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Abstract

The purpose of this report is to explain the topics discussed during my talk as part of the the-
oretical proseminar titled “Conformal field theory and string theory”, which was organized by
Prof. Matthias Gaberdiel at the Federal Institute of Technology (ETH) in Zürich during the spring
semester 2013. In the following analysis the mathematics of conformal field theory and their ap-
plication to the statistical mechanical Ising model of ferromagnetism is presented. This approach
allows to highlight the connections between phenomena at criticality and quantum field theory, in
particular the model of a free fermion. Starting from a classical picture, the Ising model is quantized
and a series of clever transformations are applied to obtain a system whose mathematical struc-
ture can be linked to that of quantum field theory. The symmetries of the derived Hamiltonian
and in particular conformal invariance can then be exploited to extract the values of the critical
exponents of physical quantities - such as the magnetization - matching the empirical values. In
this way conformal field theory allows for an effective connection between theoretical predictions
and phenomenological measurements.
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Chapter 0

Outline

This report is structured in four chapters. In the first chapter a review of classical statistical
mechanics will be presented and the Ising model will be described and analyzed. In chapter two
a connection between a classical and a quantum Ising model will be made. In chapter three the
quantum Ising model will be mapped to a system of fermions via Jordan-Wigner transformation
and the continuum limit will lead to a description in terms of free fermionic field. In chapter four
the mathematics of conformal field theory will be briefly reviewed and then exploited to link the
values of the conformal dimensions of a primary field describing the spins of the classical Ising
model to the critical exponents of the connected correlation function. Finally, a few appendices
will cover some mathematical gaps left open in the main text.
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Chapter 1

Classical statistical mechanics

1.1 The partition function in classical statistics

Let us consider a system with a very high number of degree of freedoms, as for an ideal gas or a
crystal lattice of spins. Given the enormous number of particles N in the system (usually around
∼ 1024) it is computationally impossible to perform exact calculations on their trajectories, even
assuming that the initial position and momentum of each particle (xi(0),pi(0)) are known. Instead
of knowing the microscopic properties of each particle, the system can be described macroscopi-
cally with functions of state, representing a statistical average calculated over a suitable ensemble
of configurations of the system. It is important to note that in the thermodynamical limit N →∞
the variance of the macroscopic quantities vanishes1 and their values become exact. In statis-
tical mechanics the microscopic configurations (microstates) are distinguished from macroscopic
states given by average quantities (macrostates): to a given macrostate described by a given set
of functions of state correspond many microstates in terms of phase coordinates. Through the
use of combinatorics and the ergodic hypothesis2 one can calculated the probability that a specific
microstate S is the actual state of the system. This is given by the Boltzmann distribution:

Pi =
1
Z
e−βEi (1.1)

where β = 1
T (the Boltzmann constant is set to kB = 1 de facto being assimilated in T , which has

now units of energy) and Z is a normalizing factor called partition function, which ensures that the
probabilities sum up to one:

Z =
∑
i

e−βEi (1.2)

The partition function is of central meaning in statistical mechanics, since macroscopic quantities
are generally related to its derivatives. For example, one may wish to calculate the inner energy U
of the system:

U =
1
Z

∑
i

Eie
−βEi = − 1

Z

∂Z

∂β
(1.3)

Another example is given by the free energy of the system, describing the energy needed to generate
a system up to thermal equilibrium at temperature T :

F = U − TS = −T logZ (1.4)
1By the law of large numbers the variance of quantity Q is proportional to 1√

N
and hence the statistical fluctuations

are negligible in the limit N →∞.
2The ergodic hypothesis states that the time average of a quantity over the time evolution of a specific microstate

is equal to the average of the same quantity, at fixed time, over some statistical ensemble of microstates.
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where S is the entropy of the system. Many physical observables are derived from the free energy.
For instance, in the presence of a magnetic field h contributing to the free energy, one can calculate
the magnetization M of the system as:

M = − 1
N

∂F

∂h

∣∣∣∣
T

(1.5)

As seen the partition function is the generating function of many thermodynamic quantities.

1.2 The partition function in quantum statistics

If the quantum mechanical character of a system has to be taken into account, then canonical
quantization of the relevant quantities has to be performed: quantum states |ψ〉 replace the classical
phase coordinates, observables are represented by operators acting on the the Hilbert space of such
states and the classical structure given by the Poisson brackets is replaced by a quantum structure
given by commutators [·, ·]. Following this approach, the energy Ei is then replaced by the eigenvalue
of Hamiltonian operator Ĥ corresponding to the state |ψi〉 (i.e. Ĥ |ψi〉 = Ei |ψi〉) and the partition
function Z can be regarded as a trace over eigenstates:

Z =
∑
n

e−βEn =
∑
n

〈ψn| e−βĤ |ψn〉 = Tr ρ (1.6)

where the density operator ρ = e−βĤ was introduced. The analogous quantity in Euclidean quan-
tum field theory is the generating function:

ZQ =
∫

Dφ e−SE [φ]/~ (1.7)

where SE is the action depending on a set of local fields [φ]. The similarity between this density
operator and the time evolution operator e−itĤ can lead to a path integral formulation of the
partition function by substituting t → −iτ (Wick rotation), where τ is a real variable going from
0 to β, and by replacing the sum with an integral:

Z =
∫

dxρ(x, x) =
∫ (xf ,β)

(xi,0)
[dx]e−SE [x] (1.8)

where ρ(xf , xi) is the kernel of the density operator and the integration is taken over all trajecto-
ries from the initial coordinates (xi, 0) to the final coordinates (xf , β). This process qualitatively
illustrates the connection between quantum statistical mechanics and quantum field theory, which
will be discussed by simpler means not involving the path integral formalism in section 3. The
connection between the two generating functions and between statistical mechanics and quantum
field theory (in particular the free Majorana fermion) will be the key to connect the statistical
mechanical Ising model to conformal field theory, whose language is naturally that of quantum
field theory.

1.3 The Ising model

In order to deepen the relation between statistical mechanics and quantum field theory - hence
allowing the use of the machinery of conformal field theory - it is useful to consider a practical
example and work out the details of the transformation of a model into the other. Specifically,
the Ising model provides an excellent starting point for the development of this connection. It
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Figure 1.1: Schematic depiction of the one dimensional Ising model (Ising chain). In the image
notation, Si is the spin at the i-th position, and Jij is the (site dependent) coupling between two
adjacent spins [1].

Figure 1.2: Illustration of the two dimensional Ising model on a rectangular lattice. [1].

is simple enough to be treated analytically, but complex enough to allow a simplified description
of physical phenomena - such as ferromagnetism - and predict observed physical behaviors such
as phase transitions at critical points. Furthermore, it can be formulated in various dimensions
and generalized to more detailed models. Depending on the dimension of the model, different
analytic approaches and various inherently fascinating mathematical tools can be used. Also, the
Ising model can be algorithmically implemented, leading to interesting simulations used to test the
solutions.

The Ising model consists of a multidimensional array of spins σi, whose value can be either 1
or −1. These spins can be for instance regarded as atom cores, whose only property of interest is
their magnetic dipole moment: in this case the model offers a simple description of ferromagnetism
through exchange interaction between localized electrons of the valence band. Other applications
to lattice gases consider instead an array of bits Bi taking value 0 or 1 depending on whether the
position i is occupied or not. In this report focus will be put on the one and two dimensional
spin Ising models, and other dimensionalities will only be briefly mentioned. In one dimension the
aforementioned array is simply a chain of interacting spins (see figure 1). For a chain consisting of
N sites there are then 2N different spin configurations.
In the two dimensional case the spins are arranged in a rectangular lattice (figure 2). Unless
otherwise indicated, a square lattice is used and i refers to the lattice site, usually numbered along
the rows (for instance in a 3× 3-lattice, the central spin would be indexed by the number 5). With
this indexing, for an array of N ×N spins the number of different spin configurations is 2N

2
.

In order to the determine the partition function of this system and derive other physical quan-
tities the energy of each microstate (or configuration) σ must be calculated. In absence of any
external interference, the energy between two spins must depend only on their value (+1 or −1)
and a coupling Jij describing their relative interaction as a function of their position:

E[σ] = −
∑
i,j

Jijσiσj (1.9)

where Jij > 0 in the ferromagnetic case, and a bound state occurs when the spins are aligned along
the same direction, i.e. σiσj = 1. To further simplify the problem, the couplings will be assumed
to be independent on the localization of the spins (Jij = J) and the interaction will be limited to
closest neighbors only. However, it is also often interesting to subject the system to an external
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magnetic field h and analyze the behavior of the magnetization as h is varied, since a magnetic
dipole tends to align itself along the direction of the field. The energy then acquires an extra term:

E[σ] = −J
∑
〈ij〉

σiσj − h
∑
i

σi (1.10)

The notation 〈ij〉 indicates that the summation is taken only over pairs of nearest neighbor lattice
site. It can be noted that in the zero field case, the lowest energy configuration is doubly degenerate:
both cases when the spins are all up or all down will lead to the same energy. Only the presence of
an external field lifts the degeneracy.

The main thermodynamical quantity of interest is of course the magnetization M , which is de-
fined as the expectation value of a single magnetic dipole moment (in this case the spin). Because
of translation invariance, any spin will lead to the same magnetization. Assuming a Boltzmann dis-
tribution for the probability of a single configuration the magnetization can be therefore computed
as:

M = 〈σj〉 =
1
Z

∑
[σ]

{
1
N

∑
i

σi

}
e−βE[σ] (1.11)

Another important quantity of the Ising model is the magnetic susceptibility χ, describing the
magnetic response of the system when placed in an external magnetic field h:

χ =
∂M

∂h

∣∣∣∣
h=0

=
∂

∂h

1
Z

∑
[σ]

{
1
N

∑
i

σi

}
e−βE[σ]

∣∣∣∣∣∣
h=0

=

=

−1
Z2

∂Z

∂h

∑
[σ]

{
1
N

∑
i

σi

}
e−βE[σ] +

1
Z

∑
[σ]

{
1
N

∑
i

σi

}
e−βE[σ]

(
−β∂E[σ]

∂h

)
h=0

=

=

−β 1
N

 1
Z

∑
[σ]

{∑
i

σi

}
e−βE[σ]

2

+ β
1
NZ

∑
[σ]

{∑
i

σi

}2

e−βE[σ]


h=0

=

=
β

N

[〈
σ2

tot

〉
− 〈σtot〉2

]
=

1
NT

[〈
σ2

tot

〉
− 〈σtot〉2

]
=

1
NT

Var(σtot)

(1.12)

where σtot =
∑

i σi. Summarizing:

χ ∝ Var(σtot) (1.13)

The susceptibility is proportional to the variance of the total spin and can be thought of a measure
of the fluctuations of the total magnetic dipole moment; we can therefore relate the susceptibility
to the connected pair correlation function Γc(i−j), which is a measure of the statistical dependence
of two quantities:

Γc(i− j) = 〈σiσj〉 − 〈σi〉 〈σj〉 (1.14)

Using this statistical function the susceptibility can be rewritten as:

χ = β
∑
i

Γc(i) (1.15)
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The fact that the susceptibility can be expressed with correlation functions hints again to
the possibility of connecting classical statistical system such as the Ising model to quantum field
theories, in which the main physical quantities of interest are also correlation functions between
fields, which for one degree of freedom are given by the expectation value of the time ordering
operator T 3 :

〈x(t1)x(t2) · · ·x(tn)〉 = 〈0| T (x̂(t1) · · · x̂(tn)) |0〉 (1.16)

1.4 Generalizations

One of the important features of the Ising model is that it easily lends itself to generalizations.
Because of the invariance of the Boltzmann distribution under a constant shift of the energy
σiσj = 2δσi,σj − 1 and translation invariance the configuration energy can be rewritten, up to a
constant, as:

E[σ] = −2J
∑
〈ij〉

δσi,σj − h
∑
i

σi (1.17)

This form can be further generalized to allow the spins σi to take q different non-negative integer
values: σi = 0, 1, . . . , q − 1. This multivalued spin array is then referred to as q-state Potts model.
A (q − 1)-dimensional unit vector d(σ) is then associated to each possible value of σ, such that∑q

σ d(σ) = 0 and d(σ) plays the role of the magnetic dipole moment associated with the spin value
σ. The configuration energy changes to:

E[σ] = −α
∑
〈ij〉

δσi,σj − h ·
∑
i

d(σi) (1.18)

where α replaces the constant term J describing the type of interaction between spins.
Another, more realistic treatment of classical ferromagnetism is obtained by considering a sys-

tem involving a continuum of degrees of freedom. The spins are then replaced with unit vectors ni
with configuration energy:

E[n] = J
∑
〈ij〉

ni · nj −
∑
i

h · ni (1.19)

This is known as the classical Heisenberg model or the classical O(n) model is the vector n is taken
to have n components. When dealing with critical phenomena is also more convenient to replace
the lattice by a continuum, so that the above hamiltonian can be written in integral form:

E[n] =
∫

dmx {J∂kn · ∂kn− h · n} (1.20)

in which case m is the system’s dimension and the gradient term is equivalent to the nearest-
neighbor interaction of the discrete case. Each vector n(x) is now a continuous function of position,
but it is still taken to fulfill the unity requirement:

n2(x) = 1 (1.21)
3The time ordering operator sorts the factors that follow in chronological order from right to left:

T (x̂(t1) · · · x̂(tn)) = x(t1)x(t2) · · ·x(tn), if t1 > t2 > · · · > tn.
For correlation functions, however, there exists another definition, involving path integration and the action S, which
is equivalent to the former. In the context of conformal field theory the latter definition is used:

〈x(t1)x(t2) · · ·x(tn)〉 = 1
Z

R
[dx]x(t1) · · ·x(tn)e−S[x].
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Figure 1.3: Qualitative example of phase transitions for various macroscopic quantities approaching
criticality[2]. The first row refers to first order phase transitions, and the macroscopic quantities are
discontinuous at the critical point. The second row represents the behavior of the same quantities
under a second order phase transition, for which the derivatives of such quantities are discontinuous.

at every position x. Depending on how this constraint is implemented one can obtain various
models. In particular, by introducing a quartic potential V (|n|) having a minimum at |n| = 1 and
after rescaling the function n, the energy functional may be rewritten as:

E[n] =
∫

dmx
{

1
2
∂kn · ∂kn−

1
2
µ2n2 +

1
4
u(n2)2

}
(1.22)

If n has a single component φ the model is called φ4 model and in the case u = 0 is exactly solvable.
These models are fully analogous to m-dimensional quantum field theories and can hence be studied
using the Euclidean path integration formalism.

1.5 Critical phenomena and phase transitions

One of the most interesting physical features of the Ising model is that it presents a phase transition
at a critical value Tc of the temperature (recall that in the convention used in this report β =
1
T and T is expressed in units of energy). In statistical mechanics phase transitions represent
sudden changes in the macroscopic properties of the thermodynamic system (such as volume,
or magnetization) as a control parameter (for instance the temperature in the two-dimensional
Ising model) is varied; they are analyzed because of their common occurrence in nature and their
phenomenological consequences on the physics of the underlying model. The most common example
of a phase transition is offered by condensation from gaseous to liquid state, in which the volume
of a substance is abruptly and discontinuously reduced. Condensation, along with evaporation,
sublimation and other phase transition between solid, liquid and gaseous states of matter are
termed first order phase transitions and usually involve a finite jump in the inner energy U of the
system, which corresponds to the latent heat necessary to undergo the structural physical change in
the system (i.e. break the weak bindings between molecules). Another type of phase transition do
not involve latent heat nor discontinuities in the average value of microscopic quantities; instead,
the derivatives of these quantities are discontinuous or display some kind of singular behavior (see
figure 3).
In the specific case of the two-dimensional Ising model the magnetization at the critical value Tc is
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Figure 1.4: Qualitative phase diagram for the spontaneous magnetization in the Ising model. To
the left of the curve the system is an ordered ferromagnetic phase, while to its right the system is in
a symmetric paramagnetic state with vanishing spontaneous magnetization. It can be noted that at
criticality (T = 4, in arbitrary units of temperature) the magnetization drops to zero continuously,
but its first derivative (the susceptibility) becomes infinite, i.e. the tangent to the curve is vertical)
[3].

not discontinuous, but its derivative (the magnetic susceptibility χ) exhibits such kind of divergence,
as it can be gained from figure 4.

The critical temperature Tc is related to the coupling J between the spins by the Kramers-
Wannier duality relation4:

sinh
(

2J
Tc

)
= 1 (1.23)

Explicitly the critical temperature Tc is then a function of J :

Tc =
2J

log(1 +
√

2)
(1.24)

Above Tc the spontaneous magnetization (at zero field h) vanishes, whereas below Tc it takes a
nonzero value, inducing the typical behavior of a ferromagnet below the Curie temperature. As
T → Tc the magnetization tends towards 0 according to the power law:

M ∼ (Tc − T )β (1.25)

with β = 1
8 . Since the physical properties of the systems and hence its phase states depend on the

value for the magnetization, this quantity is termed order parameter : an ordered phase in which
4In the context of this report this formula will not be derived and the curious reader might want to look at the

details in the original paper by Kramers and Wannier (1941). The intuitive idea behind the symmetry is to connect
the edges of the finite lattice to form a torus and then apply an involutive transform on it. By considering the dual
(in essence a Fourier transform) of this torus, one finds an equivalent model in which the control parameter (the
temperature) is inverted, because the dual of a discrete torus is itself. The critical point will then be found when the
direct and indirect temperatures cross.

10



the spins are aligned appears when M 6= 0, while M = 0 implies a disordered (or symmetric) phase.
In this context it can also be noted that the critical point between ordered and disordered phase
coincides with the breaking of the Z2 symmetry in the lattice. With “breaking of the symmetry” one
should understand in this case the lifting of the symmetry of the configuration energy E[σ] which
ceases to be symmetric with respect to reversal of the spin value σi → −σi. This Z2 symmetry
is broken when the expectation value of a given quantity Q, which is not invariant under this
symmetry operation, has a non vanishing expectation value 〈Q〉 6= 0. The magnetization M = 〈σi〉
is the simplest of such quantities and can hence be taken as the order parameter of the system,
dividing ordered from symmetric phase. In contrast with the continuity of the magnetization at
Tc, for the susceptibility χ one finds a divergent behavior according to the power law

χ =
∂M

∂h
∼ (T − Tc)−γ (1.26)

with γ = 7
4 . Another very important parameter which describes the system around criticality is

the so called correlation length ξ. Away from Tc the parameter ξ expresses the characteristic length
at which the value of correlation function Γ(i) has decayed to e−1:

Γ(i− j) ∼ e−
|i−j|
ξ(T ) , |i− j| >> 1 (1.27)

As T approaches its critical value, though, the correlation length also becomes singular:

ξ(T ) ∼ 1
|T − Tc|

→ ∞, as T → Tc (1.28)

The divergence of the correlation length is a typical features of continuos phase transitions and a
system which exhibits this type of behavior is said to undergo a critical phenomenon. In particular,
for the case of the two-dimensional Ising model, the condition ξ >> a - where a is the lattice spacing
- implies that spins at all levels of “zooming” are statistically correlated and can arrange themselves
in droplets of equally oriented spins at all size scales: the system shows self-similarity and the spins
fluctuate over all length scales between a and ξ. At Tc (or sufficiently close to it) the correlation
length even exceeds the physical dimension L of the system: the free energy then depends only on
the physical boundaries of the system. Under these circumstances the pair correlation function is
forced, for lack of room, to decay algebraically with a power law

Γ(n) ∼ 1
|n|d−2+η

(1.29)

where d is the dimension of the space. For the two-dimensional Ising model the dependence becomes
then:

Γ(n) ∼ |n|−η (1.30)

The exponents in relations (1.25), (1.26), (1.28) and (1.29) are called critical exponents5 and in
the case of the two-dimensional Ising model can obtained by calculations which can follow different
paths. Onsager derived them by means of renormalization group action, which will be mentioned
in subsection 1.7. In section the values for the critical exponents will be derived using conformal
field theory. Table 1 shows the values of the critical exponents for the most relevant quantities in
the two-dimensional Ising model.

5More exactly the undetermined numbers β, γ etc. are called critical exponents, and their effective values are
called Ising values. This is because (see section 1.6) the same power law can describe various cases with different
values of the critical exponents and the combination of the relevant critical exponents form universality classes which
can describe different and possibly physically unrelated phenomena.
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Exponent Definition Ising value

α C ∝ (T − Tc)−α 0
β M ∝ (T − Tc)β 1/8
γ χ ∝ (T − Tc)−γ 7/4
δ M ∝ h

1
δ 15

ν ξ ∝ (T − Tc)−γ 1
η Γ(n) ∝ |n|2−d−η 1/4

Table 1.1: Definitions of the most common critical exponents and their exact values within the
two-dimensional Ising model. Here d is the dimension of space.[7]

1.6 Scaling and universality

Following the formulation of its first proponent6, the notion of universality can be formulated as
follows:

Proposition (Universality). The closer a system is to its critical point the less the microscopic
dynamical details of the system influence the value of the order parameter.

In other words, the concept of universality is the assertion that the physical properties (such as the
magnetization) stop depending on the dynamical details of the system once it has reached a value
of the control parameter (such as the temperature) close enough to its critical point. Universality is
displayed by systems in a scaling limit, when an increasingly greater number of system components
come to interact. Since macroscopic properties cease to depend on the microscopic details of the
model, it is feasible that close to criticality various models come to share the same set of features and
phase transitions and in practice this actually (and maybe surprisingly often) happens. Surprisingly,
unrelated phenomena such as coffee percolation or liquid opalescence appear to have the same set
of critical exponents as the Ising model. The property of universality in a system can be proven
by means of renormalization group theory, in which, under a reduction {si} → {s̃i} of the state
variables, a certain function Z (usually the partition function or the hamiltonian) can be rewritten
in terms of the new state variables {s̃i} simply by transforming the coupling constants {Jk} → {J̃k}
(see 1.7). The most important application of universality for the Ising model is however invariance
with respect to “regrouping” of spins, i.e. invariance with respect to the underlying size of the
lattice. This invariance is a direct consequence of the so called Widom’s scaling hypothesis, which
can be formulated in the following way:

Scaling Hypothesis (Widom). The free energy density (or the free energy per site, in the discrete
case) near the critical point is a homogeneous function of its parameters, the external field h and
the reduced temperatere t = T

Tc
− 1. In particular, there are exponents a and b such that:

f(λat, λbh) = λf(t, h) (1.31)

Widom’s hypothesis is of course a particular case of universality, since the control parameters h and
t are not microscopic quantities and the energy density f is the macroscopic quantity which becomes

6Leo Kadanoff in its 1966 paper “Scaling Laws for Ising Models Near Critical Points” [?] actually formulated this
assertion in terms of relevant, irrelevant and marginal observables. Any microscopic phenomenon may be categorized
into a set of universality classes in which only the behavior of relevant observables fully describes the characteristic
features of each class and the difference between physical systems is attributable to irrelevant observables.

12



independent of the dynamical details at the critical point. Widom’s hypothesis can and will be
proven in section 1.7, by considering the invariance of the Hamiltonian as the spins are regrouped
into larger blocks (this transformation leads to the aforementioned renormalization group). In this
section the attention will be concentrated on the consequences on critical exponents stemming from
this scaling.

First of all the homogeneity of equation (1.31) implies the invariance of the function t−
1
a f under

the scalings t→ λat and h→ λbh. The free energy can therefore be rewritten as

f(t, h) = t
1
a g(y), y = ht−

b
a (1.32)

where g is some function. From this form the magnetization and the magnetic susceptibility can
be easily computed to be:

M = −∂f
∂h

∣∣∣∣
h=0

= t
1−b
a g′(0) (1.33)

χ =
∂2f

∂h2

∣∣∣∣
h=0

= t
1−2b
a g′′(0) (1.34)

Furthermore, the behavior of M at criticality is given by the power law in table 1 and this implies
an analogous proportionality for the function g(y):

M ∼ h
1
δ , as t→ 0 ⇒ g(y) ∼ y

1
δ , as y →∞ (1.35)

By comparing these asymptotic relations with the power laws in table 1 the critical exponents can
be linked to the values a and b of the scalings through a set of four constraints:

α = 2− 1
a

β =
1− b
a

γ = −1− 2b
a

δ =
b

1− b

(1.36)

If it were somehow possible to express the scaling exponents a and b in terms of the critical exponents
ν and η, the behavior of the directly physically measurable quantities M and χ at criticality could be
determined by the power laws governing the behavior of the correlation length and the correlation
function. As it happens, it is possible to relate scaling and critical exponents; this procedure comes
about naturally by proving Widom’s scaling hypothesis, which will be done in the next section.

1.7 Block spins and renormalization group

As repeatedly stated in the previous sections the energy of a spin configuration is given by:

E[σ] = −J
∑
〈ij〉

σiσj − h
∑
i

σi (1.37)

In order to obtain the scaling factor λ and its powers an effective scaling is introduced in the system
by regrouping the spins into blocks of side r containing rd spins7. Accordingly one can define a

7In the case of an hyper cubic lattice the there are rd spins in a hypercube of side r. In two dimensions this
translates for instance into 2× 2 or 3× 3 groupings and so on.
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Figure 1.5: Example of block spin regrouping in the Ising model. The numbers of degrees of freedom
are reduced by grouping the spins into blocks of side r to form a single site variable. [7].

block spin variable ΣI which encompasses all spins in the block, but which is again normalized to
be either 1 or −1:

ΣI =
1
R

∑
i∈I

σi (1.38)

Here the factor R is introduced to guarantee that the block spin has a value ΣI = ±1.
Assuming that the macroscopic behavior near the critical point can be accounted equally well by
a description in terms of block spins, then the nearest-block Hamiltonian H ′ must have the same
mathematical form as the original Hamiltonian, only with new couplings J ′ and h′:

H ′ = −J ′
∑
〈IJ〉

ΣIΣJ − h′
∑
I

ΣI (1.39)

The correlation length of the blocks is also reduce by a factor r: ξ′ = ξ
r , which implies a scaling

of the reduced temperature by a factor r
1
ν (recall the proportionality relation (1.28) at criticality,

which links the correlation length to the reduced temperature):

t′ = r
1
ν t (1.40)

Also, the interaction energy with the external field should not change when going from the separate
spin to the block spin description:

h
∑
i

σi = h′
∑
I

ΣI = h′R−1
∑
i

σi (1.41)

which implies:

h′ = Rh (1.42)

In addition to the invariance of the interaction energy under grouping procedure, the total free
energy should remain unaffected too. Nevertheless, the free energy per site will increase rd times:

f(t′, h′) = rdf(t, h) (1.43)

or equivalently, inserting the newfound parameters t′ and h′:
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Rushbrooke’s law α+ 2β + γ = 2
Widom’s law γ = β(δ − 1)
Fisher’s law γ = ν(2− η)
Josephson’s law νd = 2− α

Table 1.2: Summary of the scaling laws [7].

f(t, h) = r−df(r
1
ν t, Rh) (1.44)

To complete the picture and find the scaling factor for the external field parameter h one can look
at the block-spin correlation function:

Γ′(n) = 〈ΣIΣJ〉 − 〈ΣI〉 〈ΣJ〉 = R−2
∑
i∈I

∑
j∈J
{〈σiσj〉 − 〈σi〉 〈σj〉} =

= R−2 r2d Γ(rn) =
R−2r2d

|rn|d−2+η
=
R−2rd+2−η

|n|d−2+η

(1.45)

R = r(d+2−η)/2 ⇒ h′ = r(d+2−η)/2h (1.46)

In terms of the critical exponents ν and η Widom’s scaling hypothesis now reads:

f(r
1
ν t, r

d+2−η
2 h) = rdf(t, h) (1.47)

Letting r = λ
1
d :

a =
1
νd
, b =

d+ 2− η
2d

(1.48)

Eventually, with the help of Widom’s scaling, all the critical exponents α through δ could be ex-
pressed in terms of the critical exponents pertaining to the correlation length and to the connected
correlation function (see table 2). This is a very important result, because the correlation func-
tions are the quantities which can directly related to quantum field theory and whose value can be
obtained using conformal field theory and operator product expansions.
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Chapter 2

Quantum statistical mechanics

Chapter 1 presented the main features of the classical Ising model and there it was discovered
that the behavior of all macroscopical quantities near criticality can be related to the power laws
governing the form of the correlation length and the correlation function. The aim of chapter 2 is to
further deepen this analysis and reduce a classical (d+ 1)-dimensional to a quantum d-dimensional
Ising model, which will then be transformed into an equivalent quantum field theory in chapter 3 and
whose correlation functions will be determined by exploiting conformal invariance. Section 2.1 will
introduce the quantum mechanical Ising chain in terms of Pauli matrices, whose properties will then
summarized in section 2.2. Since the procedure linking classical to quantum models in arbitrary
dimensions is mathematically involved, it will be performed only in two classical (respectively one
quantum) dimensions, and the general result will just be inducted from this particular case. It
should be noted that, technically speaking, the result which is being chased after in this chapter is
a connection from the classical two-dimensional Ising model to the quantum one-dimensional one,
since the aim of the transformation is to describe the classical Ising model at criticality with the
tools of conformal field theory. Nevertheless, this report will follow a different and mathematically
less demanding approach: in section ?? the one-dimensional quantum system will be used as a
starting point to be connected to a classical anisotropic two-dimensional Ising lattice. A converse
to this proposition will then just be inferred at the end of this chapter and briefly proved in appendix
B.

2.1 The quantum mechanical 1D Ising model

The quantum mechanical counterpart of the classical Ising model can be obtained from the canon-
ical quantization mentioned in chapter 1. Following the guidelines for the quantization of the
configuration energy, the Hamiltonian for two interacting spins will have the same form as equation
(1.10):

Ĥij = −Jσ̂i · σ̂j (2.1)

but now the observables are replaced by operators, which have a representation in terms of Pauli
spin matrices σi:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.2)

The total Ising system in the presence of an external field h will then be governed by the quantum
Hamiltonian H = H0 +H1, where:
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H0 = −J
∑
〈i,j〉

σzi σ
z
j

H1 = −h
∑
i

σxi

(2.3)

H = H0 +H1 = −J
∑
〈i,j〉

σzi σ
z
j − h

∑
i

σxi (2.4)

Because of the action of the external magnetic field h on the Pauli matrix for the x-component
of the spin, the underlying model of this Hamiltonian is often called quantum Ising chain in a
transverse field.

2.2 Pauli matrices

Before analyzing the possibilities of linking the classical Ising model to its quantum counterpart,
it is a good idea to refresh the basic algebraic properties of the Pauli matrices, since they will
come in handy in the next section. The Pauli matrices obey the following commutation and
anticommutation relations, which can be quickly proven by simple matrix multiplication1:

[σa, σb] = 2i εabc σc

{σa, σb} = 2δab 1
(2.5)

Furthermore, the Pauli matrices are involutory:

(σx)2 = (σy)2 = (σz)2 = 1 (2.6)

Since the determinant of the Pauli matrices is always −1 and the trace is always zero, their eigen-
values are eigenvalues are quickly determined to be ±1:

det(σa) = λ−λ+ = −1
Tr(σa) = λ− + λ+ = 0

⇒ λ+ = 1, λ− = −1
(2.7)

The associated eigenfunctions are:

|+x〉 =
1√
2

(
1
1

)
, |−x〉 =

1√
2

(
1
−1

)
|+y〉 =

1√
2

(
1
i

)
, |−y〉 =

1√
2

(
1
−i

)
|+z〉 =

(
1
0

)
, |−z〉 =

(
0
1

) (2.8)

Lastly, by associating the eigenstate |Sa〉 to the Pauli matrix σa, one gets the completeness relations:∑
Sa=±1

|Sa〉 〈Sa| = 1 (2.9)

In particular for the z-component this means:

|+z〉 〈+z|+ |−z〉 〈−z| = 1 (2.10)
1Note that throughout this report the Einsten summation convention is always tacitly assumed.
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This completeness relation for the z-component will be of fundamental importance in the analysis
performed in the next section.

2.3 Quantum to classical correspondence

When confronted with the need of evaluating the partition function Z for the quantum Ising model,
one has to find a way to circumvent the obstacle of the non-commuting terms H0 and H1 in the total
Hamiltonian, which make the terms in the exponential hard to separate. Instead of unlimbering the
heavy artillery offered by the Baker-Campbell-Hausdorff formula2, one could opt for a more modest
but equally powerful trick, which consists in slicing the inverse temperature β in the Hamiltonian
into L equal parts of length ∆τ .

Z = Tre−βH = Tr
[
e−∆τHe−∆τH · · · e−∆τH] (2.11)

Note that there are L exponentials in the product and the inverse temperature β = L∆τ defines
the extent of the slicing. If the temperature is not zero (i.e. β 9 ∞) the slicing can be made so
thin that the non-commutation of the operators can be neglected. In the following this idea will be
developed more specifically. Since the Pauli matrices σzi define a complete set of eigenstates |Szi 〉:

N∏
i=1

 ∑
Szi =±1

|Szi 〉 〈Szi |

 ≡∑
{Szi }

|Sz〉 〈Sz| = 1 (2.12)

equation (2.11) can be expanded to:

Z =
∑

{Si,l=±1}

〈Sz1 | e−∆τH |SzL〉 〈SzL| e−∆τH ∣∣SzL−1

〉
· · · 〈Sz2 | e−∆τH |Sz1〉 (2.13)

Note that in equation (2.12) there is a set of complete eigenstates for every site. Since this insertion
is made at several places along the string of exponentials, a new index l will be used to label that
imaginary time position: ∑

{Szi,l}

|Szl 〉 〈Szl | = 1 (2.14)

It now remains to evaluate the matrix elements of the imaginary time evolution operator. As
mentioned above the Hamiltonian operators H0 and H1 do not commute and the usual exponential
law

eH0+H1 = eH0 eH1 (2.15)

does not hold and must be approximated. If the slicing were infinitesimally thin, that is in the
limit L → ∞, then one could bypass the lack of commutation by using the Lie-Trotter formula,
which applies to any pair of square matrices A and B (this formula is proven in appendix A):

eA+B = lim
L→∞

(
eA/LeB/L

)L
(2.16)

However, since the slicing truncates after finitely many steps L, this formula can not be applied
directly. Instead, an estimate of the error committed by the truncation must be taken into account,
leading to the Suzuki-Trotter approximation:

2The Baker-Campbell-Hausdorff formula offers a solution to the equation Z = log(eXeY ) in terms of an infinite
sum of nested commutators for the case of non-commutative operators X and Y
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eδA+δB = eδAeδB +O(ε) (2.17)

where O(ε) = O([δA, δB]) is the Trotter error and is of order δ2. The Suzuki-Trotter approximation
applied to the above Hamiltonian H = H0 +H1 is:

e−∆τH0−∆τH1 = e−∆τH0e−∆τH1 +O((∆τ)2[H0, H1]) (2.18)

By using the Suzuki-Trotter approximation the matrix element becomes:

〈
Szl+1

∣∣ e−∆τH |Szl 〉 =
〈
Szl+1

∣∣ e−∆τH1−∆τH0 |Szl 〉 ≈
〈
Szl+1

∣∣ e−∆τH1e−∆τH0 +O(ε) |Szl 〉 (2.19)

where in this case the Trotter error is asymptotically smaller than (∆τ)2Jh. This approximation
holds as long as the error remains small, i.e.:

(∆τ)2Jh� 1

L2 � β2Jh

L� β
√
Jh

(2.20)

which is certainly feasible, since the parameters in the last inequality are all finite at a given non-
zero temperature T = 1

β and L can be made as large as required. Following this reasoning, the
Trotter error can be ignored and the decoupled matrix element in (2.19) can be evaluated by noting
that the exponential of H0 acts on the σz eigenstate on the right, giving:〈

Szl+1

∣∣ e−∆τH1e−∆τH0 |Szl 〉 =
〈
Szl+1

∣∣ e−∆τH1e−∆τJ
PN
i=1 σ

z
i,lσ

z
i+1,l |Szl 〉

= e−∆τJ
PN
i=1 S

z
i,lS

z
i+1,l

〈
Szl+1

∣∣ e−∆τh
PN
i=1 σ

x
i
∣∣Szl 〉 (2.21)

To calculate the remaining matrix element of the σx exponential, one can make use of the fact that
(σxi )2 = 1, which implies:

e∆τhσxi = 1 cosh(∆τh) + σxi sinh(∆τh) (2.22)

Hyperbolic functions come about because of the absence of the imaginary unit in the exponential.
Now, to relate the quantum mechanical matrix element of the time-sliced Pauli matrix to a

classical Hamiltonian, it should be required that the former be expressed in the form:〈
S̃z
∣∣e∆τhσxi

∣∣Sz〉 ≡ ΛeγS̃
zSz (2.23)

This expression implicitly defines the variables Λ and γ, which can be determined simply by plugging
in the two eigenstates |+〉 and |−〉, and noting that the action of the Pauli matrix σx along the
x-direction reverses the spin eigenstate along the z-direction:

〈+| e∆τhσxi |+〉 = cosh(∆τh) = Λeγ

〈−| e∆τhσxi |+〉 = sinh(∆τh) = Λe−γ
(2.24)

from which the parameters Λ and γ can be obtained explicitly:

γ = −1
2

log(tanh(∆τh))

Λ2 = sinh(∆τh) cosh(∆τh)
(2.25)

Equation (2.21) therefore becomes:
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〈
Szl+1

∣∣ e−∆τH1e−∆τH0
∣∣Szl 〉 = ΛNe∆τJ

PN
i=1 S

z
i,lS

z
i+1,l+γ

Pn
i=1 S

z
i,lS

z
i,l+1 (2.26)

It is interesting to note that the “chain coupling” term of the Hamiltonian H0 led to Ising spin
couplings at the same imaginary time slice, but between neighboring spatial sites, while the “field
coupling” term H1 led to couplings between Ising spins on the same spatial site but at different
(consecutive) imaginary time slices. The final form of the partition function can be obtained by
substituting the last equation into (2.11):

Z = ΛNL
∑

{Szi,l=±1}

e∆τJ
PN
i=1

PL
l=1 S

z
i,lS

z
i+1,l+γ

PN
i=1

PL
l=1 S

z
i,lS

z
i,l+1 (2.27)

The result obtained for the partition function seems very complicated indeed and one might wonder
why going through so much trouble to arrive at a form involving sums of exponentials of double
sums. The reason appears evident if the z superscripts of the spins are dropped and if one realizes
that the prefactor ΛNL carries no physical significance since it does not affect the spins (it would
cancel out anyway when averaged over in order to compute macroscopic quantities): equation (2.27)
is nothing but the classical two-dimensional Ising model at zero field with different couplings in the
i and l directions, i.e. an anisotropic two-dimensional classical Ising model !

Zcl = ΛNL
∑

{σzi,l=±1}

eβ̃Jx
PNx
i=1

PNy
l=1 σi,lσi+1,l+β̃Jy

PNx
i=1

PNy
l=1 σi,lσi,l+1 (2.28)

Note that in this last equation σ refers to the value of the Ising spin ±1 and not to the Pauli matrix
(notation as in section 1.3), i.e. the classical spins are identified with the eigenvalue of the Pauli
matrices:

σi,l = Szi,l (2.29)

The spatial and imaginary time direction are identified with the classical x and y directions, thus
the dimensions of the system are identified as:

Nx = N

Ny = L
(2.30)

Furthermore, the classical inverse temperature β̃ together with the classical couplings Jx and Jy
are identified as:

β̃Jx = ∆τJ

β̃Jy = γ
(2.31)

With the identifications above, the one-dimensional quantum Ising model in a transverse field can
be mapped onto a classical two-dimensional Ising model with anisotropic couplings. It is interesting
how the quantum effect of the transverse field is transmuted through imaginary time-slicing into an
additional classical spatial dimension, leaving the resulting classical two-dimensional Ising model
field-free.

The mapping from quantum Ising model onto classical Ising model does not imply per se that
the converse is also true. In principle, following the derivation above, there is no certainty that a
given classical two-dimensional Ising model can be reduced to an equivalent quantum system. Nev-
ertheless, this mapping is also possible and follows the same core principle of regarding the transfer
from one site to another as an imaginary time evolution. This approach involves the definition of
the so called transfer matrices (see appendix B), which originate from a clever reformulation of
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the partition function Z in terms of a trace over a matrix product. These transfer matrices can
then be easily generalized to be quantum operators of the form of an evolution operator, and the
quantization naturally arises. The mapping from classical to quantum Ising model will also be
discussed in appendix B.

As introduced at the beginning of chapter 3, the results derived in this section for the quantum
Ising chain and the classical two-dimensional Ising lattice do not hold only for these specific cases,
but can in fact be generalized to arbitrary dimensions: a quantum d-dimensional Ising model can
be mapped to a classical (d+ 1)-dimensional Ising model and vice versa. This important theorem
will not be proven in the framework of this report, but it is an interesting fact that is worth being
aware of.
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Chapter 3

Quantum field theory correspondence

In order to fully exploit the machinery of conformal field theory for statistical models at criticality,
having reduced a two-dimensional classical system to a one-dimensional quantum mechanical one
is not enough. Conformal field theory is naturally expressed in the language of the path-integral
formulation of quantum field theory, in which correlation functions of free fields can be efficiently
calculated by operator product expansions (OPE). Luckily enough, the quantum Ising chain in a
transverse field discussed in section 2.3 can be mapped to one of the aforementioned free fields,
which turns out to be the free Majorana fermion. However, the Ising model cannot be directly
mapped to a free fermion, but it must first be mapped to a system of spinless fermions, which
then in the continuum limit assumes the form of a quantum field theory. This mapping is termed
Jordan-Wigner transformation and will be presented in the next section. If one wishes to continue
to follow the exact representation in terms of spinless fermions, it is necessary to perform another
transformation to a new set of fermionic operators whose number is conserved, because the Jordan-
Wigner transformation outputs a Hamiltonian which does not have this property. This mapping
is known as Bogoliubov transformation and will be analyzed in section 3.2. The continuum limit
which relates the Ising model at criticality to the free fermion will then discussed in section 3.3.

3.1 The Jordan-Wigner transformation

Before starting to talk of any transformation it is worth it to reexamine the quantum Hamiltonian
for the Ising chain:

HI = −J
∑
i

(gσ̂xi + σ̂zi σ̂
z
i+1) (3.1)

where h = Jg was replaced in favor of the new coupling g, whose insertion does not affect the
underlying physics of the problem but it is a simple substitution which simplifies the upcoming
analysis. This Hamiltonian should be now transformed or at least connected to the Hamiltonian of
a quantum field, more specifically that of a free fermion. The essential step in connecting a chain of
spin-1

2 particles like the quantum one-dimensional Ising model to the free fermion is the observation
that the Hilbert space of a system with a spin-1

2 degree of freedom per site can be mapped to that
of spinless fermions jumping along a chain of single-orbital sites. The spin-up state of the Ising
spin can then for instance be associated with an empty orbital and the spin-down state with an
occupied orbital. In fact, the set of operators of both systems form a Lie algebra equivalent to
su(2) and their generators are respectively:

σ̂+
i ≡

1
2

(σ̂xi + iσyi ), σ̂−i ≡
1
2

(σ̂xi − iσ
y
i ), σ̂zi (3.2)
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and
ci, c†i , ni ≡ c†ici (3.3)

To obtain a Lie algebra isomorphism between the two representations it is sufficient to map each of
the generators for the Hilbert space of the Ising chain to another generator for the Hilbert space of
the spinless fermions and check that the Lie brackets are preserved under this isomorphism. For a
single site this is not a hard task: if the canonical fermion operator ci annihilates a spinless fermion
on a site i, then the qualitative picture presented above implies the following operator relation:

σ̂zi = 1− 2c†ici (3.4)

The operation of flipping the spin from down to up encoded in σ̂+
i is then equivalent to the operation

of the annihilation operator and creating a fermion by applying c†i is equivalent to lowering the spin
with σ̂−i :

σ̂+
i = ci

σ̂−i = c†i
(3.5)

With these identifications one can check that the Lie bracket for the fermionic algebra (the anti-
commutator {·, ·}) is preserved:

{c†i , ci} = {σ̂−i , σ̂
+
i } = 1 (3.6)

Although this equivalence is possible for a single chain site, a naive generalization to the full
Ising chain will fail in preserving the anticommutation relations of the Fermi algebra: while two
fermionic operators on different sites anticommute (this is the fundamental requirement in con-
structing the Hilbert space for fermions, which are per definition antisymmetric with respect to
parity), the corresponding two spin operators commute. Therefore, following the intuition of Jordan
and Wigner, a new representation in terms of “strings” of operators replaces the simple single-site
correspondence:

σ̂+
i =

∏
j<i

(1− 2c†jcj)ci

σ̂−i =
∏
j<i

(1− 2c†jcj)c
†
i

(3.7)

Note that this is a highly nonlocal representation of the spins in terms of the fermion operators,
involving all the sites to the left (conventionally) of the i-th position. This transformation can be
inductively inverted by noting that the term in brackets is just the single-site spin σ̂zj defined above
and by exploiting the involution of the Pauli operators. For instance, for the first two sites i = 1, 2:

σ̂+
1 = c1

σ̂+
2 = (1− 2c†1c1)c2 = σ̂z1c2

⇒ σ̂z1σ̂
+
2 = σ̂z1σ̂

z
1c2 = 1c2 = c2

(3.8)

and analogously for c†1, c†2. Thus the general formula is:

ci =

∏
j<i

σ̂zj

 σ̂+
i

c†i =

∏
j<i

σ̂zj

 σ̂−i

(3.9)
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It can be verified that equations (3.4), (3.7) and (3.9) are consistent with the commutation and
anticommutation relations for the operators:

{ci, c†j} = δij , {ci, cj} = {c†i , c
†
j} = 0

[σ̂+
i , σ̂

−
j ] = δij σ̂

z
i , [σ̂zi , σ̂

±
j ] = ±2δij σ̂±i

(3.10)

This is the conventional formulation of the Jordan-Wigner transformation. For its particular
application on the Ising model, however, it is convenient to rotate the spin axes by 90 degrees about
the y-axis, so that:

σ̂zi → σ̂xi , σ̂xi → −σ̂zi (3.11)

In this frame, σ̂zi = −(σ̂+
i + σ̂−i ) and the transformation becomes:

σ̂xi = 1− 2c†ici

σ̂zi = −
∏
j<i

(1− 2c†jcj)(ci + c†i )
(3.12)

With this newfound expressions for the spin operators, the Hamiltonian of the quantum Ising
chain can be expressed in terms of fermionic operators. Recalling that the fermionic operators are
nilpotent because of the anticommutation relations, one can evaluate the new Hamiltonian as:

HI = −J
∑
i

(gσ̂xi + σ̂zi σ̂
z
i+1) =

= −J
∑
i

g(1− 2c†ici) +
∏
j<i

(1− 2c†jcj)(ci + c†i )
∏
j<i+1

(1− 2c†jcj)(ci+1 + c†i+1)


= −J

∑
i

g(1− 2c†ici) +
∏
j<i

(1− 2c†jcj)(ci + c†i )
∏
j<i

(1− 2c†jcj)(1− 2c†ici)(ci+1 + c†i+1)


= −J

∑
i

g(1− 2c†ici) +
∏
j<i

σ̂zj (ci + c†i )
∏
j<i

σ̂zj (ci+1 + c†i+1 − 2c†icici+1 − 2c†icic
†
i+1)



= −J
∑
i

g(1− 2c†ici) + (
∏
j<i

σ̂zj )
2

︸ ︷︷ ︸
1i−1

(ci + c†i )(ci+1 + c†i+1 − 2c†icici+1 − 2c†icic
†
i+1)


= −J

∑
i

[
g(1− 2c†ici) + (cici+1 + cic

†
i+1 + c†ici+1 + c†ic

†
i+1 − 2cic

†
icici+1 − 2cic

†
icic

†
i+1)

]
= −J

∑
i

[
g(1− 2c†ici) + (cici+1 + cic

†
i+1 + c†ici+1 + c†ic

†
i+1 − 2cici+1 − 2cic

†
i+1)

]
= −J

∑
i

[
g(1− 2c†ici) + (−cici+1 − cic†i+1 + c†ici+1 + c†ic

†
i+1)

]
= −J

∑
i

(
c†ici+1 + c†i+1ci + c†ic

†
i+1 + ci+1ci − 2gc†ici + g

)

(3.13)
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or, reintroducing the field coupling h:

⇒ HI = −
∑
i

[
J
(
c†ici+1 + c†i+1ci + c†ic

†
i+1 + ci+1ci

)
− 2hc†ici + h

]
(3.14)

The resulting Hamiltonian is quadratic in the fermionic operators but presents terms such as c†c†

that violate fermion number conservation (i.e. only create or only annihilate particles, changing the
total number of fermions in the systems). In other words, this means that

∑
i σ̂

x
i is not conserved

and |+x〉 spins can be flipped in pairs under time evolution. Nevertheless, since the additional
terms are still quadratic in the fermionic operators, HI can be diagonalized.

3.2 Bogoliubov transformation and exact solution

As mentioned in the previous section, although all terms in equation (3.14) are quadratic, the
fermion number is not conserved. In order to circumvent this problem the idea is to apply a
transformation on the fermionic operators so that the extra quadratic terms cancel out. First of
all, it is necessary to diagonalize (3.14) the Hamiltonian. To that end one can apply a discrete
Fourier transformation to momentum space:

ck =
1√
N

∑
j

cje
ikx (3.15)

where N is the number of sites in the chain, a is the lattice spacing, xi = ia is the position of
the i-th site and k = 2π

Nan is the wave number. Depending on the boundary conditions n can take
different values. For periodic boundary conditions n takes following values:

n = −N − 1
2

,−N − 3
2

, . . . , 0, . . . ,
N − 1

2
if N is odd

n = −N
2

+ 1,−N
2

+ 2, . . . , 0, . . . ,
N

2
if N is even

(3.16)

For antiperiodic boundary conditions the role of N is interchanged:

n = −N
2

+ 1,−N
2

+ 2, . . . , 0, . . . ,
N

2
if N is odd

n = −N − 1
2

,−N − 3
2

, . . . , 0, . . . ,
N − 1

2
if N is even

(3.17)

The algebraic calculation behind the transformation of the Hamiltonian to momentum space is a
bit lengthy and here only the main results will be presented. The following relations hold:∑

j

c†jcj =
∑
k

c†kck∑
j

c†jc
†
j+1 =

∑
k

c†kc
†
−ke
−ik

∑
j

cjcj+1 =
∑
k

ckc−ke
ik

∑
j

c†jcj+1 =
∑
k

c†kcke
−ik

∑
j

cjc
†
j+1 = −

∑
k

c†kc
†
ke
ik

(3.18)
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As a consequence, the Hamiltonian becomes:

HI =
∑
k

(2[h− J cos(ka)]c†kck + iJ sin(ka)[c†−kc
†
k + c−kck]− h) (3.19)

The next step is to map into a new set of fermionic operators {γk} whose number is conserved.
These new operators are defined by a unitary transformation, called Bogoliubov transformation,
which is induced by an isomorphism of the anticommutation relation algebra:

γk = ukck − ivkc†−k (3.20)

where uk and vk are real numbers satisfying u2
k + v2

k = 1, u−k = uk and v−k = −vk. From these
conditions one has the freedom to express uk and vk through trigonometric functions:

uk = cos(
θk
2

), vk = sin(
θk
2

) (3.21)

Furthermore, it can be checked that this unitary transformation preserves the anticommutation
relations, hence:

{γk, γ†l } = δkl, {γ†k, γ
†
l } = {γk, γl} = 0 (3.22)

By choosing

tan(θk) =
sin(ka)

h/J − cos(ka)
(3.23)

the requirements of the Bogoliubov transformation are satisfied and the final form of the Hamilto-
nian is:

HI =
∑
k

εk(γ
†
kγk −

1
2

) (3.24)

where

εk = 2(J2 + h2 − 2hJ cos k)
1
2 (3.25)

takes the form of a single particle energy. Since this energy is never negative, the ground state |0〉
of the Hamiltonian has no γ fermions and therefore satisfies γk |0〉 = 0 for all k. The ground state
of the Ising model in an arbitrary transverse field is equivalent to the vacuum state of a spinless
fermionic system. An n-particle state can then be obtained by repeatedly applying distinct creation
operators and has the form γ†k1

γ†k2
· · · γ†kn |0〉. For g � 1, the ground state is a ferromagnet (at least

in the short-range order for a finite temperature) and the fermionic particles can be visualized as
domain walls between the two ground states (recall that the ground state is degenerate: the spins
can be all up or all down). For g � 1, where the spins are oriented along the positive x-direction
in the ground state, excitations are represented by spins flipped to the negative x-direction.

3.3 Continuum limit

The calculations of the previous section showed how it is possible to transform the Hamiltonian of
the quantum Ising chain into a Hamiltonian of spinless fermions. By analyzing the excitation energy
εk of these fermions it is possible to find a universal continuum quantum field theory that describes
the critical properties in its vicinity and obtain a description of the Ising model at criticality in
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Figure 3.1: Illustration of the excitation energy for various values of the dimensionless coupling g
for a one-dimensional system of spinless fermions. In this graph J was set to 1.

terms of a free fermion. First of all, it is useful to reintroduce the dimensionless parameter g = h/J
already used in section 3.1. The excitation energy can then be described by a g-dependence:

εk = 2J
√

(1 + g2 − 2g cos k) (3.26)

As it can be gained from figure 3.1, the excitation energy in equation (3.25) is always positive
as long as g 6= 1, for which it goes to zero. The energy gap or the minimum of the excitation energy
always occurs at k = 0 and equals:

εmin = 2J
√

(1 + g2 − 2g cos 0) = 2J
√

((1− g)2) = 2J |1− g| (3.27)

At g = 1, the energy gap vanishes and it is plausible to expect that this value of the field coupling
marks the phase boundary between symmetric and ordered phase. In this regime, long wavelength
excitations (i.e. excited fermions with low momenta) are possible with arbitrary low energies and
therefore they must dominate the low-temperatures properties. It is hence possible to construct a
continuum Hamiltonian to get rid of the irrelevant short wavelength degrees of freedom by expand-
ing in spatial gradients. Upon taking this continuum limit, it turns out that the quantum Ising
chain is also described by a free (also called Gaussian) quantum field theory, expressed in terms
of fermions. The first step in taking this continuum limit is to replace the fermionic operators by
continuum Fermi fields:

Ψ(xi) =
1√
a
ci (3.28)

which in the continuum limit a → 0 obey the continuum anticommutation relations, obtained
simply by generalizing the Kronecker delta to a Dirac delta distribution:
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{Ψ(x),Ψ†(x′)} = δ(x− x′) (3.29)

Substituting the continuum field (3.29) into the Hamiltonian and expanding it to first order in the
spatial gradients one obtains:

HI = −
∑
i

[
J
(
c†ici+1 + c†i+1ci + c†ic

†
i+1 + ci+1ci

)
− 2hc†ici + h

]
= −

∑
i

[
a
(
J
(

Ψ†(xi)Ψ(xi+1) + Ψ†(xi+1)Ψ(xi) + Ψ†(xi)Ψ†(xi+1) + Ψ(xi+1)Ψ(xi)
)

+

−2hΨ†(xi)Ψ(xi)
)

+ h
]

= −
∫

dx
[(
J
(

Ψ†(x)Ψ(x+ a) + Ψ†(x+ a)Ψ(x) + Ψ†(x)Ψ†(x+ a) + Ψ(x+ a)Ψ(x)
)

+

−2hΨ†(x)Ψ(x)
)]

+ C

= −
∫

dx
[(
J

(
Ψ†(x)Ψ(x) + Ψ†(x)

∂Ψ(x)
∂x

a+ Ψ†(x)Ψ(x) + a
∂Ψ†(x)
∂x

Ψ(x) +������
Ψ†(x)Ψ†(x) +

+ Ψ†(x)
∂Ψ†(x)
∂x

a+�����Ψ(x)Ψ(x) + a
∂Ψ(x)
∂x

Ψ(x)
)
− 2hΨ†(x)Ψ(x)

)]
+ C +O(a2)

= −
∫

dx
[
2(J − h)Ψ†(x)Ψ(x) + a

∂

∂x

(
Ψ†(x)Ψ(x)

)
+ Ja

(
Ψ†(x)

∂Ψ†(x)
∂x

+
∂Ψ(x)
∂x

Ψ(x)
)]

+

C +O(a2)

= E0 −
∫

dx
[
2(J − h)Ψ†(x)Ψ(x) + Ja

(
Ψ†(x)

∂Ψ†(x)
∂x

−Ψ(x)
∂Ψ(x)
∂x

)]
+O(a2)

(3.30)
Summarizing:

HF = E0 +
∫

dx
[
v

2

(
Ψ†
∂Ψ†

∂x
−Ψ

∂Ψ
∂x

)
+ ∆Ψ†Ψ

]
+O(a2) (3.31)

The coupling constants in HF are:

∆ = 2(J − h), v = 2Ja (3.32)

The coupling ∆ represents the aforementioned energy gap, which vanishes for J = h and distin-
guishes the magnetically ordered phase (∆ > 0) from the symmetric paramagnetic phase (∆ < 0).
The equation J = h is related to the Kramers-Wannier duality relation of the classical phase tran-
sition through the associations made in chapter 2 between the quantum and the classical Ising
model. Note that the continuum limit a → 0 is taken while holding Ψ, v and ∆ fixed, which re-
quires J →∞ and g → 1, i.e. h→∞. In order to apply the machinery of conformal field theory in
the next chapter, it is necessary to represent the dynamics of HF in a path integral formalism. The
derivation of the path integral formulation for a free fermion is quite involved and it requires the
description of the Fock space of fermions in terms of coherent state which are inescapably related
to anticommuting Grassman numbers. The full derivation will not be presented here and it can be
found in [7]. In the path integral formulation the partition function is given as:

Z = Tre−
HF
T =

∫
DΨDΨ†e−

R 1/T
0 dτdxLI (3.33)
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with the Lagrangian density:

LI = Ψ†
∂Ψ
∂τ

+
v

2

(
Ψ†
∂Ψ†

∂x
−Ψ

∂Ψ
∂x

)
+ ∆Ψ†Ψ (3.34)

Note that this Lagrangian is invariant under conformal transformations only if ∆ vanishes, de facto
connecting the system at criticality with a description in terms of conformal field theory. With a
non-vanishing ∆ term the Lagrangian is no longer invariant under the full conformal group, but as
for the lattice model HI , the continuum theory LI can be diagonalized to give an excitation energy
in relativistic form:

εk = (∆2 + v2k2)
1
2 (3.35)

which shows that |∆| is the T = 0 energy gap and v is the velocity of the excitations (both are
measurable quantities). The form of εk suggests that LI is invariant under Lorentz transformations
and the action becomes what is known as the field theory of Majorana fermions of mass ∆/v2.
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Chapter 4

Applied conformal field theory

Recall the power law for the connected correlation function of the two-dimensional Ising model at
criticality:

Γc(r) ∝
1

rd−2+η
=

1
rη

(4.1)

where now the letter r was chosen to symbolize a system with continuous degrees of freedom. From
Onsager’s exact solution of the Ising model the value of the critical exponent is known to be η = 1

4 .
From the analysis conducted in chapters 2 and 3 it is known that the correlation function for the
statistical mechanical model should behave as the two-point function 〈σ(n)σ(0)〉 of a primary field
σ. The aim of this final chapter is to derive the matching field from the conformal field theory of
the free fermion. In section 4.1 the concept of conformal invariance will be introduced and its main
consequences on correlation functions will be presented. In section 4.2 these correlation functions
will be described in terms of operator product expansions, which will then explicitly calculated
in sections 4.3 and 4.4 for the free boson and the free fermion respectively. In the final section
4.5 all the conclusions of the previous sections will be wrapped up to allow for the primary fields
describing the Ising spins to be determined along with their conformal dimensions.

4.1 Conformal invariance

A field theory has conformal symmetry if its action is invariant under conformal transformations.
In d dimensions conformal transformations are those invertible mappings x → x′ that leave the
metric invariant up to a scale:

g′µν(x′) = Λ(x)gµν(x) (4.2)

The set of conformal transformations forms a group that preserves angles and in two dimensions
it can be identified as the set of all holomorphic and antiholomorphic maps, which motivates
the use of complex coordinates z and z̄. The requirement that an infinitesimal transformation
xµ → x′µ = xµ + εµ(x) be conformal place it into one of the following categories:

translation : x′µ = xµ + aµ

dilation : x′µ = αxµ

rigid rotation : x′µ = Mµ
ν x

ν

special conformal transformation : x′µ =
xµ + bµx2

1− 2b · x + b2x2

(4.3)
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Under a conformal transformation x→ x′ a spinless field φ(x) transforms as

φ(x)→ φ′(x′) =
∣∣∣∣∂x′

∂x

∣∣∣∣∆/d φ(x) (4.4)

and is called quasi-primary. The parameter ∆ is called scaling dimension of the field. Conformal
invariance has important consequences on the two-point functions of spinless quasi-primary fields,
because it restricts their possible form. The two point function is defined as:

〈φ1(x1)φ2(x2)〉 =
1
Z

∫
[dΦ]φ1(x1)φ2(x2)e−S[Φ] (4.5)

where S[Φ] is the action of the field theory. Assuming that the action and the functional integral
measure are invariant under conformal transformations, then the correlation function transforms
according to its quasi-primary fields:

〈φ1(x1)φ2(x2)〉 =
∣∣∣∣∂x′

∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′

∂x

∣∣∣∣∆2/d

x=x2

〈
φ′1(x1)φ′2(x2)

〉
(4.6)

Scale transformations x→ λx then imply:

〈φ1(x1)φ2(x2)〉 = λ∆1+∆2 〈φ1(λx1)φ2(λx2)〉 (4.7)

while invariance under rotations and translations, whose Jacobian is one, requires:

〈φ1(x1)φ2(x2)〉 = f(|x1 − x2|) (4.8)

for some function f . Combining these two results the two-point function must then have the
following form:

〈φ1(x1)φ2(x2)〉 =
C12

(|x1 − x2|)∆1+∆2
(4.9)

By requiring finally invariance under special conformal transformations the form of equation (4.9)
is further restricted to:

〈φ1(x1)φ2(x2)〉 =

{
C12

(|x1−x2|)2∆1
, if ∆1 = ∆2

0 if ∆1 6= ∆2
(4.10)

Thus, two fields are correlated only if they have the same scaling dimension. In two dimensions,
when this happens, the two-point correlator becomes:

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
(4.11)

with h = 1
2(∆ + s) holomorphic conformal dimension and h̄ = 1

2(∆ − s) its antiholomorphic
counterpart, which take into account also a possible planar spin s (not relevant for the case of the
free fermion). In this two-dimensional case a quasi-primary field under a conformal map z → w(z),
z̄ → w̄(z̄) transforms as:

φ′(w, w̄) =
(

dw
dz

)−h(dw̄
dz̄

)−h̄
φ(z, z̄) (4.12)

If this holds for any local conformal transformation, which is certainly the case for the free fermion,
the field is then termed primary. If the classical correlation function is to be described by a primary
field σ, then by translation invariance the two-point function can be formulated as:
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〈σ(r)σ(0)〉 =
1

r2(hσ+h̄σ)
(4.13)

and by looking at equation (4.1) the following association between conformal dimension of the
primary field and critical exponent at criticality in the classical model can be made:

η = 2(hσ + h̄σ) (4.14)

If the critical exponent of the correlation function has to take the value η = 1
4 , then the equation

can be matched for hσ = h̄σ = 1
16 .

4.2 Operator product expansions

In the two-point correlation functions defined in the previous section, or more specifically in their
conformal dimension, is encoded the information that allows to relate statistical models at criticality
to primary fields in quantum field theory. In order to derive the form of these fields it is necessary to
expand the product of these fields in the correlators. This procedure is known as operator product
expansion and will be briefly discussed in this section.

By Noether’s theorem, with each symmetry of the Lagrangian is associated a conserved quantity
(also called conserved current). The conserved current associated with invariance under an infinites-
imal translation xµ → xµ+ωα

∂xµ

∂ωα
is given by the energy momentum tensor, whose components are

the density and flux density of energy and momentum. If the conserved current is

jµ = ηµνLων − ων∂νφ
L

∂(∂µφ)
(4.15)

the energy momentum tensor can be written as:

jµ = Tµνων (4.16)

Here ηµν = diag(1, 1) refers to the standard Euclidean metric. Conformal invariance with respect
to translations implies:

∂µT
µν = 0 (4.17)

while other conformal transformations force the tensor to be traceless: Tµµ = 0. In addition the
energy-momentum tensor can be made symmetric: T ρν = T νρ. In two dimensions there are two
parts of the energy-momentum tensor: a chiral part 2πTzz(z, z̄) = T (z) depending only on z and
an antichiral part 2πT̄z̄z̄(z, z̄) = T̄ (z̄). The energy-momentum tensor is an important field because
from its operator product expansion (OPE) with the primary field φ(z, z̄) one can determine the
conformal dimension h. The OPE is the representation of a product of operators (at position
z and w respectively) by a sum of terms, each being a single operator well defined as z → w,
multiplied by a C-number function of z − w. The OPE are derived from the Ward identities1 and
are meaningful only within correlation functions, where an appropriate time ordering is in place.
Since the space and time variables are often compactified on the cylinder, the time variable taking
the radial component, time ordering often translate into radial ordering R(φ(z, z̄), ψ(w, w̄)). For a
single primary field φ of conformal dimensions h and h̄ its OPE with the energy-momentum tensor
reads:

1In quantum field theory the Ward identities can be thought of generalizations of Noether’s theorem and relate
important fields such as a primary field φ, its derivative ∂µφ and the energy momentum tensor Tµν to their correlation
functions.
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T (z)φ(w, w̄) ∼ h

(z − w)2
φ(w, w̄) +

1
z − w

∂wφ(w, w̄)

T̄ (z)φ(w, w̄) ∼ h̄

(z̄ − w̄)2
φ(w, w̄) +

1
z̄ − w̄

∂w̄φ(w, w̄)
(4.18)

The OPE of the energy-momentum tensor T with itself is

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)
(z − w)2

+
∂T

z − w
(4.19)

The constant c depends on the model under consideration and is called central charge. The central
charge appears in the extension of the Witt algebra constructed by the normalized generators Ln
of infinitesimal conformal transformations, which is called Virasoro algebra and is endowed with
the following commutator playing the role of the algebra operation:

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n (4.20)

The central charge c is also known as conformal anomaly and is related to a conformal symmetry
breaking by the introduction of a macroscopic scale into the system.

4.3 The free boson

As an example of the consequence of the OPE it is interesting to take a look at a basic but useful
example: the free boson. The analysis performed on the free boson will also pave the way for the
same application on the free fermion required to understand the Ising model.

The action of a free massless boson is given by:

S =
1
2
g

∫
dzdz̄ {∂µφ(z, z̄)∂µφ(z, z̄)} (4.21)

The action can be equivalently rewritten as:

S =
1
2

∫
d2xd2yφ(x)A(x,y)φ(y) (4.22)

with A(x,y) = −gδ(x− y)∂2 and K(x,y) ≡ A(x,y)−1.
The variational principle leads to equations of motion:

−g∂2
xK(x,y) = δ(x− y) (4.23)

which can be integrated over x within a disk D of radius r centered around y to give:

2πg
∫ r

0
dρρ

(
−1
ρ

∂

∂ρ

(
ρK ′(ρ)

))
= −2πgrK ′(r) = 1 (4.24)

The solution to this differential equation is, up to a constant:

K(r) = − 1
2πg

log(r) (4.25)

or, going back to the x and y notation:

〈φ(x), φ(y)〉 = − 1
4πg

log(x− y)2 (4.26)
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In terms of complex coordinates this is:

〈φ(z, z̄), φ(w, w̄)〉 = − 1
4πg
{log(z − w) + log(z̄ − w̄)} (4.27)

The OPE of the derivative of the primary field φ with itself is obtained from this expression by
taking the derivatives with respect to z and z̄:

〈∂zφ(z, z̄), ∂wφ(w, w̄)〉 = − 1
4πg

1
(z − w)2

〈∂z̄φ(z, z̄), ∂w̄φ(w, w̄)〉 = − 1
4πg

1
(z̄ − w̄)2

(4.28)

The energy-momentum tensor associated with the free massless boson is:

Tµν = g(∂µφ∂νφ−
1
2
ηµν∂ρφ∂

ρφ) (4.29)

and its quantum version in complex coordinates reads:

T (z) = −2πg : ∂φ∂φ : (4.30)

where the colons indicate normal ordering2. The OPE of T (z) with ∂φ can be calculated by Wick’s
theorem3 and for the holomorphic part it leads to the following result (the antihomolomorphic part
is obtained in the same way):

T (z)∂φ(w) ∼ ∂φ(w)
(z − w)2

+
∂2φ(w)
(z − w)

(4.31)

Comparison of equation (4.31) with the general form in equation (4.18) allows to determine that
∂φ is a primary field with conformal dimension h = 1. The application of Wick’s theorem to the
OPE of the energy-momentum tensor with itself yields:

T (z)T (w) ∼
1
2

(z − w)4
+

2T (w)
(z − w)2

+
∂T

z − w
(4.32)

A quick comparison of this formula with the general case of equation (4.19) leads to the association
c = 1 for the central charge of the free boson.

4.4 The free fermion

In two dimensions the Euclidean action of a free Majorana fermion is given by:

S =
∫

d2xL (4.33)

where the Lagrangian is:

L =
1
2
gΨ†γ0γµ∂µΨ (4.34)

2In quantum field theory a product of operators is said to be in normal ordering when all creation operators are to
the left of all annihilation operators. This special ordering of field operators guarantees that the vacuum expectation
value vanishes. Normal ordering is related to time ordering (and hence radial ordering) by Wick’s theorem

3Wick’s theorem states that the time-ordered product is equal to the normal-ordered product, plus all possible
ways of contracting pairs of fields (i.e. omitting them from the normal order and replacing them with their two-point
function) within it.
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with the spinor Ψ =
(
ψ
ψ̄

)
and the Dirac gamma matrices:

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
(4.35)

which satisfies the Dirac algebra:

γµγν + γνγµ = 2ηµν (4.36)

The association with the holomorphic ∂0 = ∂z and antiholomorphic ∂1 = ∂z̄ derivatives can be
done by writing the matrices in full:

γ0(γ0∂0 + γ1∂1) = 2
(
∂z̄ 0
0 ∂z

)
(4.37)

Therefore the action can be written as:

S = g

∫
d2xψ̄∂zψ̄ + ψ∂z̄ψ (4.38)

From this form one can obtain the classical equations of motions:

∂z̄ψ = 0, ∂zψ̄ = 0 (4.39)

Any holomorphic (respectively antiholomorphic) satisfies the first (respectively the second) differ-
ential equation. To calculate the two-point correlation function 〈Ψi(x)Ψj(x)〉 the action can be
expressed, in analogy with the free boson, as:

S =
1
2

∫
d2xd2yΨi(x)Aij(x,y)Ψj(y) (4.40)

with the kernel

Aij(x,y) = gδ(x− y)(γ0γµ)ij∂µ (4.41)

The derivation of the differential equation which determines the two-point function involves Gaus-
sian integrals of Grassmann variables, whose understanding stretches beyond the scope of this
report. Therefore, only the main result will be presented here:

gδ(x− y)(γ0γµ)ik
∂

∂xµ
(A−1)ij(xy) = δ(x− y)δij (4.42)

The solution of this matrix equation provides an expression for the two-point correlators:

〈ψ(z, z̄)ψ(w, w̄)〉 =
1

2πg
1

z − w〈
ψ̄(z, z̄)ψ̄(w, w̄)

〉
=

1
2πg

1
z̄ − w̄〈

ψ(z, z̄)ψ̄(w, w̄)
〉

= 0

(4.43)

and the OPE of the fermion with itself is (holomorphic components only):

〈ψ(z)ψ(w)〉 =
1

2πg
1

z − w
(4.44)

It is necessary to point out that this result was derived under the assumption of periodic boundary
conditions for the time component defined on the cylinder; antiperiodic boundary conditions will
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lead to a different result described in section 4.5. The other OPE’s require the use of the energy-
momentum tensor. As pointed out in the previous section, it relates to the Langrangian by the
conserved current given in Noether’s theorem and its standard holomorphic component is given by
its first diagonal term:

T (z) = −2πTzz = −1
2
πT z̄z̄ = −1

2
π
∂L
∂∂̄Ψ

∂Ψ = −πg : ψ(z)∂ψ(z) : (4.45)

and the colons refer again to normal ordering. The OPE between T and the field ψ is calculated
by using once again Wick’s theorem:

T (z)ψ(w) =
1
2ψ(w)

(z − w)2
+
∂ψ(w)
z − w

(4.46)

From this expression follows that ψ is a primary field of conformal dimension h = 1
2 . Wick’s

theorem allows also to compute the OPE of the energy-momentum tensor with itself:

T (z)T (w) =
1
4

(z − w)4
+ 2

T (w)
(z − w)2

+
∂T (w)
z − w

(4.47)

A comparison with the general form for a operator product expansion of the energy momentum
tensor with itself allows to immediately determine the central charge of the corresponding Virasoro
algebra: c = 1

2 .

4.5 The twist fields

In the previous section the holomorphic field of the free fermion ψ was found to be primary, i.e. of
the form given in equation (4.12). As a holomorphic primary field, then, ψ can be expanded in a
Laurent series:

iψ(z) =
∑
n

ψnz
−n−h (4.48)

where the coefficients ψn of this expansion are given by Laurent’s Theorem:

ψn =
∮

dz
2πi

zn−hψ(z) (4.49)

The modes obey the anticommutation relations

{ψn, ψm} = δn,−m (4.50)

and act therefore as generators of the fermionic Witt’s algebra represented by ψ−n and ψn (n >
0), which build up a Hilbert space of state through the action of their fermionic creation and
annihilation operators on the vacuum state:

ψn |0〉 = 0, ψ−n1 . . . ψ−nk |0〉 = |n1, . . . , nk〉 (4.51)

From radial quantization, which was a consequence of defining the independent variables on the
cylinder, follows a periodicity on the complex plane, which allows the fermionic field to have either
periodic or antiperiodic boundary conditions. This periodicity is reflected directly in the different
mode indices n in the Laurent expansion of the field:
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periodic BC : ψ(e2πiz) = ψ(z) ⇒ n ∈ Z +
1
2

antiperiodic BC : ψ(e2πiz) = −ψ(z) ⇒ n ∈ Z
(4.52)

The operators associated with the zero modes ψ0 and ψ̄0 leave the conformal weight invariant when
acting on a state. In case of antiperiodic boundary conditions they can be taken to represent the
Virasoro algebra with defining anticommutation relations:

{ψ0, ψ̄0}, {ψ0, ψ0} = {ψ̄0, ψ̄0} = 1 (4.53)

The smallest irreducible representation of this algebra consists of 2 ground states which can be
labeled by the conformal dimension h = 1

16 :
∣∣ 1

16

〉
±. The action of the corresponding operators can

be represented by Pauli matrices, which fulfil up to a factor the same anticommutation relations.
In this

∣∣ 1
16

〉
± basis the following connections can be then made:

ψ̄0 =
1√
2
σz, ψ0 =

1√
2
σx (4.54)

and for the action:

ψ̄0 |1/16〉± =
1√
2
|1/16〉± , ψ0 |1/16〉± = ± 1√

2
|1/16〉∓ (4.55)

The two fields derived from
∣∣ 1

16

〉
± through the operator-state correspondence are called twist fields

and are symbolized with σ and µ: ∣∣∣∣ 1
16

〉
+

= σ(0) |0〉∣∣∣∣ 1
16

〉
−

= µ(0) |0〉
(4.56)

To determine the conformal dimension of σ(z) one may look at the vacuum expectation value of
the energy momentum tensor T (z)1

2 : σ(z)∂zσ(z) :and use the OPE for the antiperiodic boundary
conditions:

〈ψ(z)ψ(w)〉A = A 〈0|ψ(z)ψ(w) |0〉A =

= A 〈0|
∞∑
n=0

z−n−
1
2ψn(z)

−∞∑
m=0

w−m−
1
2ψm(w) |0〉A =

=
∞∑

n,m=1

z−n−
1
2wm−

1
2 A 〈ψn(z)| |ψm(w)〉A︸ ︷︷ ︸

δm,n

+
1

2
√
zw

=

= −
1
2(
√

z
w +

√
w
z )

z − w

(4.57)

Applying this formula for the expectation value of the energy-momentum tensor one gets:

1
2
〈σ(z)∂wσ(w)〉A =

1
2
∂w 〈σ(z)σ(w)〉A = − 1

2(z − w)2
+

1

16w
3
2 z

1
2

(4.58)

On the other hand the general OPE of the energy momentum tensor with a field σ is given by an
expansion in terms of generators Ln of the Witt’s algebra:
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T (z)σ(w) =
∑
n≥0

(z − w)n−2Lnσ(w) (4.59)

so that the vacuum expectation value for the energy-momentum tensor is

〈T 〉A = 〈1/16|+ T (z) |1/16〉+ = 〈1/16|+
1
z2
L0 |1/16〉+ =

hσ
z2

(4.60)

By comparing equations (4.58) (in the limit w → z) and (4.60) the conformal dimension comes out
to be hσ = 1

16 . This result is identical also for the antiholomorphic part of the fermion, so that
hσ = h̄σ = 1

16 , and this primary field corresponds to the quantum field theoretical description of
the Ising spin operator, matching the required value of critical exponent η.

As shown it this chapter, the consequences of conformal invariance on correlation function and
the operator product expansion for those correlators were able to reveal the form of the spin field
σ(z) associated with the free fermion description of the two-dimensional Ising model and therefore
to match the critical exponent η of its classical correlation function Γ.
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Appendix A

Proof of the Lie-Trotter formula

In this appendix a complete proof of the Lie-Trotter product formula will be given for the case in
which A and B are non-commuting matrices, i.e. A, B ∈ Matn(C). The claim is the following:

eA+B = lim
n→∞

(
eA/neB/n

)n
(A.1)

or, equivalently:

||eA+B − (eA/neB/n)n|| ≤ O(n−1), for n→∞. (A.2)

This assertion can be proven in three steps.
First of all, the exponential are rewritten in terms of new symbols:

Xn ≡ e
A+B
n , Yn ≡ eA/neB/n. (A.3)

By using the definition of the matrix exponential eX =
∑∞

i=0
Xi

i! the two exponential terms can be
expanded as a Taylor series up to first order in n−1:

Xn = 1 +
A+B

n
+

(A+B)2

2n2
+

(A+B)3

3!n3
+ . . .︸ ︷︷ ︸

O(n−2) as n→∞

(A.4)

Yn =

1 +
A

n
+

A2

2n2
+ . . .︸ ︷︷ ︸

O(n−2) as n→∞


1 +

B

n
+

B2

2n2
+ . . .︸ ︷︷ ︸

O(n−2) as n→∞

 =

=
(

1 +
A+B

n
+O(n−2)

) (A.5)

From these expansions a bound for the difference Xn−Yn as n→∞ can be immediately be found:

Xn − Yn = O(n−2) (A.6)

The second step consists in evaluating Xn
n − Y n

n = eA+B − eAeB for a finite n. To this end the
following inequality can be used:

||Xn − Y n|| ≤ n ·
[

max (||X||, ||Y ||)
]n−1||X − Y || (A.7)

where || · || denotes the norm of a matrix and X, Y ∈ Matn(C) (the indices have been dropped in
this formula to simplify the notation) . To prove inequality (A.7) it suffices to expand the difference
Xn − Y n into a telescopic sum:
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Xn − Y n = (Xn −Xn−1Y ) + (Xn−1Y −Xn−2Y 2) + · · ·+ (XY n−1 − Y n) =

= Xn−1(X − Y ) +Xn−2(X − Y )Y + · · ·+ (X − Y )Y n−1
(A.8)

There are n terms in this telescopic sum and each term is bounded by [max(||X||, ||Y ||)]n−1·||X−Y ||,
since

||Xp(X − Y )Y q|| ≤
[

max(||X||, ||Y ||)
]n−1 · ||X − Y ||, p+ q = n− 1. (A.9)

Application of the triangle inequality and use of the submultiplicative property of the matrix norm
leads to the final result:

||Xn − Y n|| ≤
[

max(||X||, ||Y ||)
]n−1 · ||X − Y ||+

[
max(||X||, ||Y ||)

]n−1 · ||X − Y ||+ · · ·+

+
[

max(||X||, ||Y ||)
]n−1 · ||X − Y || ≤

≤ n ·
[

max(||X||, ||Y ||)
]n−1 · ||X − Y ||

(A.10)
The third and final step consists in using the above inequality for X = Xn, Y = Yn along with

the bound found in step one. To evaluate (A.7) the norm of the Xn and Yn matrices must be
estimated. Since the exp function is monotonic and again by the triangle inequality (||A|| is a real
number) one finds

||Xn|| ≤ ||e
A+B
n || ≤ e

||A+B||
n ≤ e

||A||+||B||
n (A.11)

respectively

||Yn|| ≤ ||e
A
n e

B
n || ≤ ||e

A
n || · ||e

B
n || ≤ e

||A||
n e

||B||
n = e

||A||+||B||
n (A.12)

where in the first inequality the submultiplicativity of the matrix norm was again exploited. In-
equality (A.7) becomes therefore

||eA+B − eA/neB/n = ||Xn
n − Y n

n || ≤ n · e||A||+||B|| · O(n−2) = O(n−1) (A.13)

which proves the Lie-Trotter formula (equation (A.1)).

40



Appendix B

Classical 1D to quantum 0D
correspondence in the Ising model

In chapter 2 the equivalence between a classical (d+ 1)-dimensional and a quantum d-dimensional
Ising model was stated to be true for arbitrary dimension d. The validity of this assertion was proven
in one direction and for the particular case d = 1 by converting - through the use of imaginary
time slicing - a quantum Ising chain in a transverse field to an isotropic classical Ising lattice. In
this appendix the other direction of the equality will be proven for the particular case d = 0, i.e. a
classical Ising chain will be mapped to a single quantum Ising spin in a transverse field.

B.1 The transfer matrix

The classical Ising model treated in chapter 1 is described by the partition function

Z =
∑

{σi=±1}

e−βH (B.1)

where σi denotes the Ising spin at the i-th site and H is the energy of a given spin configuration:

H = −J
∑
〈i,j〉

σiσj − h
∑
i

σi (B.2)

To simplify the notation, in the following analysis the inverse temperature β will be dropped (i.e.
it will be set to β = 1). If the classical system is one dimensional, i.e. a linear chain, equation
(B.2) can be rewritten in terms of one index only as

H = −J
M∑
i

σiσi+1 − h
M∑
i

σi (B.3)

since the nearest neighbor interaction involves just two adjacent sites in the chain. Here M is the
total number of spins in the chain, which is assumed to be large. Furthermore, the system can be
assumed to be periodic with σM+1 = σ1, de facto closing itself up to form a ring. This conception
has no influence on the dimensionality of the problem.

Following the steps traced by Ising in his original work, the partition function can be cleverly
written in terms of a trace over a matrix product, which can then be directly canonically quantized
by introducing Pauli spin matrices. Since the partition function involves an exponential of a sum of
integers (recall that the spins can be either +1 or −1), it can be equally well written as a product
of exponential:
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Z =
∑

{σi=±1}

eJ
PM
i σiσi+1+h

PM
i σi =

∑
{σi=±1}

M∏
i=1

eJσiσi+1ehσi (B.4)

By defining

T1(σi, σi+1) ≡ eJσiσi+1 , T2(σi) ≡ ehσi (B.5)

the partition function obtains precisely the structure of a matrix product:

Z =
∑

{σi=±1}

M∏
i=1

T1(σi, σi+1)T2(σi) (B.6)

where the possible values of the spins ((+1,+1), (+1,−1), (−1,+1), (−1,−1) for T1 and ±1 for
T2) should be interpreted as indices labeling the rows and columns of the matrices T1 and T2.
In particular, since there is just one index describing T2, this matrix should be interpreted as a
diagonal matrix:

T1 ≡
(

eJ e−J

e−J eJ

)
, T2 ≡

(
eh 0
0 e−h

)
. (B.7)

With this association the summation over the configurations in the partition function can be fully
converted into a trace (because of the periodic boundary condition introduced earlier) and thus Z
becomes:

Z = Tr
[
(T1T2)M

]
(B.8)

The product of the two matrices T ≡ T1T2 is termed transfer matrix of the Ising chain and as the
name suggests it “transfers” the trace over the spins from each site to the next one. Because of the
cyclic property of the trace and since T2 is diagonal, the partition function can also be written as

Z = Tr
[
(T 1/2

2 T1T
1/2
2 )M

]
(B.9)

with the square root matrix

T
1/2
2 =

(
eh/2 0

0 e−h/2

)
(B.10)

which leads to a description in terms of the eigenvalues ε1,2 = eJ cosh(h)±
(
e2J sinh2(h) + e−2J

)1/2
of the symmetric matrix

T
1/2
2 T1T

1/2
2 =

(
eJ+h e−J

e−J eJ−h

)
(B.11)

i.e., since the trace is the sum of the eigenvalues, Z can be written as

Z = εM1 + εM2 (B.12)

With the help of this form the two-point spin correlator (i.e. the correlation function between
spins) can in turn be written as

Γ(i− i′) ≡ 〈σiσi′〉 =
1
Z

Tr
(
TM−i

′

1 σ̂zT i
′−i

1 σ̂zT i1

)
=
εM−i

′+i
1 εi

′−i
2 + εM−i

′+i
2 εi

′−i
1

εM1 + εM2
(B.13)
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which in the limit of an infinite chain (i.e. in the thermodynamical limit M →∞) becomes:

Γ(i− i′) = (tanh(J))i
′−i (B.14)

B.2 Classical to quantum correspondence

In this section the classical Ising chain will be mapped onto a system of a single quantum mechanical
Ising spin. Once the language of the transfer matrices has been introduced, the correspondence to
a quantum system comes in naturally by canonical quantization of the spins through Pauli matrices
and some considerations about the scaling of the system. Since the spins are regularly spaced by
a, the discrete index i can also be written in terms of the lattice spacing:

τ = ia (B.15)

and τ substitutes the discrete labeling i in the spins:

σ(τ) ≡ σi (B.16)

This is somehow reminiscent of the procedure invoked at the end of chapter 3 for the continuum
limit of the Jordan-Wigner transformation. With this notation the correlation function becomes:

Γ(τ) ≡ 〈σ(τ)σ(0)〉 = e
−|τ |
ξ (B.17)

where the correlation length xi can be obtained from equation (B.14) with i′ = 0:

ξ

a
=

1
ln (coth(J))

(B.18)

In the large-J limit the logarithm in the denominator can be expanded and the correlation length
ξ becomes much larger than the lattice spacing a, as already pointed out in chapter 1:

ξ

a
≈ 1

2
e2J � 1, J � 1 (B.19)

In this limit, the transfer matrices T1 and T2 can be written as

T1 = eJ
(
1 + e−2J σ̂x

)
≈ eJ (1 + (a/2ξ)σ̂x) ≈ ea(−E0+(1/2ξ)σ̂x) (B.20)

respectively

T2 = eah̃σ̂
z

(B.21)

where E0 = −J/a and h̃ = h/a are the scaled couplings and the canonical quantization σ(τ) → σ̂
was also introduced. Both transfer matrices have the form eaO, with an a-independent operator
O acting on the eigenstates of the z-Pauli matrix. By using the Suzuki-Trotter approximation
eaO1eaO2 = ea(O1+O2)

(
1 +O(a2)

)
(see section 2.2 and appendix A) in the limit a→ 0 the transfer

matrix T becomes:

T = T1T2 ≈ e−aHQ (B.22)

with
HQ = E0 −

1
2ξ
σ̂x − h

a
σ̂z = E0 −

∆
2
σ̂x − h̃σ̂z (B.23)

Thus, one can write the partition function as
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Z = Tr [(T1T2)]M ≈ Tr
(
e−LτHQ

)
(B.24)

in terms of quantum Hamiltonian HQ describing the dynamics of a single Ising spin, whose Hilbert
space consists only of the two eigenstates of the z-Pauli operator. Note that HQ depends on an
irrelevant additive constant E0 (which does not describe any underlying physical phenomenon), a
longitudinal field h̃ and a transverse field ∆ (the longitudinal field takes over the role of the spin-
spin coupling which is obviously absent for a single spin). It is also interesting to mention that the
transfer matrix of the classical chain is the quantum evolution operator e−HQτ over an imaginary
time τ = a: as for the case analyzed in chapter 2, the transfer from one physical site to the next in
the classical chain corresponds to imaginary time evolution in the quantum system.
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