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  Motivation:  CFT “in action”: physical application! 
  Part I: Overview of statistical phyisics and the 2D Ising model 

  Part II: From the 2D Ising model to the free fermion. 
  Step 1: classical to quantum correspondence. 
  Step 2: Jordan-Wigner transformation. 
  Step 3: exact solution and continuum limit. 

  Part III: conformal field theory for the free fermion. 
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PART I: basics of statistical mechanics 

  Complexity  microstate/macrostate formulation. 

  Boltzmann Distribution and partition function. 

  Z as thermodynamic generating function: 
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PART I: Phase transitions and criticality 

  Phase transitions = sudden change in macroscopic properties of the 
system as a control parameter is varied (e.g. T, p). 

  condensation, evaporation, sublimation, … 

  superconductivity 

  ferromagnetic/paramagnetic transition at Curie temperature (Ising!) 

  Distinction between: 
  First order phase transition  latent heat, finite jump in U 
  Second order phase transition  derivatives of macroscopic quantities 

discontinuous, e.g. Ising: χ 

  Order parameter: distinguishes different phases, e.g. Ising: M 

March11th 2013 5 



PART I: Phase transitions and criticality 
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PART I: the classical Ising model 

  Configuration energy:  

  1D: 
          J       σi-1   J        σi      J      σi+1 

  2D: 

  Simple model for ferromagnetism. 

  2D model solved exactly by Onsager for h=0 (1944). Case h ≠ 0 ?  
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PART I: the classical Ising model 

  Configuration energy: 

  Magnetization: 

  Susceptibility:     

  Variance  pair correlation function: 

  Susceptibility as a measure of the statistical 
fluctuations of the dipole moment: 
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PART I: generalizations of the Ising model 

  Rewrite spin-spin interaction: 

  q-Potts models: spins take values 0,...,q-1. 

  Replace spins with unit vectors  Heisenberg model 

  Continuum limit of the lattice  φ4-model, case u=0 exactly solvable 
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PART I: Phase transitions in the ising model 

  Kramers-Wannier duality relation: 

      

  Magnetization M:  
  M=0  symmetric phase (spins are not aligned) 
  M≠0  ordered phase (spins are aligned) 

  Discrete Z2 symmetry breaking: 
  Reversal of spins:  
  <Q> ≠ 0 for quantity Q not invariant under symmetry. 
  M=<σi> simplest of these Q  order parameter 
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PART I: Peierls droplets in the Ising model 

  http://www.pha.jhu.edu/~javalab/ising/ising.html  

  http://physics.ucsc.edu/~peter/ising/ising.html 
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PART I: critical exponents 

  Behavior of physical quantities as TTc ? 

  Correlation length ξ: 

  Correlation length can exceed system’s dimension L 

 algebraic decay 
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PART I: critical exponents 
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PART I: universality 

  Universality: a system shows universality when ist order parameter 
stops depending on local (microscopic) details once the system is 
close enough to criticality.  
  Ising: block spin renormalization (blackboard) 

  magnetization does not depend on the lattice geometry 

  Universality between different phenomena: 
  They share the same set of critical exponents. 
  Universality classes: ferromagnetic transition (Ising), percolation of coffee, 

critical opalescence of liquid, … 

  Formal theoretical explanation: renormalization group theory. 
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PART I: Widom‘s scaling 

  Scaling hypothesis (Widom): the free energy density (or per site) 
near the critical point is a homogeneous function of its parameters h 
(external field) and t (reduced temperature t=T/Tc – 1)  

      

   relate critical exponents to each other! 
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PART I: block spin  
   renormalization 

 block spins of side r (here r=2) 

  rd spins grouped in one (here 4) 
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PART I: Block spin renormalization 

  Aim  justify Widom‘s law: 

  Group spin: 

  New Hamiltonian: 

  Total free energy should not be affected by our grouping procedure:  
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PART I: Block spin renormalization 
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PART I: Block spin renormalization 

  Critical exponents can be expressed through ν and η 

  relate all physical quantities at criticality to correlation functions! 

  Quantum field theory  Conformal field theory  
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PART II - Step 1: 1D statistical quantum Ising model 

  Canonical quantization: 
  Observables  operators 
  Results of measurements  eigenvalues 
  Phase coordinates  (eigen)states 
  Ising: configuration energy  Hamiltonian  

  “Quantum Ising model in a transverse field”. 

  Pauli matrices: 
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PART II - Step 1: Pauli spin operator algebra 
  Pauli matrices: 

   Involution: 

  Commutation relations: 
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PART II - Step 1: Pauli spin operator algebra 
  Pauli matrices: 

  Eigenstates : 

  Completeness relations: 

  Action of σx on σz-eigenstates: 
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PART II - Step 1: time slicing 

  Partition function for the quantum 1D Ising model: 

  “imaginary time evolution” 

  Insert completeness relations: 

  New labeling for time interval l: 
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PART II - Step 1: Suzuki-Trotter formula 

  Look at one matrix element: 

  Problem: H0 and H1 do not commute . 

  Lie –Trotter formula: 

  “Finite version” of Lie-Trotter: 

  Suzuki-Trotter approximation: 

       

  Justification:  
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PART II - Step 1: Suzuki-Trotter formula cont‘d 

  Apply Suzuki-Trotter to 

  Drop the Δτ2-proportional term: 

                 Still to evaluate!  
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PART II - Step 1: Pauli matrix exponential 

  Evaluate: 

  Use involutory property: 

  

  Bring matrix element in the e-βH form of classical Z: 

  Determine Λ and γ by using eigenstates:  
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PART II - Step 1: anisotropic 2D classical Ising model 

  Put everything back together: 

 

  See any anology with the following? 

  Identifications:  
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PART II - Step 1: remarks 

  1D quantum  2D classical. 

  2D classical ?? 1D quantum. 
   Yes! Trick: Write Z as a trace over matrix product.  
   transfer matrices  operators arise naturally from canonical quantization 
   spin transfer  imaginary time step 
  (details in report) 

  Generalization: d quantum  (d + 1) classical 
  Quantum transverse field h induces coupling between different times 

  additional dimension! 
  classical (d+1)-dimensional model is field-free! 
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PART II – Step 2: spins in terms of fermions 

  So far: 2D classical Ising model  1D quantum Ising model 

  Now: 1D quanrum Ising model  free fermion 

  Why fermions? Simple mapping between models with spin-½ degrees 
of freedom per site and spinless fermion hopping between sites with 
single orbitals 

  spin-up  empty orbital,    spin-down  occupied orbital 

  Creation/annihilation operators for fermions: 

 Operator relations: 
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PART II – Step 2: the Jordan-Wigner transformation 

  Operator relations work for one site: 

  Naive generalization to the chain  failure! 

  Why? Spin operators commute, fermionic operators anticommute! 

  Jordan-Wigner transformation:         highly non-local! 

I        
        use inductively involution of σz  

  Commutators/anticommutators are preserved: 
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PART II – Step 2: Jordan-Wigner for the Ising chain 

  Trick  rotate coordinates: 

  Operator relations: 

  Fermionic Hamiltonian: 

  Quadratic? ✓  diagonalizable (Fourier)

  Fermionic number conserved? ✗  
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PART II – Step 3: Bogoliubov transformation and exact 
solution  
  Discrete Fourier transform:  

 

  Unitary transformation to a set of operators whose fermionic number is 
conserved (Bogoliubov transformation): 

       

  Final Hamiltonian:   

  Excitation energy: 
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PART II – Step 3: continuum limit 

  Analyze the behavior of the energy: 
  Dimensionless parameter g: Jg=h  
  Excitation energy ≥ 0, if h=J  εk=0  

  Energy gap (minimum of the excitation energy): 

  Vanishes for g=1  boundary between symmetric and ordered phase! 
  Long wavelength excitation possible with arbitrary low energies  dominate 

the low-temperature properties. 
  Idea: take continuum limit a  0 and obtain a continuum quantum field 

theory in terms of fermions. 
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PART II – Step 3: continuum limit 

  Continuum Fermi fields: 

  Continuum version of anticommutation: 

  Hamiltonian of the free field: 

  Couplings: 

  Path integral formulation: 

 Conformal invariance for Δ=0: CFT  criticality 
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PART III: conformal invariance 

  Recall the correlation function for 2D Ising model at criticality: 

  Critical exponent η=¼  want to match this with the help of CFT! 

  Last time: conformal group of infinitesimal  
transformations leaves metric invariant: 
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PART III: conformal invariance on correlation functions 

  Quasi-primary fields: 

  Two-point correlation function: 

  Invariance of action & measure: 

 

  Invariance under scaling, rigid rotation, etc: 

 

  2D: 
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PART III: correlation functions 

  Primary field for the spin with 2-point function: 

  Comparison with classical correlation function: 

  This can be matched for  
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PART III: operator product expansions (OPE’s) 

  OPE: way of expanding correlation functions. 

  Noether’s theorem  conserved current 

  Energy momentum tensor T: 

  OPE for a primary field φ and T 

  Central charge c is different for different models: 
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PART III: free boson VS free fermion 
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Free boson Free fermion 

action 

2-point 
func. 
E-M tensor 

OPE’s  

Conformal 
dimension h 

h=1 h=1/2 

Central 
charge c 

c=1 c=1/2 



PART III: twist fields  

  Aim: determine conformal dimension of the primary fields for σ: 

  Laurent expansion: 

  Anticommutation relations of the modes: 

  Modes act as fermioni creation/annihilation operators: 

  Radial quantization  boundary conditions: 

  Representation of Virasoro algebra through ψ0, with anticommutators: 

  Smallest irreducible rep (operator-state correspondence):   
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PART III: twist fields cont’d 

  Action of     can be represented by Pauli matrices (same algebra): 

  The fields associated with          are called twist fields: 

  Determine conformal weight of σ  look at OPE of e-m tensor: 

  On the other hand: 
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Take home messages: 

  Simple model for ferro/paramagnetic phase transition  Ising model 

  Critical exponents and idea of universality. 

  Correspondence between classical and quantum systems. 

  Correspondence between statistical mechanics and QFT. 

  Use of symmetries (scaling) in CFT to obtain physically measurable 
quantities. 

  CFT as mathematical tools which can be applied to systems at 
criticality!  
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Thank you for your attention! 
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