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Abstract

Earlier, bosonic string theory was found to lack fermionic states. To solve

for this unphysical property, the theory is extended through a new symmetry

to what is called Superstring Theory. This theory does turn out to include

fermions. The aim of this report is to analyze the e�ects produced on the

system with the introduction of fermions in N = 1 superstring theory. The

discussion will cover the NS-R model of superstring theory, where a worldsheet

supersymmetry gives the right tools to construct a consistent quantum string

theory in critical spacetime dimension D = 10.
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1 Introduction

This report is based on the presentation of Superconformal String Theory, given in the
Spring Semester of 2013 at ETH Zürich for the Proseminar in Conformal Field Theory
& String Theory. The topic of the talk has been deeper analyzed and supplemented
with certain computations.

Superstring theory arises as an attempt to solve certain shortcomings of the
bosonic string theory, such as the absence of fermions and the presence of tachyons
in the mass spectrum. In this report fermionic strings will be introduced through
the NS-R model in N = 1 superstring theory. The system is described by a two-
dimensional action invariant under global worldsheet supersymmetry, whose prop-
erties and conserved currents are explored in sections 2.2 and 2.3. As an aside, in
sec. 2.4 supersymmetry is formulated in superspace. Superspace plays the same role
for supersymmetry as Minkowski space plays for Lorentz symmetry.

The variation of the superconformal action leads to the Euler-Lagrange equa-
tions of motion for the bosonic and fermionic coordinates. Since the former has been
already discussed in previous lectures, section 2.5 deals with the solutions for the
fermionic part only. The vanishing of the surface term is achieved through the im-
plementation of periodic (Ramond) or antiperiodic (Neveu-Schwarz) boundary con-
ditions, whose realization in spacetime will give rise to both bosonic and fermionic
states. In section 2.6 the Fourier modes of the conserved currents are analyzed. These
turn out to satisfy the super-Virasoro algebra, whose central extension will be crucial
in the process of quantization.

The quantization procedure is explored through two di�erent approaches. The
old-covariant approach, given in section 3.1, provides a �rst insight on how the pa-
rameters of the theory are constrained under the requirement of unitarity and decou-
ple of unphysical states. Secondly, the light-cone gauge quantization, in section 3.2,
exploits the residual gauge freedom of the system to completely �x the gauge and
restrict the Fock space to the physical space. The e�ect of the non-covariant gauge
choice is the appearance of an anomaly term in the Lorentz algebra after the process
of quantization. The Lorentz symmetry will be restored constraining the values of
the mass shift constant and the spacetime dimension to particular values.

Eventually, the global worldsheet supersymmetry, section 4, will be generalized
via the Noether method to a locally supersymmetric action, the supergravity action.
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2 Classical Theory

2.1 Superconformal action

The Polyakov action, describing the bosonic string theory, represents a two-dimensional
free �eld theory of scalar �elds, Xµ. In order to obtain fermionic strings, worldsheet
spinors are introduced. Nevertheless, the generalization of the previous theory is made
through the gauge-�xed Polyakov action, whose simpler expression o�ers a more in-
tuitive generalization, while the fundamental gauge-invariant action of the system1

will be examined later. The gauge-�xed superstring action or superconformal action
is

S = − 1

2π

∫
d2σ
{
∂αX

µ(σ)∂αXµ(σ)− iψ̄µ(σ)ρα∂αψµ(σ)
}
, (1)

where the string tension is T = 1/π. The spacetime coordinates of the string, Xµ, are
supplemented with a D-plet of two-component spinors, ψµ. Although ψµA behaves as
a spinor under worldsheet transformations, A denotes the spinor index, it transforms
under the vector representation of the Lorentz group SO(D − 1, 1). The unusual
characteristic, for fermionic coordinates, of transforming as vectors in spacetime does
not contradict the spin-statistics theorem. The theorem, in fact, does not give any
constraint on how a fermionic �eld should transform under internal symmetries and,
since we are dealing with a classical �eld theory on the worldsheet, spacetime trans-
formations are merely internal symmetries from the worldsheet point of view.

In the formula above, ρα are two-dimensional Dirac matrices satisfying the Cli�ord
Algebra {ρα, ρβ} = −2ηαβ. In the following they will be chosen to be

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
.

This choice allows to consider the fermionic coordinates as two-component Majo-
rana spinors. To be more precise, a Majorana spinor is a Dirac spinor on which the
reality condition has been imposed

ψ = ψC ,

where ψC denotes the charge conjugate �eld. This condition corresponds to the
request ψ† = ψT , i.e. the Majorana fermion is a real spinor. From the form of the
superconformal action the equation of motion for ψµA is simply the Dirac equation,
which is a real �rst order di�erential equation, thanks to the choice of the Dirac
matrices, and hence may have a real solution. Furthermore, the reality condition is
Lorentz invariant, being the Dirac matrices purely imaginary. It seems reasonable,
therefore, to deal with Majorana spinors instead of Weyl or Dirac spinors.

In the classical theory the fermionic coordinates, just introduced, are described
by anticommuting variables. This is due to the fact that a consistent quantization of
�elds with integer spin requires the use of commutation relations ([φ, φ̇] ∼ ~), whereas
for �elds with half-integer spin requires anti-commutation relations ({ψ, ψ†} ∼ ~).
Looking at the classical �eld theory as a limit of the quantum system (~ → 0), the
bosonic coordinates, Xµ, are represented classically by commuting variables while

1The gauge-invariant action of superstring theory will be argument of the last section, 4.
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the fermionic coordinates, ψµA, are anticommuting variables. The generalization of
commuting numbers are the so-called Grassmann numbers2. They represent, in fact,
both commuting variables, even Grassmann numbers, and anticommuting variables,
odd Grassmann numbers.

2.2 Supersymmetry

The gauge-�xed action (1) preserves the conformal invariance3 present in the bosonic
string theory, but in addition, results invariant under global supersymmetry trans-
formations. The supersymmetry transformations are

δXµ = ε̄ψµ δψµ = −iρα∂αXµε. (2)

ε is an anticommuting in�nitesimal Majorana spinor indipendent of the worldsheet
coordinates. As pure computation, it appears that the commutator of two supersym-
metry transformations gives a spatial translation on the worldsheet.

[δ1, δ2]X
µ = aα∂αX

µ

[δ1, δ2]ψ
µ = aα∂αψ

µ (3)

The in�nitesimal supersymmetry transformation is a fermionic object that multiplied
by another fermionic transformation gives a vector on the worldsheet aα = 2iε̄1ρ

αε2.
This can be easily check computing �rst the commutation on the bosonic coordinates

[δ1, δ2]X
µ = δ1(ε̄2ψ

µ)− δ2(ε̄1ψµ)

= −iε̄2ρα∂αXµε1 + iε̄1ρ
α∂αX

µε2

= 2iε̄1ρ
αε2∂αX

µ

= aα∂αX
µ.

(4)

Where the third step is achieved using the anticommutative relation of odd Grass-
mann numbers and the de�nition of adjoint (iε̄1ρ

αε2 = iε†1ρ
0ραε2 = −iε̄2ραε1).

In the case of fermionic coordinates, the computation is slightly more involved
and it is better to proceed writing down explicitly the spinor indices.

[δ1, δ2]ψ
µ
A = δ1(−i(ραε2)A∂αXµ)− δ2(−i(ραε1)A∂αXµ)

= −i(ραε2)A∂α(ε̄1Bψ
µ
B) + i(ραε1)A∂α(ε̄2Bψ

µ
B)

= iε̄1A(ραε2)B∂αψ
µ
B + iε̄1B(ραε2)B∂αψ

µ
A + (1↔ 2) (5a)

= iε̄1B(ραε2)B∂αψ
µ
A − iε̄2B(ραε1)B∂αψ

µ
A (5b)

= aα∂αψ
µ
A

In (5a) we have used the Fierz identity: χA(ξBηB) = −ξA(χBηB)−(ξBχB)ηA, together
with the independence of ε to the worldsheet coordinates. While (5b) can be found

2Grassmann numbers form a non-commutative ring with Z2 grading. Being Z2 graded, they can
be classi�ed into even, |χ| = 0, or odd, |χ| = 1. The product between two Grassmann numbers is
χψ = (−1)|χ||ψ|ψχ.

3In the bosonic string theory, the invariance under reparametrization and Weyl scaling gives
the possibility to �x the gauge setting the world sheet metric equal to the �at Minkowsky metric.
This gauge-�xing condition leaves the theory invariant under conformal transformations, coordinate
tranformation that leaves the metric unchanged up to a scale factor.
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requiring ψµ on-shell. The reason why the commutator between two supersymmetry
is equal to a translation on the worldsheet comes from the algebra of the generators of
Poincaré and supersymmetry transformations. Later we will come back on this point,
for the moment it is important to notice that the closure of the algebra generated by
superconformal transformations is achieved only if ψµ satis�es the Dirac equation,
ρα∂αψ

µ = 0, i.e. ψµ is an on-shell spinor.

2.3 Conserved currents

The invariance of the action, S, under continuous transformations implies, through
Noether's theorem, the existence of conserved charges. The conserved charges cor-
responding to in�nitesimal conformal transformation are jα = Tαβε

β 4, where Tαβ is
the stress-energy tensor. Tαβ corresponds to the charge density related to the invari-
ance of the system under translations on the worldsheet. In superstring theory, the
bosonic part of the stress-energy tensor remains equal to the expression found in the
bosonic string theory, however, the presence of the spinor �elds brings about some
new terms,

Tαβ = ∂αX
µ∂βXµ + i

4
ψ̄µρα∂βψµ + i

4
ψ̄µρβ∂αψµ − (trace). (6)

The conserved current of supersymmetry transformations is determined through the
Noether method. Acting with a local supersymmetry transformation on the globally
invariant action, the variation of the action turns out to be proportional to the current
multiplied by the derivative of the parameter ε,

δS =
2

π

∫
d2σ∂αε̄J

α. (7)

From this expression the supercurrent is derived.

δS = − 1

π

∫
d2σ
{
∂α(ε̄ψµ)∂αXµ − i

2

(
iε̄ρβ∂βX

µρα∂αψµ − iψ̄µρα∂α(ρβ∂βX
µε)
)}

P.I.
= − 1

π

∫
d2σ
{
∂α(ε̄ψµ)∂αXµ + 1

2
ε̄ρβ∂βX

µρα∂αψµ + 1
2
∂αψ̄

µραρβ∂βX
µε
}

= − 1

π

∫
d2σ
{
∂α(ε̄ψµ)∂αXµ + ε̄ρβ∂βX

µρα∂αψµ

}
= − 1

π

∫
d2σ ∂βXµ

(
∂β ε̄ψµ + ε̄∂βψµ + ε̄ρβρα∂αψ

µ
)

= − 1

π

∫
d2σ ∂βXµ

(
∂β ε̄ψµ − ε̄ραβ∂αψµ

)
P.I.
= − 1

π

∫
d2σ ∂βXµ

(
∂β ε̄ψµ + ∂αε̄ρ

αβψµ
)

= − 1

π

∫
d2σ ∂βXµ

(
−∂αε̄ρβραψµ

)
=

2

π

∫
d2σ

(
1
2
∂αε̄ρ

βραψµ∂βXµ

)
.

4The parameter εβ is the in�nitesimal variation of the worldsheet coordinates (σα → σα + εα).
For further information the reader could refer to [3, p. 5].
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In the previous calculation P.I. means that we have performed an integration by part.
The variation of the action gives for the bosonic part two equal terms, whereas for
the fermionic part includes the variation of both the spinor and the adjoint spinor:
δψ̄µ = δψ†µρ0 = iε†ρ0ραρ0∂αX

µρ0 = iε̄ρα∂αX
µ. Other useful identities are

χ̄ραρβψ = ψ̄ρβραχ,

ραρβ = 1
2
{ρα, ρβ}+ 1

2
[ρα, ρβ] = −ηαβ + ραβ.

From the above calculation, the conserved current corresponding to the supersym-
metry invariance of the action is a fermionic object whose explicit form is

Jα = 1
2
ρβραψ

µ∂βXµ (9)

As stated by Noether's theorem, the currents satisfy conservation law, i.e. ∂αT
αβ = 0

and ∂αJ
α = 0. Moreover, due to the invariance of the theory under conformal

transformation, the currents must also be traceless5

Tαα = 0 ραJα = 0,

where the vanishing of the latter expression is due to the fact that ραρβρα = 0.

2.4 Superspace

The global worldsheet supersymmetry becomes manifest when formulated in the su-
perspace. Instead of having the usual two-dimensional worldsheet parametrized by
the coordinates σα = (σ, τ), two other coordinates θA, anitcommuting variables form-
ing a two-component Majorana spinor, are introduced. The space parametrized by
these coordinates is called superspace. The usefulness of the superspace will be soon
clear.

A general function in superspace, called super�eld, can be expanded in power
series of θ, noticing that θA is an odd Grassmann number and hence θAθA = 0.

Y µ(σ, θ) = Xµ(σ) + θ̄ψµ(σ) +
1

2
θ̄θBµ(σ). (10)

The super�eld depends not only on the bosonic and fermionic coordinates of the
string, but also on a new �eld Bµ, the so-called auxiliary �eld. In superspace the
generator Q of supersymmetry takes the following form

QA =
∂

∂θ̄A
+ i(ραθ)A∂α. (11)

The in�nitesimal supersymmetry transformation on the coordinates σα and θA can
be found from the commutator between the coordinates and the supercharge,

δθA = [ε̄Q, θA] = εA,

δσα = [ε̄Q, σα] = iε̄ραθ,
(12)

5The requirement that the current associated to scale transformation is conserved, implies the
traceless condition, [6, p. 65].
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for convenience the generator of the transformaion is multiplied by an arbitrary in-
�nitesimal anticommuting parameter εA. Thus, in superspace a supersymmetry trans-
formation is a geometrical transformation, in particular a translation on superspace.
As an example, let us compute the variation of the odd Grassmann coordinate, θA.

δθAf = [ε̄Q, θA]f

= ε̄Q(θAf)− θAε̄Q(f)

= ε̄B

( ∂

∂θ̄B
+ i(ραθ)B∂α

)
(θAf)− θAε̄B

( ∂

∂θ̄B
+ i(ραθ)B∂α

)
(f)

= εAf + θAε̄B

( ∂

∂θ̄B
+ i(ραθ)B∂α

)
(f)− θAε̄B

( ∂

∂θ̄B
+ i(ραθ)B∂α

)
(f).

= εAf (13a)

The supercharge can be used to de�ne the transformation property of the super�elds

δY µ = [ε̄Q, Y µ] = ε̄QY µ, (14)

whose expansion in powers of θ yealds the supersymmetry transfromations

δXµ = ε̄ψµ

δψµ = −iρα∂αXµε+Bµε

δBµ = −iε̄ρα∂αψµ.

Moreover, the commutator between two supersymmetry transformations is

[δ1, δ2]Y
µ = −aα∂αY µ, (15)

since the commmutator of two supercharges is [ε̄1Q, ε̄2Q] = −2iε̄1ρ
αε2∂α = −aα∂α.

This equation corresponds to equation (3), previously derived. Nonetheless, the pres-
ence of the auxiliary �eld Bµ allows the closure of the algebra of the generators of
supersymmetry and Poincaré transformations without the on-shell condition for the
fermionic �eld. In fact, as it can be seen above, the vanishing of the variation of the
auxiliary �eld corresponds to the Dirac equation.

The action expanded in components reads

S = − 1

2π

∫
d2σ
{
∂αX

µ∂αXµ − iψ̄µρα∂αψµ −BµBµ

}
. (16)

From the variation of S, the Euler-Lagrange equation for Bµ turns out to be Bµ = 0.
Therefore, Bµ can be set equal to zero on-shell, which corresponds to the absence
of the auxiliary �eld as in section 2.2. The necessity of the �eld Bµ to achieve the
closure of the algebra is due to a mismatch between the bosonic and the fermionic
degrees of freedom o�-shell6.

6For further information the reader could refer to [5, p. 99].
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2.5 Dirac equation & boundary conditions

The analysis of the equations of motion of the spinor �eld is conveniently performed
in light-cone coordinates, σ± = τ ± σ and ∂± = 1

2
(∂τ ± ∂σ), where the upper and

lower components of the spinor ψ =

(
ψ−
ψ+

)
completely decouple. Since the analysis

of the bosonic part of the action is identical to the discussion in the bosonic string
theory, this section will focus on the fermionic part, which is

Sf =
i

π

∫
d2σ
{
ψ−∂+ψ− + ψ+∂−ψ+

}
.

Varying the fermionic action, the equations of motion for the �eld ψ appear together
with surface terms,

δSf =
i

π

∫
d2σ
(
δψ−∂+ψ− + ψ−∂+δψ− + δψ+∂−ψ+ + ψ+∂−δψ+

)
(17a)

P.I.
=

i

π

∫
d2σ
(
δψ−∂+ψ− + ∂+

(
ψ−δψ−

)
− ∂+ψ−δψ− + (+↔ −)

)
=
i

π

∫
d2σ
(
δψ−∂+ψ− + ∂+

(
ψ−δψ−

)
+ δψ−∂+ψ− + (+↔ −)

)
(17b)

=
2i

π

∫
d2σ
(
δψ−∂+ψ− + δψ+∂−ψ+

)
+

+
i

2π

∫
d2σ
(

(∂τ + ∂σ)(ψ−δψ−) + (∂τ − ∂σ)(ψ+δψ+)
)

(17c)

In the last expression, the �rst term leads to the equations of motion

∂+ψ
µ
− = 0

∂−ψ
µ
+ = 0,

(18)

which implies that ψµ− is a right-moving spinor while ψµ+ is a left-moving spinor. The
second term is the surface term which, discarding the total derivative with respect to
τ , becomes

i

2π

∫
dτ {ψ−δψ− − ψ+δψ+}

∣∣σ=π
σ=0

. (19)

The vanishing of this surface term can be implemented in di�erent ways, depending
on the type of strings and sector considered.

2.5.1 Closed strings

The cancellation of the surface term for closed strings is ensured either by periodicity
condition, Ramond boundary condition

ψµA(σ, τ) = ψµA(σ + π, τ)

or antiperiodicity condition, Neveu-Schwarz boundary condition

ψµA(σ, τ) = −ψµA(σ + π, τ)

8



Figure 1: Closed string

for each component of the spinor. The possibillity of having an antiperiodicity con-
dition, absent in the bosonic string theory, is due to the fact that we are dealing with
spinors on the worldsheet. A spinor after a complete rotation around the string can
transform to plus or minus itself. A Lorentz transformation on a spinor is a�ected by
a sign ambiguity, being the square root of the vector representation of the Lorentz
group7. Therefore, for each component of the spinor periodicity or antiperiodicity
has to be imposed to guarantee the vanishing of the surface term. Periodicity condi-
tion is, consequently, associated to integer modes, while antiperiodicity condition to
half-integer modes.

The general solutions of the Dirac equation in Fourier modes is

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2in(τ−σ) (R)

or
ψµ−(σ, τ) =

∑
r∈Z+1/2

bµr e
−2ir(τ−σ) (NS)

for the right-moving component (∂+ψ
µ
− = 0), and

ψµ+(σ, τ) =
∑
n∈Z

d̃µne
−2in(τ+σ) (R)

or
ψµ+(σ, τ) =

∑
r∈Z+1/2

b̃µr e
−2ir(τ+σ) (NS)

for the left-moving component (∂−ψ
µ
+ = 0).

For closed strings the oscillating modes of left- and right-moving spinor are in-
dipendent apart from the level matching condition8. Four closed-string sectors are
obtained, corresponding to the di�erent pairings (ψµ−, ψ

µ
+): (NS−NS), (NS−R), (R−

NS), (R−R)9.

7In other words the spin bundle is the square root of the tangent bundle.
8The level matching condition for the R-sector is α′M2 = Nα + Nd =

∑∞
n=1 α−n · αn +∑∞

n=1 d−n ·dn =
∑∞
n=1 α̃−n · α̃n+

∑∞
n=1 d̃−n · d̃n, for the NS-sector instead of the integer oscillators

there are half-integer oscillators.
9The signi�cance of these four sectors in spacetime will be discussed in section 3.1.
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2.5.2 Open strings

In the case of open strings, the vanishing of the surface terms requires

ψ+δψ+ = ψ−δψ− σ = 0, π.

As a consequence, at each end of the string ψ+ = −ψ−. The overall sign between ψ+

and ψ− is just a matter of convention, what acquires signi�cance is the sign at one
end of the string when at the other end the relative sign has already been �xed. For
this reason, the relative sign at σ = 0 can be chosen to be

ψµ+(0, τ) = ψµ−(0, τ),

without loss of generality. The relative sign in σ = π de�nes two sectors:

• The Ramond sector
ψµ+(π, τ) = ψµ−(π, τ) (R)

• The Neveu-Schwarz sector

ψµ+(π, τ) = −ψµ−(π, τ) (NS)

The general solutions of the Dirac equation in Fourier modes is

ψµ−(σ, τ) = 1√
2

∑
n∈Z

dµne
−in(τ−σ)

ψµ+(σ, τ) = 1√
2

∑
n∈Z

dµne
−in(τ+σ),

with Ramond boundary condition,

ψµ−(σ, τ) = 1√
2

∑
r∈Z+1/2

bµr e
−ir(τ−σ)

ψµ+(σ, τ) = 1√
2

∑
r∈Z+1/2

bµr e
−ir(τ+σ),

with Neveu-Schwarz boundary condition. As before, the Ramond boundary condition
is associated to integer modes, while the Neveu-Schwarz to half-integer.

2.6 Super-Virasoro modes

In view of the decoupling of right- and left-moving components in light-cone coordi-
nates, the conserved currents assume a more compact form. The supercurrents, J−
and J+, as linear combination of lower and upper component of the fermionic current
could in principle be two-component spinors, instead a short calculation shows that
only the right-moving component of the former and the left-moving component of
the latter are not vanishing

J− = ψµ−∂−Xµ.

J+ = ψµ+∂+Xµ

10



The conserved current under translation or stress-energy tensor becomes

T−− = ∂−X
µ∂−Xµ + i

2
ψµ−∂−ψ−µ,

T++ = ∂+X
µ∂+Xµ + i

2
ψµ+∂+ψ+µ

where T+− and T−+ are zero by the tracelessness condition10.
The N = 111 superconformal algebra in two dimension satis�ed by these currents

corresponds to the closed algebra previously introduced with equation(3), where the
commutation relation between supercurrents is

{J−(σ), J−(σ′)} = πδ(σ − σ′)T−−(σ)

{J+(σ), J+(σ′)} = πδ(σ − σ′)T++(σ)

{J+(σ), J−(σ′)} = 0.

By analogy to the bosonic string theory, where the equation of motion for the gauge
�eld hαβ leads to the Virasoro constraints T++ = T−− = 0 after having �xed the
gauge, it seems reasonable to generalize the Virasoro constraints to super-Virasoro
constraints

T++ = T−− = J+ = J− = 0. (21)

In superstring theory the constraint equations would arise from the gauge-invariant
action, also called supergravity action, whose invariance under local supersymmetry
gives rise to constraint equations as equations of motion of a new gauge �eld12.

The Fourier modes of the conserved currents Tαβ and Jα, as in the bosonic string
theory, correspond to the super-Virasoro modes13 Lm, and Fm for the R-sector, Gr

for the NS-sector. For open strings they are

Lm =
1

π

∫ π

0

dσ{eimσT++ + e−imσT−−} =
1

π

∫ π

−π
dσeimσT++

Fm =

√
2

π

∫ π

0

dσ{eimσJ+ + e−imσJ−} =

√
2

π

∫ π

−π
dσeimσJ+

Gr =

√
2

π

∫ π

0

dσ{eirσJ+ + e−irσJ−} =

√
2

π

∫ π

−π
dσeirσJ−.

The utility in writing down the last term in the above expressions is due to the or-
thogonality of the exponential functions in the interval from −π to π. For closed
string there are two sets of super-Viraroso generators, one given by the mode expan-
sions of T++ and J+ that correspond to Lm, Fm, Gr and the other given by the mode
expansions of T−− and J− that correspond to the set L̃m, F̃m, G̃r. The expansion

10T+− and T−+ are linear combinations of T00 and T11, where the zero-component corresponds
to the worldsheet coordinate τ while the �rst-component to σ.

11The condition N = 1 refers to the fact that a supersymmetry transformation is performed via
one Majorana spinor.

12The fundamental action of superstring theory, invariant under local supersymmetry transfor-
mation, is described in section 4. For a more detailed explanation of the subject we refer to [2,
p. 129].

13The super-Virasoro modes are the generators of the super-Virasoro algebra, whose central
extension is written explicitly in section 3.1.1.
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of the super-Virasoro modes in term of oscillators is derived by inserting the mode
expansions for the bosonic and fermionic coordinates. Below we present an example
of computation.

Lm =
1

π

∫ π

0

dσ
{
eimσT++ + e−imσT−−

}
=

1

π

∫ π

−π
dσ
{
eimσT++

}
(6)
=

1

π

∫ π

−π
dσ
{
∂+X

µ∂+Xµ + i
2
ψµ+∂+ψ+µ

}
=

1

4π

∫ π

−π
dσ
{
eimσ

(∑
n,p

αn · αpe−i(n+p)σ +
∑
n,p

dn · dppe−i(n+p)σ
)}

=
1

2

(∑
n

αn · αm−n +
∑
n

dn · dm−n(m− n)
)

=
1

2

(∑
n

α−n · αm+n +
∑
n

(n+ 1
2
m)d−n · dm+n

)
.

The mode expansion is evaluated at τ = 0 and considering for the bosonic coordinates
∂+X

µ = 1
2
(Ẋµ + X ′µ) = 1

2

∑
n α

µ
ne
−in(τ+σ), whereas for the fermionic coordinates in

the R-sector ψµ+ = 1√
2

∑
n d

µ
ne
−in(τ+σ). In the last step we have used the identity∑

n(m − n)dn · dm−n = −
∑

n ndn · dm−n and the possibility of changing the sign of
the index on which we are summing over.

Proceeding in the same way for the other super-Virasoro modes, explicit expan-
sions in terms of oscillators are found. In the case of R-sector

Lm = Lαm + Ldm (23)

Lαm = 1
2

∑
n∈Z

α−nαm+n

Ldm = 1
2

∑
n∈Z

(n+ 1
2
m)d−ndm+n

Fm =
∑
n∈Z

α−ndm+n.

While in the NS-sector
Lm = Lαm + Lbm (24)

Lαm = 1
2

∑
n∈Z

α−nαm+n

Lbm = 1
2

∑
r∈Z+1/2

(r + 1
2
m)b−rbm+r

Gr =
∑
n∈Z

α−nbr+n.

By comparison with the bosonic string theory, new fermionic modes, Fm and Gr,
arise from the supercurrent Jα, but this is not the unique di�erence from the previous
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theory. In fact, the bosonic modes acquire new terms, Ldm and Lbm, coming from the
fermionic contribution to the stress-energy tensor.

The super-Virasoro constraints T++ = T−− = J+ = J− = 0 of the classical system
in term of oscillators become Lm = Fm = Gr = 0 for m, r ∈ Z. These equations
are also know as physical constraint equations, since a consistent string theory can
only be achieved by imposing these constraints. In the next section, the important
role played by the in�nite dimensional superconformal algebra, arising from the mode
expansions of the charge density of superconformal transformations, is examined.

13



3 Quantization

The classical system can be quantized through di�erent procedures. In this section
two methods will be analyzed; they will give di�erent perspectives on the theory but
eventually they will agree.

In the covariant quantization, the system is quantized transforming all the Poisson
brackets in canonical commutaion relations and promoting the bosonic and fermionic
coordiantes to operators. Anomalies in the generators of the superconformal algebra
will arise. Subsequently, the constraint equations are imposed as operator equations
on the physical states of the system. This method of quantization re�ects the Gupta-
Bleuler method used in QED. Once quantized the system, the physical constraints
give the right tools to eliminate ghosts and �nd a physical space with only positive
de�nite norm states.

The alternative approach, light-cone gauge quantization, consists in getting rid
of all the unphysical states, �rst, and then quantize only the physical space. The
non-covariant gauge choice, made in order to �nd the physical space, brings about in
the quantized system an anomaly term in the Lorentz algebra.

Eventually, a consistent string theory is obtained through both methods forcing
the mass-shift term a and the critical spacetime dimension D to particular values.

3.1 Covariant quantization

The quantization of the system in the covariant quantization starts from the gauge-
�xed action (1). The Poisson brackets are transformed into canonical commutation
relations and, as usual in a two-dimensional free �eld theory, Xµ and ψµ are promoted
to operators, obeying the following canonical commutation relations

[Ẋµ(σ, τ), Xν(σ′, τ, )] = −iπηµνδ(σ − σ′),

{ψµA(σ, τ), ψνB(σ′, τ)} = πηµνδABδ(σ − σ′).
These equations imply the following relations for the oscillators:

[αµm, α
ν
n] = mδm+nη

µν

{dµm, dνn} = δm+nη
µν

{bµr , bνs} = δr+sη
µν ,

where m,n ∈ Z and r, s ∈ Z + 1
2
. The following discussion will be restricted to the

description of open strings or the right-moving component of closed strings. In the
case of left moving component, the analysis is identical if the oscillators α̃µm, d̃

µ
m, b̃

µ
r

are considered.
The oscillating modes are related to properly normalized harmonic oscillators,

e.g. αµm =
√
maµm for m > 0 and αµm =

√
ma†µm for m < 0, this last equality is given

by the reality condition imposed on Majorana spinor. Quantizing the system, the
oscillating modes split into creation and annihilation operators. Oscillating modes
become annihilation operators when the index is positive

αµm |0〉 = bµr |0〉 = 0 m, r > 0 (NS)

αµm |0〉 = dµm |0〉 = 0 m > 0 (R)
(25)
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and creation operators when the index is negative. For m, r < 0, αµm, d
µ
m and bµr

increase the eigenvalue of M2 by 2m and 2r units, respectively14.
The ground state in theNS-sector is completely determined by the �rst relation

in (25), since half integer modes uniquely specify a non-degenerate ground state, that
can be identi�ed as spin zero state. In contrast, in the R-sector the ground state is not
uniquely de�ned. The zero-modes commute with the mass operator ([dµ0 ,M

2] = 0)
and, consequently, the ground state is degenerate. Furthermore, dµ0 obey the Cli�ord
algebra, i.e.

{dµ0 , dν0} = ηµν .

From this expression is clear that dµ0 are Dirac matrices up to a normalisation factor,
γµ = i

√
2dµ0 where {γµ, γν} = −2ηµν . Since the irreducible representation of the

Cli�ord algebra corresponds to spinors of SO(D− 1, 1), the boundary condition that
gives rise to integer modes produces fermionic states.

In conclusion, the boundary conditions, previously analyzed, lead to spacetime
bosons in the NS-sector and spacetime fermions in the R-sector. As a result, for
open string the NS-sector gives rise to bosonic strings while the R-sector to fermionic
strings. In the case of closed string the four sectors are tensor products of two
di�erent sectors, being the two spinorial component independent from each other,
thus (NS − NS) and (R − R) determine bosons in spacetime while (NS − R) and
(R−NS) are spacetime fermions.

3.1.1 Super-Virasoro algebra

The super-Virasoro modes in the quantized system acquire the form

(R)

Lm = Lαm + Ldm (26)

Lαm = 1
2

∑
n∈Z

: α−nαm+n :

Ldm = 1
2

∑
n∈Z

(n+ 1
2
m) : d−ndm+n :

Fm =
∑
n∈Z

α−ndm+n

for the fermionic sector,

(NS)

Lm = Lαm + Lbm (27)

Lαm = 1
2

∑
n∈Z

: α−nαm+n :

14The factor of 2 comes from having set α′ = 1/2 and the de�nition of mass operator given in
section 2.5, footnote 7.
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Lbm = 1
2

∑
r∈Z+1/2

(r + 1
2
m) : b−rbm+r :

Gr =
∑
n∈Z

α−nbr+n

for the bosonic sector.
The only di�erence with the classical expression (26), (27) is the appearance of

normal ordering products at the quantum level. The passage from the classical to
the quantum system, in fact, brings about ordering amibiguites in the products of
oscillators whose commutation or anticommutaion relations are not zero.

Quantizing the system, the algebra of the Fourier modes acquires a central exten-
sion and becomes the super-Virasoro algebra 15 .

(NS)

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n,

[Lm, Gr] =
(

1
2
m− r

)
Lm+r,

{Gr, Gs} = 2Lr+s +B(r)δr+s.

The anomaly terms are
A(m) = 1

8
D(m3 −m),

B(r) = 1
2
D(r2 − 1

4
).

While imposing periodicity conditions

(R)

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n,

[Lm, Fn] =
(

1
2
m− n

)
Lm+n,

{Fm, Fn} = 2Lm+n +B(m)δm+n,

with anomaly terms
A(m) = 1

8
Dm3,

B(m) = 1
2
Dm2.

Shifting L0 by a constant, the linear and the constant term in the anomalies can
be changed and the anomalies in the di�erent sectors will coincide16. The anomaly
terms, written above, are found via the super-Jacoby identity 15 .

Concentrating on the R-sector the super-Jacoby identity reads

[{Fr, Fs}, Lm] + {[Lm, Fr], Fs}+ {[Lm, Fs], Fr} = 0,

15A superalgebra is a generalization of a Lie algebra that includes a Z2 grading. Given three
elements of the superalgebra g, h, l, the Lie superbracket is de�ned [g, h] = gh − (−1)|g||h|hg, this
obeys the super skew-symmetry, [g, h] = −(−1)|g||h|[h, g], and the super Jacobi identity, [g, [h, l]] =
[[g, h], l] + (−1)|g||h|[h, [g, l]].

16For further details the reader could refer to [2, p. 149].
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using the parity of B(m), i.e. B(m) = B(−m), and the commutation relations of the
super-Virasoro algebra, the following recursion relation is found

B(m+ s) =
1

1
2
m− s

[
− (s+ 3

2
m)B(s) + 2A(m)

]
,

which gives, together with the value of the A(m) anomaly, the demanded result
B(m) = 1

2
Dm2. As an aside remark to the super-Virasoro algebra, in the bosonic

sector the generators L1, L0, L−1, G1/2, G−1/2 form a closed superalgebra, while in the
fermionic sector adding F0 to the three bosonic generators, the in�nite dimensional
superalgebra follows directly.

3.1.2 Physical states

Once performed the quantization of the system, the Fock space, created by the action
of creation operators on the ground states, has to be restricted to a space contain-
ing only physical states. The Fock space built up by the oscillators αµm, d

µ
m and

Figure 2: The Fock space is composed by a physical space (light green), a space with extra-zero
norm states on the verge of developing ghosts (dark green), and a space which includes ghosts (blu).

bµr , contains negative and zero norm states that need to decouple from the theory.
The negative norm states arise from the presence of the Minkowski metric in the
commutation relations between oscillators.

Fortunately, the super-Virasoro algebra, described in the previous section, is
an in�nite-dimensional algebra whose constraint equations gives the possibility to
eliminate all the negative-norm states. In a quantum system the classical state-
ment of vanishing modes take a weaker form. The super-Virasoro operators are
required to have vanishing matrix elements when evaluated between two physical
states 〈χ|Ln |φ〉 = 〈χ|Gr |φ〉 = 〈χ|Fn |φ〉 = 0 for n, r ∈ Z. However, since L−m =
L†m, F−m = F †m, G−r = G†r the physical constraints reduces to the demand that the
positive-frequency components annihilate physical states.

Considering for the moment the bosonic sector, the physical constraints are

Ln |φ〉 = 0 n > 0

(L0 − a) |φ〉 = 0

Gr |φ〉 = 0 r > 0.
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In the NS-sector the mass shell condition for the ground state is, as in the bosonic
case, L0 = a from which the momentum of the string is related to the parameter a
through the relation k2/2 = a 17. The �rst excited state can be written as G−1/2 |0; k〉,
in this case the on-shell condition is re�ected by the request k2/2 = (a−1/2)18. From
these calculations a space free of ghosts is obtained when a ≤ 1/2. The interesting
result appears when

a = 1
2
,

with which condition the �rst excited state becomes a massless vector particle and
the scalar ground state a tachyon19. Choosing the mass shift parameter a equal to
1/2 an in�nite family of zero-norm sates appears. This is due to the presence of extra
zero-norm states on the boundary between the free-ghosts space and the one with
ghosts. The numerous zero-norm states delineate a region with an enlarged gauge
symmetry that gives the possibility to decouple completely the zero-norm states from
the theory. Until now, we have faced the problem of negative-norm states, however
zero-norm states represent unphysical degrees of freedom that need to decouple from
the system. Considering a = 1/2, another family of zero-norm states is found at a
certain value of the spacetime dimension. The states |φ〉 = (G−3/2 + λG−1/2L−1) |χ〉
where |χ〉 is a physical state, are zero-norm states if 20

G1/2 |φ〉 = (2− λ)L−1 |χ〉 = 0

G3/2 |φ〉 = (D − 2− 4λ) |χ〉 = 0

and hence λ=2 and
D = 10.

In conclusion, a consistent quantization of the bosonic superstring constrains the
parameters of the theory to precise values.

In the fermionic sector, the physical constraints are

Ln |ψ〉 = 0 n > 0

(F0 − µ) |ψ〉 = 0

Fn |ψ〉 = 0 n > 0

where µ is an arbitrary constant, representing the mass shift for the fermionic ground
state. Proceeding as before, the research for zero-norm states lead to the condition
µ = 0 20 . This is reasonable since the super-Virasoro operators Fn do not have any
ordering ambiguities in term of oscillators and, furthermore, the constant µ should be
a commuting c-number that could not be add to an anticommuting variable. Another
family of zero-norm states |ψ〉 = F0F−1 |χ〉 arises when

L1 |ψ〉 = (1
4
D − 5

2
) |χ〉 = 0

17This results from the on-shell condition: M2 = −k2 = 1
α′ (
∑∞
n=1 α−n · αn − a), where for the

ground state there is no excited oscillator and for convenience α′ = 1/2.
18Since (L0 − a)G−1/2 |0; k〉 = ( 12G−1/2 − aG−1/2) |0; k〉 = ( 12 − a)G−1/2 |0; k〉 = 0 this gives

k2/2 = a− 1/2.
19The arbitrary elimination of a < 1/2 is due to the appearance of problems with unitarity at

one loop level, [1, p. 86].
20For more details the reader could refer to [1, p. 206].
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The number of zero-norm states increases dramatically in D = 10 spacetime dimen-
sions. Thus, for the fermionic sector, the mass shift constant turns out to be µ = 0
and the critical spacetime dimension D = 10. After shifting the linear term in the
anomaly, as seen in section 3.1.1, the mass shift constants are renormalized to the
same value 1/2 for both sectors.

3.2 Light-Cone gauge

3.2.1 Residual gauge freedom

In the bosonic string theory, the gauge condition hαβ = ηαβ does not �x completely the
gauge. The residual gauge freedom is re�ected in the possibility of reparametrizing
the light-cone coordinates, σ± → σ̃±(σ±). The action, in fact, remains invariant
under conformal transformations.

The superconformal action (1) is the gauge-�xed expression of a locally super-
symmetric action, that will be introduced in the next section. As in the bosonic
theory, the gauge-�xed action maintains/keeps a residual gauge freedom. In order to
completely �x the gauge, light-cone coordinates are used. They are de�ned as linear
combinations of spacetime coordinates,

X± ≡ 1√
2

(X0 ±XD−1), ψ± ≡ 1√
2

(ψ0 ± ψD−1.) (28)

The scalar product between light-cone coordinates isX ·Y = −X+Y −−X−Y ++X iY i,
where the ±-components are the longitudinal components while the i-components are
the transverse components. The residual gauge freedom can be used to set a bosonic
light-cone coordinate proportional to τ ,

X+(σ, τ) = x+ + p+τ.

For the fermionic coordinates the proper non-covariant gauge condition is

Figure 3: A closed string and two equal light-cone time slices.

ψ+(σ, τ) = 0.

As a check of consistency, under superconformal transformations the bosonic gauge
condition is preserved, in fact δX+ = ε̄ψ+ = 0.

Substituting the light-cone coordinates (X±, X i, ψ±, ψi) in the super-Virasoro
constraints, T++ = T−− = J+ = J− = 0, two di�erential equations are found

ψ± · ∂±X = 0,
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(∂±X)2 + i
2
ψ± · ∂±ψ± = 0.

From the de�nition of scalar product between light-cone coordinates and the gauge
conditions, the equations become

ψ−± =
2

p+
ψi± · ∂±X i,

∂±X
− =

1

p+
(∂±X

i · ∂±X i + i
2
ψi± · ∂±ψi±).

From these expressions X− and ψ− are �xed and only the transverse oscillators, X i,
ψi, are left as free coordinates. The discussion will be restricted to the NS-sector, the
R-sector can be reconstructed in a similar way with integer oscillating modes instead
of half-integer one. Expanding in Fourier modes

ψ−+ =
2

p+
ψi+ · ∂+X i

∑
r

b−r e
−ir(τ+σ) =

1

p+

∑
s

bise
−is(τ+σ)

∑
n

αine
−in(τ+σ)

b−r =
1

p+

D−2∑
i=1

∑
s

αir−sb
i
s,

and from the second equation,

α−n =
1

2p+

D−2∑
i=1

(∑
m

αin−mα
i
m +

∑
r

(
r − n

2

)
bin−rb

i
r

)
.

3.2.2 Lorentz symmetry

Before concluding the classical discussion, it is useful to review the Lorentz symmetry
of the system. The Lorentz invariance of the original system was due to the invariance
of the action under the following transformations Xµ → aµνX

ν , ψµ → aµνψ
ν . The

conserved current arising from Noether's theorem is Jµνα = 1
π
(Xµ∂αX

ν −Xν∂αX
µ +

iψ̄µραψ
ν), which leads to the conserved charge

Jµν = lµν + Eµν +Kµν

where
lµν = xµpν − pµxν ,

Eµν = −i
∞∑
n=1

1

n
(αµ−nα

ν
n − αν−nαµn),

Kµν = −i
∞∑

r=1/2

(bµ−rb
ν
r − bν−rbµr ), (NS)

Kµν = − i
2

[dµ0 , d
ν
0]− i

∞∑
n=1

(dµ−nd
ν
n − dν−ndµn). (R)
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The Lorentz algebra is de�ned by the following Poisson bracket

{Jµν , Jρλ} = −ηνρJµλ + ηµρJνλ + ηνλJµρ − ηµλJνρ.

The ligth-cone gauge does not preserve the Lorentz invariance of the theory and
the generators of the Lorentz algebra that may change the gauge choice become
complicated and non-linear functions of the transversal oscillators. In the NS-sector
for instance J i− is

J i− = li− + Ei− +Ki− =

= xip− − p−xi − i
∞∑
n=1

1

n
(αi−nα

−
n − α−−nαin)− i

∞∑
r=1/2

(bi−rb
−
r − b−−rbir),

Nevertheless, all the Poisson brackets are still satis�ed. The classical system, even if
the gauge condition is not Lorentz invariant, still possesses Lorentz symmetry. This
will not hold in general after the process of quantization.

3.2.3 Quantization

To quantize the system, the Poisson brackets are replaced by commutation or anti-
commutation relations through the rule21 { , } → −i[ , ]. The canonical commutation
relations for the oscillating modes are

[αim, α
j
n] = mδm+nδ

ij,

{dim, djn} = δm+nδ
ij,

{bir, bjs} = δr+sδ
ij.

The commutation relations are restricted to the transverse modes as unique free
coordinates in the physical space. The center of mass light-cone coordinates satisfy

[x−, p+] = −i,

[xi, pj] = iδij.

The fundamental canonical commutation relations arise from the negative longitudi-
nal modes, α−n , b

−
r , whose explicit form in the quantum system is

α−n =
1

2p+

D−2∑
i=1

(∑
m

: αin−mα
i
m : +

∑
r

(
r − n

2

)
: bin−rb

i
r :
)
− aδn

2p+
,

b−r =
1

p+

D−2∑
i=1

∑
s

αir−sb
i
s.

These expressions resemble the super-Virasoro operators, indeed the canonical com-
mutation relations

[p+α−m, p
+α−n ] = (m− n)p+α−m+n +

[
D − 2

8
(m3 −m) + 2am

]
δm+n,

21In the case of anticommuting variables the reader could refer to [2, p. 141] for a generalization
of the Poisson brackets.

21



{p+b−r , p+b−s } = p+α−r+s +

[
D − 2

2
(r2 − 1

4
) + 2a

]
δr+s,

show that the longitudinal modes satisfy the super-Virasoro algebra. Instead of the
usual coe�cient D, in front of the �rst anomaly term, a factor of D − 2 denotes the
decrease of the degrees of freedom in the theory.

The anomaly terms in these commutation relations give rise to an anomaly term in
the generators of the Lorentz algebra. As mentioned before, at the classical level, even
if the residual gauge freedom has been �xed through a non-covariant gauge choice, the
Lorentz symmetry is preserved. When the system is quantized the anomaly terms
occurring in the commutation relations bring about an anomaly term also in the
Lorentz algebra, breaking the symmetry of the system.

In order to determine the Lorentz anomaly, we should consider the generators
of the Lorentz algebra that do not preserve the gauge condition. Certainly, all the
transverse generators preserve the Lorentz algebra, since the system is manifestly
invariant under the transversal Lorentz subgroup. However, the gauge condition is
not invariant under transformations generated by J i− or J+−. It follows that J i−

may have non-trivial commutation relations

[J i−, J j−] 6= 0,

while for the Lorentz algebra

[Jµν , Jρλ] = −iηνρJµλ + iηµρJνλ + iηνλJµρ − iηµλJνρ,

it should vanish.
De�ning J i− = Li− +Ki− where Lµν = lµν + Eµν , the anomaly term is expected

to be quadratic in oscillators

[J i−, J j−] = (p+)−2
∞∑
m=1

∆m(αi−mα
j
m − α

j
−mα

i
m), (31)

since quartic terms would appear also classically and hence they do not give any
contribution to the anomaly term.

The commutation that gives rise to the anomaly term is

[J i−, J j−] =[Li− +Ki−, Lj− +Kj−]

= [xip− − x−pi, xjp− − x−pj]+
[xip− − x−pi, Ej−] + [Ei−, xjp− − x−pj]+
[Ei−, Ej−] + [Ki−, Kj−]+

[Li−, Kj−] + [Li−, Kj−],

where [Li−, Lj−] can be written as

[Li−, Lj−] = − 1

(p+)2
Cij.

De�ning Ei = p+Ei−, and recalling the following commutation relations[
x−,

1

p+

]
= i

1

(p+)2
,
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[xi, Ej] = −iEij.

The �rst commutation relation in [Li−, Lj−] gives zero since the only terms that do
not commute are

[xip− − x−pi, xjp− − x−pj] =

=[xip−,−x−pj] + [−x−pi, xjp−]

=− p−x−[xi,−pj] +−x−p−[pi, xj]

=0.

The second term becomes

[xip− − x−pi, Ej−] =

=[xip−, 1
p+
Ej]− [x−pi, 1

p+
Ej]

=− i(p−/p+)Eij − ipiEj(p+)−2.

Thus, Cij takes the form

Cij = 2ip+p−Eij − [Ei, Ej]− iEipj + iEjpi. (35)

Comparing with the expression (31) and using the commutation relations between
the transversal oscillators, it is possible to �nd ∆m as

〈0|αkmCijαl−m |0〉 = m2(δikδjl − δjkδil)∆m.

Furthermore,

[Ki−, Kj−] + [Li−, Kj−] + [Li−, Kj−] = (p+)−2
∞∑
m=1

m(αi−mα
j
m − α

j
−mα

i
m),

from
[Kij

m, α
−
n ] = mKij

m+n,

[Kij
m, K

kl
n ] = −i(Kil

m+nδ
jk −Kjl

m+nδ
ik −Kik

m+nδ
jl +Kjk

m+nδ
il) +m(δikδjl − δilδjk)δm+n.

The ∆m is found to be

∆m = m

(
1− D − 2

8

)
+

1

m

(
D − 2

8
− 2a

)
.

Thus, for general values of the parameters a andD the theory is not Lorentz invariant.
Spacetime Lorentz symmetry is recovered constraining the two parameters to the
values

D = 10 ∧ a = 1
2
.
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4 Locally Supersymmetric Action

The NS-R model is described by the global supersymmetric action (1). As it has been
already mentioned, however, a consistent string theory requires physical constraints
that eliminate the unphysical states from the system. By analogy to the bosonic
string theory, the super-Virasoro constraints should emerge as gauge condition from
a gauge-invariant action. The fundamental action, therefore, needs to be invariant
under local supersymmetry trasformations. The action before �xing the gauge turns
out to be

S = S ′ + S ′′

S ′ = − 1

2π

∫
d2σe

{
hαβ∂αX

µ∂βXµ − iψ̄µρα∂αψµ
}

S ′′ = − 1

π

∫
d2σe

{
χ̄αρ

βραψµ∂βXµ + 1
4
ψ̄µψµχ̄αρ

βραχβ

}
,

where new �elds are introduced, the gravitino χα and the zweibein eaα. A local
supersymmetry transformation on the gauge-�xed action would bring about a term22

proportional to the fermionic current Jα, whose presence can be annihilated with the
introduction of the supersymmetry gauge �eld χα. Following the Noether method, a
new term, corresponding to the �rst term inside S ′′ cancels the variation of S ′ under
superconformal transformation. The action of a local supersymmetry on this new
term produces another term that is eliminated thanks to the second term in S ′′.

Local supersymmetry transformations23 correspond to

δXµ = ε̄ψµ, δψµ = −iραε(∂αXµ − ψ̄µχα),

δeaα = −2iε̄ρaχα, δχα = ∇αε.

Since the derivative of the gravitino does not appear in the action, its equation
of motion is a constraint equation. In particular, it corresponds to the constraint
equation related to the the fermionic current, as the equation of motion for the metric
on the worldsheet represents the constraint equation for the stress-energy tensor.

The conserved currents of superconformal transformations are

• Supercurrent

Jα ≡ −
π

2e

δS
δχα

= 1
2
ρβραψ

µ∂βXµ.

• Stress-Energy Tensor

Tαβ ≡ −
2

π

1√
h

δS
δhαβ

= ∂αX
µ∂βXµ + i

4
ψ̄µρα∂βψµ + i

4
ψ̄µρβ∂αψµ − (trace).

The constraint equations Jα = 0, Tαβ = 0, used in the quantization procedures, follow
as gauge-invariant equations of motion of a gauge theory.

The symmetries of the action can be used to impose the so-called superconformal
gauge. This amounts to setting the world-sheet metric equal to the Minkowski metric
up to a conformal factor and setting the gravitino �eld to zero,

hαβ = ηαβ ∧ χα = 0.

22Look at equation (7).
23For more details the reader could refer to [1, p. 228] or [2, p. 129].
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5 Conclusion

The worldsheet theory in the NS-R model is a locally supersymmetric theory that
includes bosonic and fermionic �elds. The superstring action is the gauge-invariant
version of the superconformal action, where the superconformal gauge amounts to set
the worldsheet metric equal to the Minkowski metric up to a conformal factor and
remove the gravitino �eld. The variation of the fundamental action with respect to
the gauge �elds gives rise to gauge-invariant equations of motion that impose con-
straints on the system. In particular, they represent the conserved charge densities
of supersymmetry and conformal transformations, whose mode expansions are the
super-Virasoro modes. The in�nite dimensional algebra that emerges gives the op-
portunity to eliminate all the unphysical degrees of freedom in the theory. Through
the process of quantization, unitarity problems or Lorentz anomaly appear. As a
consequence, superstring theory becomes a consistent string theory only for partic-
ular values of the mass shift constant and critical spacetime dimension (a = 1/2,
D = 10). The appeareance of tachyons is an issue that need to be solved and will
�nd a solution in the next lecture via GSO projection.
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