z^{-+}(\tau)+Z^{--}(\tau)\right] Z_{\text {bos }}(\tau)
$$

- Recall: $Z_{\text {bos }}(\tau) \propto 1 / \eta^{8}(\tau)$
- Do modular transformations! (Phase factors coming from $Z_{\text {bos }}$ also included.)

$$
\begin{array}{rr}
Z^{+-}(\tau+1)=Z^{+-}(\tau) & Z^{+-}(-1 / \tau) \\
Z^{-+}(\tau+1)=-\eta_{-+} \frac{\theta_{3}^{4}(\tau)}{\eta(\tau)} \stackrel{!}{=} Z^{--}(\tau) & Z^{-+}(-1 / \tau) \\
Z^{--}(\tau+1)=-\eta_{--} \frac{\theta_{4}^{4}(\tau)}{\eta(\tau)} \stackrel{!}{=} Z^{-+}(\tau) & Z^{--}(-1 / \tau) \\
\Longrightarrow \eta_{+-}=\eta_{-+}=-\eta_{--} \stackrel{!}{=}-1
\end{array}
$$

Z^{++}transforms irreducibly, η_{++}cannot be determined like this, but further considerations show that $\eta_{++}= \pm 1$

Partition function

Acquiring the GSO projection
The partition function of the worldsheet fermions:

$$
\begin{aligned}
& Z_{\text {ferm }}= \operatorname{Tr} e^{2 \pi i \tau} H_{N S} \\
& \underbrace{\frac{1}{2}\left(1-(-1)^{F}\right)}_{\text {GSO projection in the NS-sector }}-\operatorname{Tr} e^{2 \pi i \tau H_{R}} \underbrace{\frac{1}{2}\left(1 \pm(-1)^{F}\right)}_{\text {GSO }}= \\
&=\frac{1}{2 \eta^{4}(\tau)}[\underbrace{\theta_{3}^{4}(\tau)-\theta_{4}^{4}(\tau)-\theta_{2}^{4}(\tau)}_{\text {Jacobection in the R-sector }} \pm \underbrace{\theta_{1}^{4}(\tau)}_{\theta_{1} \equiv 0}]=0 \\
& \Longrightarrow Z(\tau)=Z_{\text {ferm }}(\tau) Z_{\text {bos }}(\tau)=0
\end{aligned}
$$

- GSO projection
- Equal contribution from spacetime bosons (NS) and fermions (R): partition function vanishes. A necessary condition for spacetime supersymmetry.

Outline

1 Neveu-Schwarz-Ramond formulation

- Building up the spectrum
- GSO projection

2 Modular invariance

- Spin structures
- Partition function

3 Green-Schwarz formulation
■ Supersymmetry

- Building up the spectrum

Supersymmetry

Point particles

Spacetime supersymmetric point particle action

$$
S=\frac{1}{2} \int d \tau e^{-1}\left(\dot{x}^{\mu}-i \bar{\theta}^{A} \Gamma^{\mu} \dot{\theta}^{A}\right)^{2}
$$

- $\theta^{\text {Aa }}(\tau)$ are Grassmann odd variables
- N supersymmetry: label $A=1, \ldots, N$

■ Spinor index $a=1, \ldots, 2^{D / 2}$
■ Symmetries of the action (besides global Lorentz, local reparametrization and Weyl invariance):
global supersymmetry: local fermionic symmetry: local bosonic symmetry:

$$
\begin{array}{lll}
\delta \theta^{A}=\epsilon^{A} & \theta^{A}=i \Gamma \cdot p \kappa^{A} & \delta \theta^{A}=\lambda \dot{\theta}^{A} \\
\delta x^{\mu}=i \bar{\epsilon}^{A} \Gamma^{\mu} \theta^{A} & \delta x^{\mu}=i \bar{\theta}^{A} \Gamma^{\mu} \delta \theta^{A} & \delta x^{\mu}=i \bar{\theta}^{A} \Gamma^{\mu} \delta \theta^{A} \\
\delta e=0 & \delta e=4 e \bar{\theta}^{A} \kappa^{A} & \delta e=0
\end{array}
$$

Supersymmetry

Strings

Spacetime supersymmetric string action

$$
\begin{gathered}
S=S_{1}+S_{2} \\
S_{1}=-\frac{1}{2 \pi} \int d^{2} \sigma \sqrt{h} h^{\alpha \beta} \Pi_{\alpha} \cdot \Pi_{\beta}, \quad \text { where } \quad \Pi_{\alpha}^{\mu}=\partial_{\alpha} X^{\mu}-i \bar{\theta}^{A} \Gamma^{\mu} \partial_{\alpha} \theta^{A} \\
S_{2}=\frac{1}{\pi} \int d^{2} \sigma\left\{-i \epsilon^{\alpha \beta} \partial_{\alpha} X^{\mu}\left(\bar{\theta}^{1} \Gamma_{\mu} \partial_{\beta} \theta^{1}-\bar{\theta}^{2} \Gamma_{\mu} \partial_{\beta} \theta^{2}\right)+\epsilon^{\alpha \beta} \bar{\theta}^{1} \Gamma^{\mu} \partial_{\alpha} \theta^{1} \bar{\theta}^{2} \Gamma_{\mu} \partial_{\beta} \theta^{2}\right\}
\end{gathered}
$$

- S_{2} is needed for local fermionic symmetry, that only works if $N=0,1,2$
- S_{2} is supersymmetric in these cases:

1 D $=3$ and θ is Majorana
$2 D=3$ and θ is Majorana or Weyl
$3 D=6$ and θ is Weyl
$4 \mathbf{D}=10$ and θ is Majorana-Weyl

Supersymmetric string theories

Majorana-Weyl spinor implies definite chirality for θ^{1} and θ^{2}.
Type I: Open superstring theory, only one chirality is posible due to boundary conditions. This results in $N=1$.
Type IIA: Closed superstring theory, where θ^{1} and θ^{2} have opposite chirality. $N=2$
Type IIB: Closed superstring theory, where θ^{1} and θ^{2} have the same chirality. $N=2$

Heterotic: Using only one θ coordinate.

Gauge fixing

■ Weyl and reparametrization invariance to fix $h_{\alpha \beta}=\eta_{\alpha \beta}$

- The remaining symmetries to enforce light cone gauge. The degrees of freedom of θ^{1} and θ^{2} :

$$
32 \text { complex Majorana } 32 \text { real } \xrightarrow{\text { Weyl }} 16 \text { real } \xrightarrow{\text { light cone gauge }} 8 \text { real }
$$

■ Light cone gauge still has rotational invariance for the transverse dimensions.
\Longrightarrow Surviving eight components of θ^{1} and θ^{2} can be viewed as spinor representations of $\mathrm{SO}(8)$.

- New symbol for the surviving eight: S^{1} and S^{2}.
- Convention: $S^{1 a}$ belongs to $\mathbf{8}_{\mathrm{s}}$.

$$
\begin{array}{ccc}
\text { Type I } & \text { Type IIA } & \text { Type IIB } \\
S^{2 a} \text { is also } \mathbf{8}_{\mathbf{s}} & S^{2 a} \text { is } \mathbf{8}_{\mathbf{c}} & S^{2 a} \text { is also } \mathbf{8}_{\mathbf{s}} \\
& a, \bar{a}=1, \ldots, 8 &
\end{array}
$$

Light cone gauge

In the light cone gauge, the equations of motion simplify dramatically. To the point, where they can also be obtained from the action:

Green-Schwarz action in light cone gauge

$$
S_{G S}^{\prime \cdot c .}=-\frac{1}{2 \pi} \int d^{2} \sigma\left(\partial_{\alpha} X^{i} \partial^{\alpha} X^{i}-i \bar{S}^{a} \rho^{\alpha} \partial_{\alpha} S^{a}\right)
$$

- $S^{1 a}$ and $S^{2 a}$ were combined into a two-component Majorana worldsheet spinor S^{a}. Separately, they are one-component Majorana-Weyl spinors on the worldsheet describing left- or right-movers.
- Compare with NSR action in light cone gauge.

$$
S_{N S R}^{\prime \cdot c \cdot c \cdot}=-\frac{1}{2 \pi} \int d^{2} \sigma\left(\partial_{\alpha} X^{i} \partial^{\alpha} X^{i}-i \bar{\psi}^{i} \rho^{\alpha} \partial_{\alpha} \psi^{i}\right)
$$

- Both ψ^{i} and S^{a} are worldsheet spinors but ψ^{i} is a $\mathbf{8}_{\mathrm{v}}$, and S^{a} is a $\mathbf{8}_{\mathrm{s} / \mathrm{c}}$ representation of $\mathrm{SO}(8)$.

Boundary conditions, quantization

Quantization is really similar to the NSR formulation.

$$
\left\{S^{A a}(\sigma, \tau), S^{B b}\left(\sigma^{\prime}, \tau\right)\right\}=\pi \delta^{a b} \delta^{A B} \delta\left(\sigma-\sigma^{\prime}\right)
$$

Boundary conditions can destroy supersymmetry, keep as many as possible!
Open strings: equate at boundaries

$$
\begin{aligned}
& S^{1 a}(0, \tau)=S^{2 a}(0, \tau) \\
& S^{1 a}(\pi, \tau)=S^{2 a}(\pi, \tau) \\
& S^{1 a}=\frac{1}{\sqrt{2}} \sum S_{n}^{a} e^{-i n(\tau-\sigma)} \\
& S^{1 a}=\frac{1}{\sqrt{2}} \sum S_{n}^{a} e^{-i n(\tau+\sigma)}
\end{aligned}
$$

Supersymmetry reduces to $N=1$ type I theory

$$
\begin{aligned}
S_{-m}^{a} & =\left(S_{m}^{a}\right)^{\dagger} \\
\left\{S_{m}^{a} S_{n}^{b}\right\} & =\delta^{a b} \delta_{m+n}
\end{aligned}
$$

Triality

Equivalence of the NSR and GS formulations

Triality: There exists an automorphism of $\mathrm{SO}(8)$, that permutes the representations $\mathbf{8}_{\mathbf{v}}, \mathbf{8}_{\mathrm{s}}$, and $\mathbf{8}_{\mathrm{c}}$.
bosonization \longrightarrow reshuffling \longrightarrow refermionization

$$
\begin{array}{rlrl}
\frac{1}{\sqrt{\pi}} \epsilon^{\alpha \beta} \partial_{\beta} \phi_{1} & =\bar{\psi}^{1} \rho^{\alpha} \psi^{2} & \sigma_{1} & =\frac{1}{2}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}\right) \\
\frac{1}{\sqrt{\pi}} \epsilon^{\alpha \beta} \partial_{\beta} \phi_{2} & =\bar{\psi}^{3} \rho^{\alpha} \psi^{4} & \sigma_{2} & =\frac{1}{2}\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right) \\
\frac{1}{\sqrt{\pi}} \epsilon^{\alpha \beta} \partial_{\beta} \sigma_{1}=\bar{S}^{1} \rho \alpha S^{2} \\
\epsilon^{\alpha \beta} \partial_{\beta} \phi_{3} & =\bar{\psi}^{5} \rho^{\alpha} \psi^{6} & \sigma_{3} & =\frac{1}{2}\left(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}\right) \\
\frac{1}{\sqrt{\pi}} \epsilon^{\alpha \beta} \epsilon^{\alpha \beta} \partial_{\beta} \sigma_{2}=\bar{S}^{3} \rho \alpha S_{4}^{4} & =\bar{\psi}^{7} \rho^{\alpha} \psi^{8} & \sigma_{4} & =\frac{1}{2}\left(\phi_{1}-\phi_{2}-\phi_{3}+\phi_{4}\right) \\
\frac{1}{\sqrt{\pi}} \epsilon^{\alpha \beta} \partial_{\beta} \sigma_{3}=\bar{S}^{5} \rho \alpha S^{6} \\
& & \frac{1}{\sqrt{\pi}} \epsilon^{\alpha \beta} \partial_{\beta} \sigma_{4}=\bar{S}^{7} \rho \alpha S^{8}
\end{array}
$$

The Neveu-Schwarz-Ramond formulation (with GSO projection) is equivalent to the Green-Schwarz one.

Ground state

- The mass ${ }^{2}$ operator:

$$
\alpha^{\prime} m^{2}=\underbrace{\sum_{n>0} \alpha_{-n}^{i} \alpha_{n}^{i}}_{N^{(\alpha)}}+\underbrace{\sum_{m>0} m S_{-m}^{a} S_{m}^{a}}_{N^{(S)}}
$$

No normal ordering constant \Longrightarrow ground state is massless.
■ Ground state degeneracy: S_{0} maps ground state to ground state and it obeys the Clifford algebra:

$$
\left\{S_{0}^{a}, S_{0}^{b}\right\}=\delta^{a b}
$$

Triality, similar construction to R-sector in NSR, just $\mathbf{8}_{\mathrm{v}} \leftrightarrow \mathbf{8}_{\mathrm{s} / \mathrm{c}}$

$$
S_{0}^{a} \propto \gamma^{a}=\left(\begin{array}{cc}
0 & \gamma_{i \bar{a}}^{a} \\
\gamma_{\bar{a} i}^{a} & 0
\end{array}\right) \quad \text { or } \quad S_{0}^{\bar{a}} \propto \gamma^{\bar{a}}=\left(\begin{array}{cc}
0 & \gamma_{i a}^{\bar{i}} \\
\gamma_{a i}^{\bar{a}} & 0
\end{array}\right)
$$

The ground state is now a $\mathbf{8}_{\mathrm{v}} \oplus \mathbf{8}_{\mathrm{c} / \mathrm{s}}$ multiplet:

$$
\left|\phi_{0}\right\rangle_{8_{v} \oplus 8_{\mathrm{c}}}=|i\rangle \zeta^{i}(k)+|\bar{a}\rangle \lambda_{c}^{\bar{a}}(k) \quad \text { or } \quad\left|\phi_{0}\right\rangle_{8_{\mathrm{v}} \oplus 8_{\mathrm{s}}}=|i\rangle \zeta^{i}(k)+|a\rangle \lambda_{s}^{a}(k)
$$

Open superstring spectrum

Ground state is $\mathbf{8}_{\mathbf{v}} \oplus \mathbf{8}_{\mathbf{c}}$

$\alpha^{\prime} m^{2}$	states and their SO(8) representation contents	little group	representation contents with respect to the little group
0	$\begin{gathered} \hline\|i\rangle \\ 8_{\mathrm{v}} \\ \|\bar{a}\rangle \\ 8_{\mathrm{c}} \end{gathered}$	SO(8)	8_{v} (boson) 8c (fermion)
+1	$\alpha_{-1}^{j}\|i\rangle$ $S_{-1}^{b}\|\bar{a}\rangle$ $\mathbf{1} \oplus \mathbf{2 8} \oplus \mathbf{3 5}_{\mathbf{v}}$ $\mathbf{8}_{\mathbf{v}} \oplus \mathbf{5 6} \mathbf{v}$ $\alpha_{-1}^{i}\|\bar{a}\rangle$ $S_{-1}^{b}\|i\rangle$ $\mathbf{8}_{\mathbf{s}} \oplus \mathbf{5 6}_{\mathbf{s}}$ $\mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6}_{\mathbf{c}}$	SO(9)	$\begin{gathered} 84 \oplus 44 \text { (bosons) } \\ 128 \text { (fermions) } \end{gathered}$

Compare with the result of the NSR formulation with GSO projection!

$\alpha^{\prime} m^{2}$	states and their $\mathrm{SO}(8)$ representation contents	little group	representation contents with respect to the little group
NS-sector (bosons)			
0	$\begin{gathered} b_{-1 / 2}^{i}\|0\rangle \\ \mathbf{8}_{\mathbf{v}} \end{gathered}$	SO(8)	8 v
+1	$\begin{gathered} b_{-1 / 2}^{i} b_{-1 / 2}^{j} b_{-1 / 2}^{k}\|0\rangle_{i} \\ 56_{\mathbf{v}} \\ \alpha_{-1}^{i} b_{-1 / 2}^{j}\|0\rangle \\ \mathbf{1} \oplus \mathbf{2 8} \oplus \mathbf{3 5} \mathbf{v}_{\mathbf{v}} \\ b_{-3 / 2}^{i}\|0\rangle \\ \mathbf{8}_{\mathbf{v}} \end{gathered}$	SO(9)	$84 \oplus 44$
R -sector (fermions)			
0	$\begin{aligned} & \|\bar{a}\rangle \\ & 8_{c} \end{aligned}$	SO(8)	$8_{\text {c }}$
+1	$\begin{array}{cc} \alpha_{-1}^{i}\|\bar{a}\rangle & d_{-1}^{i}\|a\rangle \\ \mathbf{8}_{\mathbf{s}} \oplus \mathbf{5 6} & \mathbf{8}_{\mathbf{c}} \oplus \mathbf{5} \mathbf{6}_{\mathbf{c}} \end{array}$	SO(9)	128

Closed superstring spectrum

Closed superstring states are tensor products of left- and right-movers.
For the massless level:
Type IIA: Opposite chirality for left- and right-movers.

$$
\begin{aligned}
\left(\mathbf{8}_{\mathbf{v}} \oplus \mathbf{8}_{\mathbf{c}}\right) \otimes\left(\mathbf{8}_{\mathbf{v}} \oplus \mathbf{8}_{\mathbf{s}}\right)= & \left(\mathbf{1} \oplus \mathbf{2 8} \oplus \mathbf{3 5}_{\mathbf{v}} \oplus \mathbf{8}_{\mathbf{v}} \oplus \mathbf{5 6}_{\mathbf{v}}\right)_{\text {bosonic }} \\
& \oplus\left(\mathbf{8}_{\mathbf{s}} \oplus \mathbf{8}_{\mathbf{c}} \oplus \mathbf{5 6}_{\mathbf{s}} \oplus \mathbf{5 6}_{\mathbf{c}}\right)_{\text {fermionic }}
\end{aligned}
$$

Type IIB: Same chirality for the left- and right-movers.

$$
\begin{aligned}
\left(\mathbf{8}_{\mathrm{v}} \oplus \mathbf{8}_{\mathrm{c}}\right) \otimes\left(\mathbf{8}_{\mathbf{v}} \oplus \mathbf{8}_{\mathrm{c}}\right)= & \left(\mathbf{1} \oplus \mathbf{2 8} \oplus \mathbf{3} 5_{\mathbf{v}} \oplus \mathbf{1} \oplus \mathbf{2 8} \oplus \mathbf{3} 5_{\mathrm{c}}\right)_{\text {bosonic }} \\
& \oplus\left(\mathbf{8}_{\mathbf{s}} \oplus \mathbf{8}_{\mathbf{s}} \oplus \mathbf{5} \mathbf{5}_{\mathrm{s}} \oplus \mathbf{5} 6_{\mathrm{s}}\right)_{\text {fermionic }}
\end{aligned}
$$

Agrees with the NSR formulation!

Thank you!

Thank you for your ATTENTION!

[^0]: $i, j, k=1 \ldots, 8$
 $a, \bar{a}=1, \ldots, 8$

