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Outline 

  Motivation:  CFT “in action”: physical application! 
  Part I: Overview of statistical phyisics and the 2D Ising model 

  Part II: From the 2D Ising model to the free fermion. 
  Step 1: classical to quantum correspondence. 
  Step 2: Jordan-Wigner transformation. 
  Step 3: exact solution and continuum limit. 

  Part III: conformal field theory for the free fermion. 
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PART I: basics of statistical mechanics 

  Complexity  microstate/macrostate formulation. 

  Boltzmann Distribution and partition function. 

  Z as thermodynamic generating function: 
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PART I: Phase transitions and criticality 

  Phase transitions = sudden change in macroscopic properties of the 
system as a control parameter is varied (e.g. T, p). 

  condensation, evaporation, sublimation, … 

  superconductivity 

  ferromagnetic/paramagnetic transition at Curie temperature (Ising!) 

  Distinction between: 
  First order phase transition  latent heat, finite jump in U 
  Second order phase transition  derivatives of macroscopic quantities 

discontinuous, e.g. Ising: χ 

  Order parameter: distinguishes different phases, e.g. Ising: M 
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PART I: Phase transitions and criticality 
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PART I: the classical Ising model 

  Configuration energy:  

  1D: 
          J       σi-1   J        σi      J      σi+1 

  2D: 

  Simple model for ferromagnetism. 

  2D model solved exactly by Onsager for h=0 (1944). Case h ≠ 0 ?  
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PART I: the classical Ising model 

  Configuration energy: 

  Magnetization: 

  Susceptibility:     

  Variance  pair correlation function: 

  Susceptibility as a measure of the statistical 
fluctuations of the dipole moment: 
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PART I: generalizations of the Ising model 

  Rewrite spin-spin interaction: 

  q-Potts models: spins take values 0,...,q-1. 

  Replace spins with unit vectors  Heisenberg model 

  Continuum limit of the lattice  φ4-model, case u=0 exactly solvable 
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PART I: Phase transitions in the ising model 

  Kramers-Wannier duality relation: 

      

  Magnetization M:  
  M=0  symmetric phase (spins are not aligned) 
  M≠0  ordered phase (spins are aligned) 

  Discrete Z2 symmetry breaking: 
  Reversal of spins:  
  <Q> ≠ 0 for quantity Q not invariant under symmetry. 
  M=<σi> simplest of these Q  order parameter 
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PART I: Peierls droplets in the Ising model 

  http://www.pha.jhu.edu/~javalab/ising/ising.html  

  http://physics.ucsc.edu/~peter/ising/ising.html 
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PART I: critical exponents 

  Behavior of physical quantities as TTc ? 

  Correlation length ξ: 

  Correlation length can exceed system’s dimension L 

 algebraic decay 
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PART I: critical exponents 
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PART I: universality 

  Universality: a system shows universality when ist order parameter 
stops depending on local (microscopic) details once the system is 
close enough to criticality.  
  Ising: block spin renormalization (blackboard) 

  magnetization does not depend on the lattice geometry 

  Universality between different phenomena: 
  They share the same set of critical exponents. 
  Universality classes: ferromagnetic transition (Ising), percolation of coffee, 

critical opalescence of liquid, … 

  Formal theoretical explanation: renormalization group theory. 
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PART I: Widom‘s scaling 

  Scaling hypothesis (Widom): the free energy density (or per site) 
near the critical point is a homogeneous function of its parameters h 
(external field) and t (reduced temperature t=T/Tc – 1)  

      

   relate critical exponents to each other! 
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PART I: block spin  
   renormalization 

 block spins of side r (here r=2) 

  rd spins grouped in one (here 4) 
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PART I: Block spin renormalization 

  Aim  justify Widom‘s law: 

  Group spin: 

  New Hamiltonian: 

  Total free energy should not be affected by our grouping procedure:  
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PART I: Block spin renormalization 

       
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PART I: Block spin renormalization 

  Critical exponents can be expressed through ν and η 

  relate all physical quantities at criticality to correlation functions! 

  Quantum field theory  Conformal field theory  
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PART II - Step 1: 1D statistical quantum Ising model 

  Canonical quantization: 
  Observables  operators 
  Results of measurements  eigenvalues 
  Phase coordinates  (eigen)states 
  Ising: configuration energy  Hamiltonian  

  “Quantum Ising model in a transverse field”. 

  Pauli matrices: 
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PART II - Step 1: Pauli spin operator algebra 
  Pauli matrices: 

   Involution: 

  Commutation relations: 
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PART II - Step 1: Pauli spin operator algebra 
  Pauli matrices: 

  Eigenstates : 

  Completeness relations: 

  Action of σx on σz-eigenstates: 
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PART II - Step 1: time slicing 

  Partition function for the quantum 1D Ising model: 

  “imaginary time evolution” 

  Insert completeness relations: 

  New labeling for time interval l: 

  
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PART II - Step 1: Suzuki-Trotter formula 

  Look at one matrix element: 

  Problem: H0 and H1 do not commute . 

  Lie –Trotter formula: 

  “Finite version” of Lie-Trotter: 

  Suzuki-Trotter approximation: 

       

  Justification:  

       
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PART II - Step 1: Suzuki-Trotter formula cont‘d 

  Apply Suzuki-Trotter to 

  Drop the Δτ2-proportional term: 

                 Still to evaluate!  
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PART II - Step 1: Pauli matrix exponential 

  Evaluate: 

  Use involutory property: 

  

  Bring matrix element in the e-βH form of classical Z: 

  Determine Λ and γ by using eigenstates:  

    
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PART II - Step 1: anisotropic 2D classical Ising model 

  Put everything back together: 

 

  See any anology with the following? 

  Identifications:  
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PART II - Step 1: remarks 

  1D quantum  2D classical. 

  2D classical ?? 1D quantum. 
   Yes! Trick: Write Z as a trace over matrix product.  
   transfer matrices  operators arise naturally from canonical quantization 
   spin transfer  imaginary time step 
  (details in report) 

  Generalization: d quantum  (d + 1) classical 
  Quantum transverse field h induces coupling between different times 

  additional dimension! 
  classical (d+1)-dimensional model is field-free! 
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PART II – Step 2: spins in terms of fermions 

  So far: 2D classical Ising model  1D quantum Ising model 

  Now: 1D quanrum Ising model  free fermion 

  Why fermions? Simple mapping between models with spin-½ degrees 
of freedom per site and spinless fermion hopping between sites with 
single orbitals 

  spin-up  empty orbital,    spin-down  occupied orbital 

  Creation/annihilation operators for fermions: 

 Operator relations: 
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PART II – Step 2: the Jordan-Wigner transformation 

  Operator relations work for one site: 

  Naive generalization to the chain  failure! 

  Why? Spin operators commute, fermionic operators anticommute! 

  Jordan-Wigner transformation:         highly non-local! 

I        
        use inductively involution of σz  

  Commutators/anticommutators are preserved: 
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PART II – Step 2: Jordan-Wigner for the Ising chain 

  Trick  rotate coordinates: 

  Operator relations: 

  Fermionic Hamiltonian: 

  Quadratic? ✓  diagonalizable (Fourier)


  Fermionic number conserved? ✗  
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PART II – Step 3: Bogoliubov transformation and exact 
solution  
  Discrete Fourier transform:  

 

  Unitary transformation to a set of operators whose fermionic number is 
conserved (Bogoliubov transformation): 

       

  Final Hamiltonian:   

  Excitation energy: 

10. Januar 2013 6 



PART II – Step 3: continuum limit 

  Analyze the behavior of the energy: 
  Dimensionless parameter g: Jg=h  
  Excitation energy ≥ 0, if h=J  εk=0  

  Energy gap (minimum of the excitation energy): 

  Vanishes for g=1  boundary between symmetric and ordered phase! 
  Long wavelength excitation possible with arbitrary low energies  dominate 

the low-temperature properties. 
  Idea: take continuum limit a  0 and obtain a continuum quantum field 

theory in terms of fermions. 
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PART II – Step 3: continuum limit 

  Continuum Fermi fields: 

  Continuum version of anticommutation: 

  Hamiltonian of the free field: 

  Couplings: 

  Path integral formulation: 

 Conformal invariance for Δ=0: CFT  criticality 

March11th 2013 8 



Outline 

  Part I: Overview of statistical phyiscs and the 2D Ising model 

  Part II: From the 2D Ising model to the free fermion. 
  Step 1: classical to quantum correspondence. 
  Step 2: Jordan-Wigner transformation. 
  Step 3: exact solution and continuum limit. 

  Part III: conformal field theory for the free fermion. 

March11th 2013 1 



PART III: conformal invariance 

  Recall the correlation function for 2D Ising model at criticality: 

  Critical exponent η=¼  want to match this with the help of CFT! 

  Last time: conformal group of infinitesimal  
transformations leaves metric invariant: 
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PART III: conformal invariance on correlation functions 

  Quasi-primary fields: 

  Two-point correlation function: 

  Invariance of action & measure: 

 

  Invariance under scaling, rigid rotation, etc: 

 

  2D: 
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PART III: correlation functions 

  Primary field for the spin with 2-point function: 

  Comparison with classical correlation function: 

  This can be matched for  
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PART III: operator product expansions (OPE’s) 

  OPE: way of expanding correlation functions. 

  Noether’s theorem  conserved current 

  Energy momentum tensor T: 

  OPE for a primary field φ and T 

  Central charge c is different for different models: 
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PART III: free boson VS free fermion 
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Free boson Free fermion 

action 

2-point 
func. 
E-M tensor 

OPE’s  

Conformal 
dimension h 

h=1 h=1/2 

Central 
charge c 

c=1 c=1/2 



PART III: twist fields  

  Aim: determine conformal dimension of the primary fields for σ: 

  Laurent expansion: 

  Anticommutation relations of the modes: 

  Modes act as fermioni creation/annihilation operators: 

  Radial quantization  boundary conditions: 

  Representation of Virasoro algebra through ψ0, with anticommutators: 

  Smallest irreducible rep (operator-state correspondence):   
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PART III: twist fields cont’d 

  Action of     can be represented by Pauli matrices (same algebra): 

  The fields associated with          are called twist fields: 

  Determine conformal weight of σ  look at OPE of e-m tensor: 

  On the other hand: 

 

                                                     
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Take home messages: 

  Simple model for ferro/paramagnetic phase transition  Ising model 

  Critical exponents and idea of universality. 

  Correspondence between classical and quantum systems. 

  Correspondence between statistical mechanics and QFT. 

  Use of symmetries (scaling) in CFT to obtain physically measurable 
quantities. 

  CFT as mathematical tools which can be applied to systems at 
criticality!  
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Thank you for your attention! 
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