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Abstract

One of the simplest Riemann surfaces with nonzero genus is the torus. Modular transforma-
tions do not change the complex structure on the torus, and therefore it is possible to study the
constraints following from modular invariance on conformal field theories defined on the torus.
After a general introduction to the modular group, we discuss different models of conformal
field theories on the torus: The partition function of a free boson on a torus is calculated using
ζ regularization. Other models, such as the free fermion and the compactified boson, are in-
vestigated. Furthermore, we give an example of an orbifold, namely the Z2 orbifold theory for
compactified bosons.
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1 Introduction

The aim of this text is to study conformal field theories on the torus and investigate the implications
of modular invariance on them. In section 2, the modular group and its generators are presented,
giving an overview of modular transformations which are a key tool to derive partition functions on
the torus. Sections 3.1 & 3.2 describe the torus in general and the partition function which is the
object of interest in our models. Next, different examples for conformal field theories on the torus
and their modular invariant partition functions are given. We work out the free boson partition
function in detail, a calculation which involves ζ regularization which is a very important technique
in both theoretical physics and number theory. We give a sketch of the study of the free fermion
and compactified boson and take a look at the requirements following from modular invariance for
a multi-component model. The last section is an introduction to the Z2 orbifold theory which tries
to ”mod” an inversion symmetry out of the compactified boson while keeping modular invariance.

This text is part of the proseminar Conformal field theory & String theory taking place in the
spring semester of 2013 at ETH Zurich and is a detailed summary of a talk held by myself in March
2013. It is mostly based on the presentation given in chapter 10 of [1], but some calculations have
been added and worked out in more detail in order to make it easier to follow. The main focus lies
on the calculation of the free boson partition function on the torus, and we give the other examples
as a sketch of derivation.

2 The modular group

2.1 Modular transformations

Definition 1

The modular group Γ is the group of all linear fractional transformations of the upper half
complex plane H of the form

z 7→ az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1.

All of the above transformations keep z in H. We can identify the modular transformation de-

scribed by the numbers (a, b, c, d) with a 2x2 matrix with integer entries,

(
a b
c d

)
. The composition

of functions corresponds to matrix multiplication, as we can easily check:

Let f : H→ H, z 7→ az+b
cz+d and g : H→ H, z 7→ ez+f

gz+h . Then, we have

(g ◦ f)(z) = g(f(z)) = g

(
az + b

cz + d

)
=
e
(
az+b
cz+d

)
+ f

g
(
az+b
cz+d

)
+ h

=
cz + d

cz + d

(
aez + be+ fcz + df

agz + bg + hcz + hd

)
=

(ae+ cf)z + (be+ df)

(ag + ch)z + (bg + dh)
.

(1)

This is exactly the modular transformation described by(
e f
g h

)
·
(
a b
c d

)
=

(
ae+ cf be+ df
ag + ch bg + dh

)
, (2)



2 THE MODULAR GROUP 3

so we see that the matrix multiplication corresponds to composition of functions. We also see that
the group operation is associative.

The inverse of

(
a b
c d

)
is

(
d −b
−c a

)
, which also has integer entries and the same determinant,

and the identity is described by

(
1 0
0 1

)
. Because ad− bc = 1, all modular transformations will be

described by special linear matrices in SL2(Z) = {A ∈ Mat (2× 2,Z)| detA = 1}. However, this is
too much, because a change of all four signs of a, b, c, d does not change the modular transforma-
tion. Therefore, the matrices describing modular transformations are only determined up to a sign.
Formally, this means that we have to take the quotient of SL2(Z) by its center, which is {1,−1}.

That way, we end up at the matrix group describing modular transformations, which is PSL2(Z) =
SL2(Z)/ {1,−1} . We call PSL2(Z) the projective special linear group. Our original Γ is of course
isomorphic to it.

2.2 Generators of the modular group

Definition 2

Let T : H→ H, z 7→ z + 1 (unit translation to the right), and
S : H→ H, z 7→ −1

z (inversion in the unit circle, followed by reflection about Re z = 0).

T and S can be shown to be the generators of the modular group. This means that we can write
any modular transformation as a combination of powers of T and S. The matrices associated with
the generators are for instance

T =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
. (3)

The generators also have the defining properties S2 = (ST )3 = 1. This enables us to give a
presentation of the modular group:

Γ ∼= 〈S, T | S2 = (ST )3 = 1〉. (4)

This shows that Γ is isomorphic to the free product of two cyclic groups, C2 and C3. However,
this is not of interest here.

2.3 Special functions with regard to the modular group

When investigating modular transformations, there are some functions which occur very often and
are connected to elliptic functions. In order to give an idea of the functions with which we will be
dealing later, we start with a short introduction to theta functions and the Dedekind η function,
including the definitions and their modular properties.

2.3.1 Theta functions

Theta functions are special functions of several complex variables. They arise for instance as solu-
tions of the heat equation. They are quasiperiodic which also makes them important in the theory
of elliptic functions. Another well-known example of their occurrence is Bernhard Riemann’s proof
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of the functional equation for the Riemann ζ function [2].

Let us define the 3 theta functions which are of interest in our case. We will go directly to the
relevant theta functions of τ ∈ H, instead of considering two variables (z, τ) ∈ C×H. We give both
the series and product identities without proof.

Definition 3

Let τ ∈ H, q = e2πiτ . Then define

Θ2(τ) =
∑
n∈Z

q(n+ 1
2)

2
/2 = 2q

1
8

∞∏
n=1

(1− qn) (1 + qn)2 ,

Θ3(τ) =
∑
n∈Z

q
n2

2 =

∞∏
n=1

(1− qn)
(

1 + qn−
1
2

)2
,

Θ4(τ) =
∑
n∈Z

(−1)nq
n2

2 =
∞∏
n=1

(1− qn)
(

1− qn−
1
2

)2
.

Above theta functions are holomorphic on H and have rather simple transformation properties
under the modular group, as we can see in table (1).

2.3.2 Dedekind’s η function

Definition 4

Let τ ∈ H, q = e2πiτ . Dedekind’s η function is then defined to be

η(τ) = q
1
24

∞∏
n=1

(1− qn) .

The η function is holomorphic on H and cannot be extended analytically to a bigger domain. Its
connection to the theta functions is very simple:

η3(τ) =
1

2
Θ2(τ)Θ3(τ)Θ4(τ). (5)

2.3.3 Table of modular properties

The theta functions, as well as Dedekind’s η function, are not invariant under modular transfor-
mations; however, they transform in a simple way. Table (1) shows the important relations.

η(τ + 1) = e
πi
12 η(τ) Θ2(τ + 1) = e

πi
4 Θ2(τ)

η
(
− 1
τ

)
=
√

τ
i η(τ) Θ2

(
− 1
τ

)
=
√

τ
iΘ4(τ)

Θ3(τ + 1) = Θ4(τ) Θ4(τ + 1) = Θ3(τ)

Θ3

(
− 1
τ

)
=
√

τ
iΘ3(τ) Θ4

(
− 1
τ

)
=
√

τ
iΘ2(τ)

Table 1: Behaviour of some special functions under modular transformations.
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3 Conformal field theory on the torus

3.1 The torus

We can define a torus to be a parallelogram whose opposite edges are identified with each other. It
could also be seen as a cylinder whose ends were glued together. Let us look at the parallelogram:
We specify two linearly independent lattice vectors and identify points which differ by an integer
combination of these vectors. On the complex plane, we can write the vectors as two complex
numbers ω1, ω2 which are called periods of the lattice. We call τ = ω2

ω1
the modular parameter,

which can be chosen so that τ ∈ H. We write the lattice defined by the vectors ω1, ω2 as L(ω1, ω2).

Now, the set C/L(ω1, ω2) is homeomorphic to the torus. The complex structure of C induces a
complex structure on C/L(ω1, ω2). So, we can say that the pair of lattice vectors (ω1, ω2) defines a
complex structure on the torus. Two pairs of lattice vectors, (ω1, ω2) and (ω′1, ω

′
2), define the same

complex structure on the torus if τ = ω2
ω1

and τ ′ =
ω′2
ω′1

are connected via a modular transformation

(a detailed proof of this can be found in [3]).

Our theory on the torus does not depend on the overall scale of our lattice, and the absolute
orientation of the periods is not important either. In a geometric reasoning, we can look at the
generators of modular transformations: T corresponds to cutting the torus at a fixed point on the
imaginary axis, rotating one piece by 2π and sticking the pieces back together. S corresponds to
looking at the torus from the side. Therefore, modular transformations of τ do not change the
theory on the torus, so when investigating conformal field theories on the torus, we want to look
for partition functions which are invariant under modular transformations. Let us next look at the
partition function in general.

3.2 The partition function

In correspondance with the partition function from statistical mechanics,

Z = Tre−
H
kT , (6)

where H is the Hamiltonian, the partition function in quantum field theory embodies the spectrum
of our theory. Generally, one can write it in a path integral formulation:

Z =

∫
[dϕ] e−

S[ϕ]
~ , (7)

where S [ϕ] is the action depending on a set of local fields [ϕ].

However, we also want to find a similar expression to (6). First, we need to specify space and
time directions on the torus. We will take space to run along the real axis and time along the
imaginary axis. Let H be the Hamiltonian generating translations along the time direction and P
the total momentum generating translations along the space direction. Then the operator which
translates the system parallel to the period ω2 over a distance a in Euclidean space-time is given
by

exp

(
− a

|ω2|
[HIm ω2 − iPRe ω2]

)
. (8)
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Now we will regard a as a lattice spacing, then this operator will take us from one row of a lattice
to the next. If the complete period contains m lattice spacings, that is |ω2| = ma, then we obtain
the partition function by taking the trace of the translation operator to the m-th power:

Z = Tr exp (−HIm ω2 + iPRe ω2) . (9)

In the next step, we will regard the torus as a cylinder of circumference L whose ends have been
stuck together and use this to find the partition function in terms of the Virasoro generators L0

and L0. On a cylinder of circumference L, the Hamiltonian and total momentum are given by:

H =
2π

L

(
L0 + L0 −

c

12

)
, P =

2πi

L

(
L0 − L0

)
. (10)

In our analogue to the cylinder, ω1 is real and equal to L, so the final result for the partition
function dependent on τ is

Z(τ) = Tr exp
(
πi
[
(τ − τ)

(
L0 + L0 −

c

12

)
+ (τ + τ)

(
L0 − L0

)])
= Tr exp

(
2πi

[
τ
(
L0 −

c

24

)
− τ

(
L0 −

c

24

)])
.

(11)

Now we introduce q = e2πiτ , q = e−2πiτ and find

Z (τ) = Tr
(
qL0− c

24 qL0− c
24

)
. (12)

This result is connected to the Virasoro characters χ(c,h)(τ) = TrqL0− c
24 , where c is the central

charge and h is the weight, which is the eigenvalue of L0. We will apply this to the free boson on
the torus now.

3.3 The free boson on the torus

We will now investigate the free boson on the torus and calculate its partition function. First, note
that we should discard the zero-mode because its contribution to Z is infinite. Then, we note that

we can calculate the Virasoro characters to be χ(c,h)(τ) = TrqL0− c
24 = qh+

1−c
24

η(τ) (a derivation of this

can be found in [1], chapter 7). Comparing this with (12), we expect the partition function of the
free boson to behave like

Zbos(τ) ∝ 1

|η(τ)|2
. (13)

However, the above expression is not modular invariant. We need a proper multiplicative factor
that makes it invariant under modular transformations. We can check that Zbos(τ) = 1√

Im τ |η(τ)|2

is modular invariant, using the properties given in table (1): Under S, we have

1√
Im

(
− 1
τ

) ∣∣η (− 1
τ

)∣∣2 =

√− 1
τ + 1

τ

2i

∣∣∣∣η(−1

τ

)∣∣∣∣2
−1

=

(√
−τ + τ

2i |τ |2
√
|τ |2 |η(τ)|2

)−1

=
1√

Im τ |η(τ)|2
.

(14)

The invariance under T is trivial because η just picks up a phase and Im (τ + 1) = Im τ .
Therefore, this is the result we anticipate for the free-boson partition function on the torus. In

the next section, we will carry out the calculation of the functional integral and see that this is
indeed the result.
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3.3.1 Detailed calculation in the path-integral formalism

This calculation follows Chapter 10.2 in [1], with more detailed additional explanations where
appropriate. Discarding the zero-mode, we write the free-boson partition function as [1]:

Zbos(τ) =

∫
[dϕ]
√
A δ

(∫
d2x ϕϕ0

)
exp

(
−1

2

∫
d2x (∇ϕ)2

)
. (15)

The coordinate integrals in above expression are over the torus. A = Im (ω2ω
∗
1) is the area of the

torus, and ϕ0 = A−
1
2 is the normalized eigenfunction of the zero-mode. The delta distribution

ensures that the zero-mode is discarded: its argument is the coefficient of the zero-mode in any
field configuration, and the square root of the area makes the expression dimensionless.

In order to carry out the calculation, let us expand the field ϕ in terms of the normalized
eigenfunctions of the Laplacian ∇2. We write these eigenfunctions with eigenvalues −λn as ϕn. For
the nonzero modes, we have λn 6= 0 and we can calculate the functional integral:

Zbos(τ) =
√
A

∫ ∏
i

dci exp

(
−1

2

∑
n

λnc
2
n

)
(16)

=
√
A
∏
n

(
2π

λn

) 1
2

. (17)

However, this product diverges. To assign a finite value it, we use the technique of ζ function
regularization. Define

G(s) =
∑

n, λn 6=0

1

λsn
. (18)

This function is analytic for sufficiently large values of s. There, we have

d

ds
G(s) =

d

ds

∑
n

1

λsn
=
∑
n

d

ds
exp (− log (λn) s) = −

∑
n

log (λn)
1

λsn
. (19)

There also exists an analytic continuation of G to a domain including s = 0. What we will do in
the rest of this section is try to find this analytic continuation by playing with the definition and
trying to find some identity for G(s) which enables us to find values for G(s) in the region where

the sum does not converge. Comparing this with Zbos, we see that up to a factor of (2π)
1
2 for each

mode (which does not give us information about the dependence of Zbos on τ), we formally have

Zbos(τ) =
√
A exp

(
1

2
G′(0)

)
. (20)

In our case, the eigenvalues are labeled by two integers m and n and look as follows [1]:

λn,m = (2π)2 |nk1 +mk2|2 , (21)

with k1 = −iω2
A , k2 = iω1

A . k1, k2 are the lattice vectors dual to ω1, ω2. The above expression is the
norm squared of a lattice vector in the dual lattice. The eigenfunctions would look like exp(i〈x, ξ〉),
where ξ ranges over the dual lattice. Therefore, we can see the eigenvalue as a Fourier mode.
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Inserting the eigenvalues, we obtain∣∣∣∣2πω1

A

∣∣∣∣2sG(s) =
∑

(m,n) 6=(0,0)

1

|m+ nτ |2s
(22)

=
∑
m

1

|m|2s
+
∑
n 6=0

(∑
m

1

|m+ nτ |2s

)
(23)

= 2ζ(2s) +
∑
n6=0

(∑
m

1

|m+ nτ |2s

)
, (24)

where ζ(z) is the Riemann ζ function. As we sum over all values of m in the second term, it is
periodic in nτ with period 1. Therefore, we will now calculate its Fourier series, writing τ = τ1+iτ2:

∑
m

1

|m+ nτ |2s
=
∑
p

e2πipnτ1

∫ 1

0
dy e−2πipy

∑
m

1[
(m+ y)2 + n2τ2

2

]s (25)

=
∑
p

e2πipnτ1
∑
m

∫ m+1

m
dy e−2πipy 1[

y2 + n2τ2
2

]s (26)

=
∑
p

∫ ∞
−∞

dy e2πip(nτ1−y) 1[
y2 + n2τ2

2

]s (27)

=
1

Γ(s)

∑
p

∫ ∞
−∞

dy e2πip(nτ1−y)

∫ ∞
0

dt ts−1e−t(y
2+n2τ22 ) (28)

=

√
π

Γ(s)

∑
p

∫ ∞
0

dt ts−
3
2 e
−
[
tn2τ22 +π2p2

t
−2πipnτ1

]
. (29)

In the fourth line of this calculation, Euler’s Γ function was used:

Γ(s) =

∫ ∞
0

dx xs−1e−x. (30)

After the substitution zt = x, the following identity is obtained:

1

zs
=

1

Γ(s)

∫ ∞
0

dt ts−1e−zt. (31)

This identity was used with z = y2 + n2τ2
2 .

In the last step, we completed the square in the integral over dy and substituted i
√
ty − πp√

t
=

i
√
ty′. ∫ ∞

−∞
dy e−2πipy−ty2 =

∫ ∞
−∞

dy e

(
i
√
ty− πp√

t

)2
−π

2p2

t (32)

=

∫ ∞
−∞

dy′ e−ty
′2+π2p2

t =

√
π

t
e−

π2p2

t . (33)

Now let us take a look at the integral 29 for p = 0. Using (31) again, we find that in this case
the integral gives ∫ ∞

0
dt ts−

3
2 e−tn

2τ22 = Γ

(
s− 1

2

)
|nτ2|1−2s . (34)
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If we plug this back in (24), this term will be summed over all n 6= 0, which gives us

√
π

Γ
(
s− 1

2

)
Γ(s)

∑
n6=0

|nτ2|1−2s = 2
√
π

Γ
(
s− 1

2

)
Γ(s)

|τ2|1−2s ζ(2s− 1). (35)

Now we can use the functional equation of the Riemann ζ function:

π−
s
2 Γ
(s

2

)
ζ(s) = π

1−s
2 Γ

(
1− s

2

)
ζ(1− s). (36)

Alltogether, with the substitution t = t′ πpnτ2 , we find for our ζ-like G(s):

Γ(s)
(τ2

π

)s− 1
2

∣∣∣∣2πω1

A

∣∣∣∣2sG(s)

=2Γ(s)ζ(2s)
(τ2

π

)s− 1
2

+ 2Γ(1− s)ζ(2− 2s)
(τ2

π

) 1
2
−s

+
√
π
∑
p6=0

∑
n 6=0

e2πipnτ1

∫ ∞
0

dt

t
ts−

1
2

∣∣∣ p
n

∣∣∣s− 1
2
e−π|np|τ2(t+

1
t ).

(37)

The above is well-defined for s > 1 and gives us a different way of writing G(s) there. However,
it has the major advantage that it is symmetric under s 7→ 1 − s which enables us to find values
for G(0) and G′(0). Let us expand G(s) around s = 0 up to first order. We know from complex
analysis that Γ has a simple pole with residue 1 at the origin, that is Γ(s) ∼ 1

s , so we only need to
calculate the integral at s = 0:∫ ∞

0

dt

t
t−

1
2 e−π|np|τ2(t+

1
t ) =

1

|pn|
1
2

e−2π|pn|τ2 . (38)

Furthermore, ζ(2) = π2

6 and ζ(0) = −1
2 , which gives us

G(s) = −1− 2s log

∣∣∣∣ Aω1

∣∣∣∣+
1

3
sπτ2 + s

∑
p 6=0

∑
n6=0

1

|p|
e2πipnτ1−2π|pn|τ2 +O(s2). (39)

Now we want to obtain control over the double sum. We use our already introduced q = e2πiτ

to write it: ∑
p 6=0

∑
n6=0

1

|p|
e2πipnτ1−2π|pn|τ2 =

∑
p,n>0

2

p

(
e2πinpτ1−2πnpτ2 + e−2πinpτ1−2πnpτ2

)
=
∑
p,n>0

2

p
(qnp + qnp)

= −2
∑
n>0

(log (1− qn) + log (1− qn))

= −2 log |η(τ)|2 − 1

3
πτ2.

(40)

We have used the fact that log(1 − x) = −
∑∞

k=1
xk

k for |x| ≤ 1, x 6= 1. This we can use because
τ ∈ H, and therefore |q| = e−2πτ2 < 1. We also have q 6= 1 because τ /∈ Z.
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Now
√
A
|ω1| =

√
τ2, and we have the result

G′(0) = −2 log
(√

Aτ2 |η(τ)|2
)
, (41)

giving the final free-boson partition function

Zbos(τ) =
√
A exp

(
1

2
G′(0)

)
=

1√
Im τ |η(τ)|2

. (42)

This is exactly what we anticipated earlier.

3.4 The free fermion on the torus

The free-fermion action is

S =
1

2π

∫
d2x

(
ψ∂ψ + ψ∂ψ

)
. (43)

Since the two fields ψ and ψ are decoupled, the integral can be calculated to be the Pfaffian
determinant of the differential operators appearing in it, ∂ and ∂ (see [1], chapter 2):

Z = Pf(∂)Pf(∂) =
√

det∇2. (44)

Now we want to impose periodicity conditions on the fermions, which in the end affects the eigen-
values of the Laplacian and therefore the determinant. We assume that the fermions pick up a
phase when being translated by a period:

ψ(z + ω1) = e2πivψ(z), ψ(z + ω2) = e2πiuψ(z). (45)

However, the demand that the action must be periodic when z 7→ z + ω1 or z 7→ ω2 restricts the
possible values of (v, u). The fields can at most pick up a sign and there are only four possible
configurations:

(v, u) = (0, 0) (R,R),

(v, u) =

(
0,

1

2

)
(R,NS),

(v, u) =

(
1

2
, 0

)
(NS,R),

(v, u) =

(
1

2
,
1

2

)
(NS,NS).

(46)

We call the periodic boundary conditions Ramond and the antiperiodic ones Neveu-Schwarz. A set
of periodicity conditions (v, u) like above is called a spin structure for the fermion.

Let us calculate the partition functions Zv,u associated with the boundary conditions. We can
consider the partition function obtained by just integrating the holomorphic field ψ, because ψ and
ψ are decoupled. We call such a partition function dv,u and have

Zv,u = |dv,u|2 . (47)

When carrying out a careful implementation of the periodicity conditions, the Fermion number
F so that (−1)F anticommutes with ψ(z) will arise:

F =
∑
k≥0

Fk Fk = b−kbk. (48)
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This is needed to set time-periodic boundary conditions as the natural choice in the time direction
are anti-periodic boundary conditions: The correlation function of an odd number of fermions
vanishes, so we consider a time-ordered path integral with an even number of fermionic fields.
Then, making a loop in time with a field amounts to passing it through all the other fields, which
generates an overall minus sign. Therefore, in the time-periodic case, the time-evolution operator
is multiplied with (−1)F , which modifies the partition functions:

d0,0 =
1√
2

Tr(−1)F qL0− 1
48 ,

d0, 1
2

=
1√
2

TrqL0− 1
48 ,

d 1
2
,0 = Tr(−1)F qL0− 1

48 ,

d 1
2
, 1
2

= TrqL0− 1
48 .

(49)

The factors of
√

2 in the space-periodic cases are conventional and simplify the transformation of
the partition functions under modular transformations, as we will see. When calculating the traces,
we use ([1], chapter 6):

L0 =
∑
k>0

kb−kbk

(
NS : k ∈ Z +

1

2

)
=
∑
k>0

kb−kbk +
1

16
(R : k ∈ Z) .

(50)

As Tr(A ⊗ B) = Tr(A)Tr(B) (for operators A,B acting on different factors of a tensor product),
we can split the trace of the product which appears into a product of traces of the form Trqkb−kbk .
Furthermore, for a given fermion mode, there are only two states which makes the traces:

Trqkb−kbk = 1 + qk,

Trqkb−kbk(−1)F = 1− qk.
(51)

Alltogether, we obtain the following partition functions:

d0,0 = 0,

d0, 1
2

=

√
Θ2(τ)

η(τ)
,

d 1
2
,0 =

√
Θ4(τ)

η(τ)
,

d 1
2
, 1
2

=

√
Θ3(τ)

η(τ)
.

(52)

Now we try to construct a modular invariant partition function from this. We can check the
modular properties of above partition functions using table (1), which are given in table (2).
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d0, 1
2
(τ + 1) = e

πi
8 d0, 1

2
(τ) d0, 1

2

(
− 1
τ

)
= d 1

2
,0(τ)

d 1
2
,0(τ + 1) = e−

πi
24d 1

2
, 1
2
(τ) d 1

2
,0

(
− 1
τ

)
= d0, 1

2
(τ)

d 1
2
, 1
2
(τ + 1) = e−

πi
24d 1

2
,0(τ) d 1

2
, 1
2

(
− 1
τ

)
= d 1

2
, 1
2
(τ)

Table 2: Modular properties of the holomorphic partition functions appearing in the free boson
model.

The phase factors are not a problem since the full partition functions are the modulus squared
of the holomorphic ones. However, the fact that the partition functions mix under modular trans-
formations tells us that there are only two ways of constructing a modular invariant partition
function: The first one are the periodic (R,R) conditions, but the partition function vanishes there;
the second one is including all the other three possibilities for the boundary conditions. So modular
invariance restricts us: all the three conformal fields associated with a fermion central charge of
c = 1

2 have to be present in the theory. Then, we have

Z = Z 1
2
, 1
2

+ Z0, 1
2

+ Z 1
2
, 1
2

=

∣∣∣∣Θ2

η

∣∣∣∣+

∣∣∣∣Θ3

η

∣∣∣∣+

∣∣∣∣Θ4

η

∣∣∣∣ . (53)

We note that this is just twice the partition function of the Ising model on a torus.

3.5 The compactified boson

Let us take a look at another example for a conformal field theory on the torus:
This time, we want to consider a winding occurring when we go from the point z to the point

z + ω1 or z + ω2, which are equivalent. This gives the following boundary condition:

ϕ(z + kω1 + k′ω2) = ϕ(z) + 2πR(km+ k′m′) k, k′ ∈ Z. (54)

A pair of integers (m,m′) then specifies a class of configurations which obey the above periodicity
condition, and the assigned partition function Zm,m′ is found by integrating over the configurations
of this class. When integrating, we want to decompose ϕ into a periodic (”free”) field ϕ̃ and a
classical solution to the equation of motion which we denote by ϕclm,m′ . ϕclm,m′ has a vanishing
Laplacian. Our decomposition is then

ϕ = ϕclm,m′ + ϕ̃,

ϕclm,m′ = 2πR

[
z

ω1

mτ −m′

τ − τ
− z

ω∗1

]
.

(55)

Because ϕclm,m′ has vanishing Laplacian, we have∫
d2x∇ϕclm,m′∇ϕ̃ = −

∫
d2xϕ̃∆ϕclm,m′ = 0. (56)

Therefore, S[ϕ] = S[ϕ̃] + S[ϕclm,m′ ]. The second term is

S[ϕclm,m′ ] =
1

2π

∫
dzdz∂ϕclm,m′∂ϕ

cl
m,m′

= πR2 |mτ −m′|
2

2Im τ
,

(57)
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and the functional integration over the periodic field gives, of course, Zbos. This leads to the
following partition function:

Zm,m′(τ) = Zbos(τ) exp

[
−πR

2 |mτ −m′|2

2Im τ

]
. (58)

Now we want to check the modular properties of this partition function and see if we can
construct a modular invariant one:

Zm,m′(τ + 1) = Zbos(τ) exp

[
−πR2 |m(τ + 1)−m′|2

2Im τ

]

= Zbos(τ) exp

[
−πR2 |mτ − (m′ −m)|2

2Im τ

]
= Zm,m′−m(τ).

(59)

Zm,m′

(
−1

τ

)
= Zbos(τ) exp

[
−πR2

∣∣m ( 1
τ

)
−m′

∣∣2
2Im 1

τ

]

= Zbos(τ) exp

[
−πR2 |−m′τ −m|

2

2Im τ

]
= Z−m′,m(τ).

(60)

Therefore, we see that the sum of the partition functions over all (m,m′) with equal weights is
modular invariant. This gives us the partition function

Z(R) =
R√
2
Zbos(τ)

∑
m,m′

exp

[
−πR

2 |mτ −m′|2

2Im τ

]
, (61)

which we still want to rewrite. Using Poisson’s resummation formula, we find

Z(R) =
1

|η(τ)|2
∑
e,m∈Z

q(
e
R

+mR
2 )

2
/2q(

e
R
−mR

2 )
2
/2. (62)

We can see this as the sum over all possible electric charges of vertex operators and all possible
windung numbers (which correspond to magnetic charges) of the c = 1 Virasoro characters squared
with conformal dimension

he,m =
1

2

(
e

R
+
mR

2

)2

, he,m =
1

2

(
e

R
− mR

2

)2

. (63)

It is also remarkable that this model has an electric-magnetic duality which leads to the partition
function being invariant under the interchange R↔ 2

R .

3.6 An assembly of bosons

As a next step, we want to see how we can form modular invariant partition functions out of an
assembly of compactified free bosons. For this, we need a new concept, the concept of a multidi-
mensional lattice.
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Definition 5

An n-dimensional lattice Γ is a set of points in Rn with the property that its elements can be
written as an integer linear combination of a set of n basis vectors εi:

Γ =

{
x =

∑
i

xiεi ∈ Rn
∣∣∣∣∣xi ∈ Z

}
. (64)

Such a lattice is called Lorentzian with signature (r, s) if it possesses through Rn an indefinite inner
product diag (1, ..., 1,−1, ...,−1) with r positive signs and s negative signs. We write 〈x, y〉 for the
inner product of two elements x, y of the lattice.

To each lattice Γ, there is a dual lattice Γ∗ = {p ∈ Rn| 〈x, p〉 ∈ Z}. In the case Γ = Γ∗, the
lattice is called self-dual. If the property 〈x, y〉 ∈ Z holds for all x, y ∈ Γ, then the lattice is an
integer lattice. Furthermore, if all elements x ∈ Γ have even squared norm, that is 〈x, x〉 ∈ 2Z, we
say the lattice is even-integer.

3.6.1 Multi-component chiral boson

Now we go back to the partition function given in (62) and introduce p = e
R + mR

2 , p = e
R −

mR
2 to

write

Z(R) =
1

|η(τ)|2
∑
p,p

eπi(τp
2−τ p2). (65)

The sum is still to be taken over all integer values of e and m. We can define the basis vectors
ε1 =

(
1
R ,

1
R

)
and ε2 =

(
R
2 ,−

R
2

)
. Using an inner product with signature (1, 1), we see that the set

of points (p, p) forms an even, self-dual, Lorentzian integer lattice. This is not a fluke - in fact, this
is related to modular invariance, as we will show now.

Consider, in general, a set of n bosons of which we keep only the holomorphic modes, and a
distinct set of n bosons of which we keep only the antiholomorphic modes. This theory can be
defined by the following expression for the Virasoro generators:

L0 =
1

2
p2 +

n∑
i=1

∑
k>0

a
(i)
−ka

(i)
k ,

L0 =
1

2
p2 +

n∑
i=1

∑
k>0

a
(i)
−ka

(i)
k ,

(66)

where p belongs to some lattice Γ and p belongs to some lattice Γ. The partition function of such
a system is

ZΓ(τ) =
1

η(τ)nη(τ)n

∑
p∈Γ,p∈Γ

eπi(τp
2−τ p2). (67)

Now we want to find out under what conditions on the lattice and (n, n) this partition function
will be modular invariant. Let us start with the action of T on ZΓ:

ZΓ(τ + 1) =
1

η(τ)nη(τ)n
exp2πi

(n−n)
24

∑
p∈Γ,p∈Γ

eπi(τp
2−τ p2)eπi(p

2−p2)

= ZΓ(τ)e2πi
(n−n)

24 eπi(p
2−p2).

(68)
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Therefore, we need that p2 − p2 is always an even integer, which means that the lattice Γ⊕ Γ has
to be even-integer. Furthermore, we need (n− n) = 0 mod 24.

The investigation of S needs a generalization of the Poisson resummation formula in the calcu-
lation, which will not be worked out here, but the result is that the partition function is invariant
under S if Γ = Γ∗, which means that the lattice is self-dual. Alltogether, we obtain the result
that a model built from n holomorphic and n antiholomorphic bosons is modular invariant if the
so-called charge lattice (the lattice of charge vectors (p, p)) is an even-integer self-dual lattice, and
(n− n) = 0 mod 24.

The issue of modular invariance of a multicomponent boson system is important for another
topic in this proseminar series, the compactification of the bosonic string.

4 Orbifolds

Now we want to take a look at a variation of the compactified free boson theory. Let us first
introduce the term ”orbifold”, which we will define as in [4]. We can describe it as a generalization
of a manifold allowing a discrete set of singular points.

Definition 6

LetM be a manifold with a discrete group action G :M→M. Then we construct the orbifold
M/G by identifying points under the equivalence relation x ∼ gx for all g ∈ G.

We say that G possesses a fixed point x ∈M if for g ∈ G, g 6= 1, we have gx = x.
From this definition, we see that if G acts freely (which means that it has no fixed points),M/G

is just a standard manifold. However, if G has fixed points, the points associated with it will have
discrete identifications of their tangent spaces and give rise to singular points.

An example of an orbifold is the S1/Z2 orbifold, which we will discuss. TakeM = S1 to be the
circle, whose coordinate parametrization is x ≡ x + 2πr, and let G = Z2 : S1 → S1, which is the
action generated by g : x 7→ −x. The fixed points of Z2 are x = 0 and x = πr. Figure (4) gives a
geometric picture, and we see that this orbifold is topologically a line segment.

Figure 1: The S1/Z2 orbifold [4].

The application of orbifolds to conformal field theory is usually that we take a modular invariant
theory T , the Hilbert space of which allows a discrete symmetry G and construct a theory T /G
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where the symmetry has been modded out, but the theory is still modular invariant. We will do
this with the Z2 action on the compactified free boson.

4.1 The Z2 orbifold theory of the compactified free boson

We consider a variation of the compactified free boson theory: Take the Z2 action on the compacti-
fied free boson, that is, we assume that ϕ does not take it values on the full circle, but on the S1/Z2

orbifold, where the natural action of Z2 is generated by identifying the angle ϕ with −ϕ. Then,
the field can be ”twisted” when taken across a period ω1 or ω2, which means we have to consider
a general boundary condition of the following:

ϕ(z + kω1 + lω2) = e2πi(kv+lu)ϕ(z). (69)

This reminds us of the boundary conditions of the fermion, but this time, the boundary conditions
are due to the topology of the space on which our field lives, while in the fermion case, they were
due to the fermionic nature of the fields.

The action S for the free boson is invariant under the interchange ϕ 7→ −ϕ, so we could just
calculate the integral over half the range of ϕ as opposed to the circle. Another way of finding the
partition function works in analogy to the free fermion: Let the traces over the holomorphic modes
be called fv,u. The associated partition functions Zv,u are then |fv,u|2, just as before. We have
Z0,0 = Z(R) for the untwisted sector. Similarly to the free fermion, we insert an operator G which
maps ϕ to −ϕ and anticommutes with ϕ into the trace in the time-antiperiodic case. This gives us
the holomorphic partition functions:

f0, 1
2

= TrGqL0− 1
24 = 2

√
η(τ)

Θ2(τ)
,

f 1
2
,0 = TrqL0− 1

48 = 2

√
η(τ)

Θ4(τ)
,

f 1
2
, 1
2

= TrGqL0− 1
48 = 2

√
η(τ)

Θ3(τ)
.

(70)

In order to find a modular invariant partition function built out of these, we check again
the modular properties of above holomorphic partition functions. Just like in the case of the free
fermion, they mix under modular transformations and we conclude that the only modular-invariant
combinations are Z0,0 = Z(R) and ∣∣∣f0, 1

2

∣∣∣2 +
∣∣∣f 1

2
,0

∣∣∣2 +
∣∣∣f 1

2
, 1
2

∣∣∣2 . (71)

After summing over all types of boundary conditions and projecting on G-invariant states, we
obtain the final orbifold partition function [1],[4]:

Zorb(R) =
1

2

(
Z(R) +

|Θ2Θ3|
|η|2

+
|Θ2Θ4|
|η|2

+
|Θ3Θ4|
|η|2

)
. (72)
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