
Discrete growth processes
Loewner Chains and stochastic Schramm-Loewner evolution

From SLE to CFT

SLE

08/04/2013

SLE



Discrete growth processes
Loewner Chains and stochastic Schramm-Loewner evolution

From SLE to CFT

SLE



Discrete growth processes
Loewner Chains and stochastic Schramm-Loewner evolution

From SLE to CFT

Outline

1 Discrete growth processes
Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

2 Loewner Chains and stochastic Schramm-Loewner
evolution

Conformally invariant interfaces
Loewner Chains
Chordal SLE

3 From SLE to CFT
SLE and the Witt algebra
the central charge

SLE



Discrete growth processes
Loewner Chains and stochastic Schramm-Loewner evolution

From SLE to CFT

Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

a hexagonal lattice domain D is a domain in the usual
sense, which can be decomposed as a union of

open hexagons with side length 1 (faces)
open segments of length 1 (edges)
points (vertices)

an admissible boundary condition is a couple of distinct
points (a, b), a, b /∈ D, such that a and b can be connected
by a path γ ∈ D
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Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

a path γ ∈ D from a to b is a sequence s1, ..., s2n+1, where
s1 = a and s2n+1 = b
the s2m+1 are distinct vertices
the s2m are distinct edges with boundary {s2m−1, s2m+1}

(D, a, b) hexagonal lattice domain with admissible
boundary condition
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Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

for a given configuration of right(white) and left(black)
hexagons the path from a to b is unique
example: color the of inner hexagons with a fair coin
p = 1/2 (independent random variables)
induced probability distribution for the paths from a to b is
called percolation probability distribution
a path touching l distinct faces has probability 2−l
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Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

given (D, a, b), where the colors of the faces are spin
variables σi

H(σ) = −
∑
<i,j>

Jσiσj Pβ(σ) =
e−βH(σ)

Zβ

get exactly one interface (path from a to b) and a number of
loops
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Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

adjust J, β until phase transition occurs
−→ get a critical system with long range correlations (scale
invariance)
the Ising interaction is local (nearest neighbor)
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Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

given (D, a, b) and 1 ≤ m < n: obtain hexagonal lattice
domain D′ by removing sl, 1 < l ≤ s2m+1 then (s2m+1, b) is
an admissible boundary condition for D′ −→ (D′, s2m+1, b)

γ[a,b] a path from a to b, compare the following probabilities:

the probability of γ[a,b] in (D, a, b) given γ[a,c] is fixed already
the probability of γ[c,b] in (D′, c, b)
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Hexagonal lattice domains
Examples: Percolation and the Ising model
The domain Markov property

the Domain Markov property is the statement that these
two probabilities are equal

P(D,a,b)(.|γ[a,c]) = P(D\γ[a,c],c,b)(.)

the DMP is a way to express locality
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

continuous limit means
lattice spacing goes to 0
infinitely many faces in domain D (every point is a face)
paths still do not contribute (µ(γ) = 0)
a contributing term is an area ρ(x, y)dxdy

domain D with points a,b on its boundray and γ[a,b]
connecting them

γ(0) = a γ(∞) = b γ]a,b[ = γ(]0,∞[) ⊂ D

two domains D and D′ are always coformally invariant
i.e. ∃ invertible holomorphic map between them
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

want the domain Markov property to hold in the continuous
case:

P(D,a,b)(.|γ[a,c]) = P(D\γ[a,c[,c,b)(.)

Conformal transport: conformal map h : D→ D′ transports
the probability measure of the curve γ (U ⊂ D)

P(D,a,b)(γ[a,b] ⊂ U) = P(h(D),h(a),h(b))(γ[h(a),h(b)] ⊂ h(U))

SLE
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

(D, a, b), c ∈ D; γ[a,c] a fixed curve
because of the domain Markov property we know we can
cut out γ[a,c]
now map hγ[a,c] : D\γ[a,c[ → D so that:

hγ[a,c](D\γ[a,c[) = D hγ[a,c](c) = a hγ[a,c](b) = b
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

the resulting equality for the probability is

P(D,a,b)(γ[c,b] ⊂ U |γ[a,c]) = P(D,a,b)(γ[a,b] ⊂ hγ[a,c](U))

the probability distribution for γ[c,b] is
independent of γ[a,c] (Markov)
the same distribution as for γ[a,b] (stationarity of increments)

SLE



Discrete growth processes
Loewner Chains and stochastic Schramm-Loewner evolution

From SLE to CFT

Conformally invariant interfaces
Loewner Chains
Chordal SLE

from now on look at the upper half plane D = H
γ(0) = a = 0; R ∪∞ is the boundary
the set H\γ is still a domain (still contractible)
can map H\γ back onto H
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

introduce “time” parameter t for paths γt
−→ parameter associated to growth of path
can now chain conformal maps in the following way:

gt : H\γt → H gs : H\γs → H

gt+s : H\γt+s → H

SLE
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

want to understand local growth

gt : H\γt → H gt+ε : H\γt+ε → H

get a derivative describing local growth

dgt
dt

= limε→0
gt+ε − gt

ε
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

for a path this is (depends on parameterization)

dgt
dt

(z) =
2

gt(z)− ξt
Loewner chain for simple paths
the image of ξt by g−1t is the tip of the path γt at time t

γt = limε→0g
−1
t (ξt + iε)

so ξt provides a parametrization for γ
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

the solution gt(z) to the equation

dgt
dt

(z) =
2

gt(z)− ξt

for given ξt and initial condition g0(z) = z is called Loewner
evolution
numerically solveable at least for t small enough
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

driving term ξt is now a random variable and

ht(z) = gt(z)− ξt

what effect do the known properties (Markov, stationarity of
increments) have on the random variable ξt?

for s > t: ξs − ξt is independent of ξt′ , t′ ≤ t (Markov)
and distributed like a ξs−t (stationarity of increments)

need to demand 2 more things to come to a conclusion
ξt has a continuous trajectory (no branching)
distribution has to be symmetric under reflection at
imaginary axis gt(z) = −gt(−z)
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

Theorem: a 1d Markov process with continuous trajectory,
stationary increments and reflexion symmetry is
proportional to a 1d Brownian motion
so there is a real number κ such that ξt =

√
κBt, where Bt

is a normalized Brownian motion with covariance
E[BsBt] = min(s, t)
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

want to define a probability measure on the space
Ω = C0([0,∞[,R)

take heat kernel (centered Gaussian) as a basic object

K(x, t) =
1

(2πt)
1
2

exp
−x2

2t

correctly normalized so that µ(Ω) =
∫
R dxK(x, t) = 1

if we want to know what the probability for the particle to
choose one specific path γ is, we can integrate K(x, t)
over an ε neighborhood of γ
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

let the Brownian motion drive a 1d point function
ω : [0,∞[→ R
then for 0 < t1 < ... < tn the vector
(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1) is centered Gaussian with
indepentent components
the Brownian motion has all the required properties

probability distribution for the particle for t > t0 independent
of what happened before t0 (Markov)
for every t the current probability distribution for the particle
is again a centered Gaussian (stationarity of increments)
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Conformally invariant interfaces
Loewner Chains
Chordal SLE

Conclude the chordal Schramm-Loewner evolution of
parameter κ

dgt(z)

dt
=

2

gt(z)−
√
κBt
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SLE and the Witt algebra
the central charge

view the ht ∈ N as group elements
want to calculate how these group elements act on
holomorphic functions f : V →W (act on some subspace
of the Riemann surface→ can choose local coordinates)
then the dht are elements of the tangent space with initial
condition h0(z) = z

ht is a stochastik process, ξt is a Brownian motion with
covariance E[ξtξs] = κmin(t, s)

dht(z) = dtσ(ht(z)) + dξtρ(ht(z))

SLE
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SLE and the Witt algebra
the central charge

now let the ht act on the holomorphic functions:
hft = f ◦ ht ◦ f−1

dhft = dt(σf ◦ hft ) + dξt(ρ
f ◦ hft )

to calculate this we need Ito’s formula (stochastik version
of the chain rule)

ρf ◦ f = f ′ρ σf ◦ f = f ′σ +
κ

2
f ′′ρ2

then we have

dhft = dt((f ′σ +
κ

2
f ′′ρ2) ◦ f−1 ◦ hft ) + dξt(f

′ρ ◦ f−1 ◦ hft )

space O of hol. functions, group N acting on it:
gh · F = F ◦ h

(g−1
hft
dg

hft
)f = dt(f ′σ +

κ

2
f ′′ρ2) + dξt(f

′ρ)
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SLE and the Witt algebra
the central charge

in case of chordal SLE:

g−1
hft
dg

hft
= dt(

2

z
∂z +

κ

2
∂2z )− dξt∂z

define the operators l−1 = −∂z and l−2 = −1
z∂z

g−1
hft
dg

hft
= dt(−2l−2 +

κ

2
l2−1) + dξtl−1

can reconstruct the rest of the Witt algebra with
commutation

[ln, lm] = (n−m)lm+n
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SLE and the Witt algebra
the central charge

want to understand the role of l−1 and l−2, again take

g−1
hft
dg

hft
= dt(−2l−2 +

κ

2
l2−1) + dξtl−1

can integrate out the last term g
gft

= g
hft
e−ξtl−1 and get

g−1
gft
dg

gft
= −2dt(eξtl−1 l−2e

−ξtl−1)

so the vector field l−1 drives the Brownian motion whereas
l−2 specifies the drift
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SLE and the Witt algebra
the central charge

can use SLE or CFT to understand conformally invariant
pictures
CFT expresses conformal symmetry through unitary
transformations which act on a Hilbert space
for SLE it should not make a difference if displayed as
direct functions or correlation functions on a Hilbert space
we are now looking for a central charge
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SLE and the Witt algebra
the central charge

ansatz: expectation values which are time invariant in SLE
should be time invariant in CFT as well
again, take the equation

g−1
hft
dg

hft
= dt(−2L−2 +

κ

2
L2
−1) + dξtL−1

take the expectation value (second term dissapears
because Brownian motion is a centered Gaussian)

E

(
dg

hft

dt

)
= E(−2L−2ghft

+
κ

2
L2
−1ghft

)

define HT = −2L−2 + κ
2L

2
−1
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SLE and the Witt algebra
the central charge

look for zero modes of HT , eigenvectors so that HT · ψ = 0
→ zero mode is an observable conserved in mean.
want the zero modes to be annihilated by the Ln (n > 0),
i.e. among the highest weight vectors Ln · ψ = 0 with
conformal dimension d, L0 · ψ = d · ψ
under which condition is HT · ψ again a highest weight
vector

[Ln,HT ] = (−2(n+2)+
κ

2
n(n+1))Ln−2+κ(n+1)L−1Ln−1−cδn,2

for all n > 3: LnH · ψ = 0
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SLE and the Witt algebra
the central charge

but for demanding L1H · ψ = 0 and L2H · ψ = 0 it is
required that

2κh = 6− κ c = h(3κ− 8)

need to adjust the central charge to

cκ =
1

2
(3κ− 8)(

6

κ
− 1)
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SLE and the Witt algebra
the central charge
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SLE and the Witt algebra
the central charge

Questions?
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SLE and the Witt algebra
the central charge
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