Proseminar Theoretical Physics Operator Product Expansion

Pascal Debus

04.03.2013

Pascal Debus Proseminar Theoretical Physics

Radial Quantization

- Cylinder
- Properties

2 Operator Product Expansion

- Infinitesimal symmetry generators
- Radial Ordering
- OPE and Commutators

8 Representations of the Virasoro-Algebra

- Properties
- Highest Weight Representation
- Descendant Fields

Defining the Cylinder

Consider a quantum field theory on two dimensional (flat) euclidian space with space and time coordinate x^0 and x^1 .

- x⁰: Time coordinate ranging form *infinite past* (x⁰ = −∞) to *infinite future* (x⁰ = ∞)
- $x^1 :$ Space coordinate, compactified by $x^1 \equiv x^1 + 2\pi$ and hence $x^1 \in [0,2\pi)$
- This space is homeomorphic to an infinite cylinder $\mathbb{R} \times S^1$, which is also the world sheet of a closed string in euclidian space.

Cylinder Properties

Map onto the Riemann sphere $\mathbb{C} \cup \{\infty\}$

We define the following conformal map on the cylinder:

 $\mathbb{R}\times S^1\ni (x^0,x^1)\mapsto \exp(x^0+ix^1)=z\in\mathbb{C}\cup\{\infty\}$

Properties of Radial Quantization

- Infinite past and future: $x^0=\mp\infty\mapsto z=0,\infty$
- Equal time slices become circles of constant radius
- Time translations: $x^0 \rightarrow x^0 + a$ are dilations $z \rightarrow e^a z$
- Generator of dilations: Hamiltonian of the system
- Circles of constant radius: Hilbert space of the system

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

Primary Fields

Let $z\mapsto f(z)$ be a conformal transformation. If a field $\phi(z,\overline{z})$ transforms like

$$\phi(z,\overline{z}) \to \left(\frac{\partial f}{\partial z}\right)^h \left(\frac{\partial \overline{f}}{\partial \overline{z}}\right)^{\overline{h}} \phi(f(z),\overline{f}(\overline{z}))$$

it is called a primary field of conformal weight (h, \overline{h}) . If this holds only for global conformal transformations it is called quasi-primary

For a small conformal transformation $w(z)=z+\epsilon(z)$ the corresponding infinitesimal transformation is

$$\delta_{\epsilon,\overline{\epsilon}}\phi(z,\overline{z}) = \left[h(\partial_z\epsilon(z)) + \epsilon(z)\partial_z\right]\phi(z,\overline{z}) + \text{ anti-holom}.$$

Symmetries, conserved currents and charges

By Noether's Theorem, we have a **conserved current** associated to any continuous symmetry

$$j_{\mu} = T_{\mu\nu}\epsilon^{\nu}$$

The associated **conserved charge** is given by integration over the space coordiante(s).

$$Q = \int \mathrm{d}x^1 j_0$$

at $x^0 \equiv \text{const}$

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

Infinitesimal symmetry variation

In radial quantization this means:

•
$$x^0 \equiv \text{const} \longrightarrow |z| = \text{const}$$

•
$$\int \mathrm{d}x^1 \longrightarrow \oint \mathrm{d}z$$

• $T_{\mu\nu}\epsilon^{\nu} \to T(z)\epsilon(z) + \overline{T}(\overline{z})\overline{\epsilon}(\overline{z})$

$$Q_{\epsilon,\overline{\epsilon}} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \left(\mathrm{d}z T(z)\epsilon(z) + \mathrm{d}\overline{z}\overline{T}(\overline{z})\overline{\epsilon}(\overline{z}) \right)$$

In QFT, the variation of a field is given by the **equal time commutator** of the conserved charge with the field. Hence, for the infinitesimal symmetry variation of a field $\phi(z, \overline{z})$, we have:

$$\begin{split} \delta_{\epsilon,\overline{\epsilon}}\phi(z,\overline{z}) &= [Q_{\epsilon,\overline{\epsilon}},\phi(w,w)] \\ &= \frac{1}{2\pi i} \oint_{\mathcal{C}} \left(\mathrm{d}z \left[T(z)\epsilon(z),\phi(w,\overline{w}) \right] + \mathrm{d}\overline{z} \left[\overline{T}(\overline{z})\overline{\epsilon}(\overline{z}),\phi(w,\overline{w}) \right] \right) \end{split}$$

Radial Ordering

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

In a QFT, operator products need to be time ordered which, in radial quantization, corresponds to radial ordering and is defined as:

Radial Ordering Operator

For the product of two Operators A and B we define:

$$\mathcal{R}(A(z)B(w)) := \begin{cases} A(z)B(w) & |z| > |w| \\ B(w)A(z) & |z| < |w| \end{cases}$$

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

Deformation of the Integration Contour

$$\oint_{\mathcal{C}} dz \left[A(z), B(w)\right] = \oint_{|z| > |w|} dz A(z) B(w) - \oint_{|z| < |w|} dz B(w) A(z)$$
$$= \oint_{\mathcal{C}(w)} dz \mathcal{R}(A(z) B(w))$$

 Radial Quantization
 Infinitesimal symmetry generators

 Operator Product Expansion
 Radial Ordering

 Representations of the Virasoro-Algebra
 OPE and Commutators

$$\delta_{\epsilon}\phi(w,\overline{w}) = \frac{1}{2\pi i} \oint_{\mathcal{C}(w)} \mathrm{d}z\epsilon(z)\mathcal{R}\left(T(z),\phi(w,\overline{w})\right)$$
$$= h(\partial_{w}\epsilon(w))\phi(w,\overline{w}) + \epsilon(w)(\partial_{w}\phi(w,\overline{w})$$

By Cauchy's formula, $\frac{1}{2\pi i}\oint_{\mathcal{C}(w)} \mathrm{d}z \frac{f(z)}{(z-w)^n} = \frac{1}{(n-1)!}f^{(n-1)}(w)$, we have the following identities for the r.h.s terms:

$$h(\partial_w \epsilon(w))\phi(w,\overline{w}) = \frac{1}{2\pi i} \oint_{\mathcal{C}(w)} \mathrm{d}z \frac{h\epsilon(z)\phi(w,\overline{w})}{(z-w)^2}$$
$$\epsilon(w)\partial_w \phi(w,\overline{w}) = \frac{1}{2\pi i} \oint_{\mathcal{C}(w)} \mathrm{d}z \frac{h\epsilon(z)\partial_w \phi(w,\overline{w})}{z-w}$$

 Radial Quantization
 Infinitesimal symmetry generators

 Operator Product Expansion
 Radial Ordering

 Representations of the Virasoro-Algebra
 OPE and Commutators

$$\frac{1}{2\pi i} \oint_{\mathcal{C}(w)} \mathrm{d}z \epsilon(z) \mathcal{R}\left(T(z), \phi(w, \overline{w})\right)$$
$$= \frac{1}{2\pi i} \oint_{\mathcal{C}(w)} \mathrm{d}z \epsilon(z) \left(\frac{h}{(z-w)^2} \phi(w, \overline{w}) + \frac{1}{z-w} \partial_w \phi(w, \overline{w})\right)$$

which leads to the following expression for our radially ordered product

OPE

$$\mathcal{R}(T(z),\phi(w,\overline{w})) \sim \frac{h}{(z-w)^2}\phi(w,\overline{w}) + \frac{1}{z-w}\partial_w\phi(w,\overline{w})$$

where \sim denotes the expansion up to in $\mathcal{C}(w)$ non-singular terms.

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

OPE: General Formulation

$$\mathcal{R}(A(x)B(w)) \sim \sum_{i} C_i(z-w)O_i(w)$$

where the O_i 's are a complete set of local operators and the C_i 's (singular) numerical coefficients.

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

OPE and Commutators

OPE of the the energy-momentum tensor with itself

Let |z| > |w| and c denote the central charge

$$T(z)T(w) \sim \frac{c/2}{(z-w)^4} + \frac{2}{(z-w)^2}T(w) + \frac{1}{z-w}\partial_w T(w)$$

This OPE can be used to obtain the commuator relations of the Virasoro-Algebra.

Laurent Expansion of T(z)

$$T(z) = \sum_{n \in \mathbb{Z}} z^{-n-2} L_n \quad \text{where} \quad L_n = \frac{1}{2\pi i} \oint dz z^{n+1} T(z)$$

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

OPE and Commutators

Consider a particular conformal transformation $\epsilon(z) = -\epsilon_n z^{n+1}$ and express the conserved charge as

$$Q_n = \frac{1}{2\pi i} \oint dz T(z)(-\epsilon_n z^{n+1}) = -\epsilon_n \sum_{m \in \mathbb{Z}} \oint \frac{dz}{2\pi i} L_m z^{n-m-1}$$
$$= -\epsilon_n \sum_{m \in \mathbb{Z}} L_m \delta_{nm} 2\pi i = -\epsilon_n L_n$$

Hence, we have that $\delta_{\epsilon_n}\phi = -[Q_n,\phi] = -\epsilon[L_n,\phi]$ which means that the L_n are generators of conformal transformations on the Hilbertspace and can be identified with the generators l_n of the Witt-algebra

Infinitesimal symmetry generators Radial Ordering OPE and Commutators

OPE and Commutators

$$\begin{aligned} [L_n, L_m] &= \oint \frac{\mathrm{d}z}{2\pi i} \oint \frac{\mathrm{d}w}{2\pi i} z^{n+1} w^{m+1} [T(z), T(w)] \\ &= \oint_{\mathcal{C}(w)} \frac{\mathrm{d}z}{2\pi i} \oint_{\mathcal{C}(0)} \frac{\mathrm{d}w}{2\pi i} z^{n+1} w^{m+1} \mathcal{R}(T(z)T(w)) \\ &= \oint_{\mathcal{C}(w)} \frac{\mathrm{d}z}{2\pi i} \oint_{\mathcal{C}(0)} \frac{\mathrm{d}w}{2\pi i} z^{n+1} w^{m+1} \left(\frac{c/2}{(z-w)^4} + \frac{2}{(z-w)^2} T(w) \right) \\ &+ \frac{1}{z-w} \partial_w T(w) + \cdots \right) \\ &= \oint_{\mathcal{C}(0)} \frac{\mathrm{d}w}{2\pi i} \left(\frac{c/2}{3!} \partial^3 w^{n+1} + 2(\partial w^{n+1}) T(w) + w^{n+1} \partial T(w) \right) \\ &= (n-m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m,0} \end{aligned}$$

Properties Highest Weight Representation Descendant Fields

In- and Out-States

In-State

$$|A_{\rm in}\rangle = \lim_{z,\overline{z}\to 0} A(z,\overline{z})|0\rangle$$

Adjoint

$$A(z,\overline{z})^{\dagger} = A\left(\frac{1}{z},\frac{1}{\overline{z}}\right)\frac{1}{\overline{z}^{2h}}\frac{1}{z^{2\overline{h}}}$$

Out-State

$$\langle A_{\mathsf{out}}| = \lim_{z,\overline{z}\to 0} \langle 0|\widetilde{A}(z,\overline{z}) = \lim_{z,\overline{z}\to \infty} \langle 0|A(z,\overline{z})z^{2h}\overline{z}^{2\overline{h}}$$

In particular, it follows that $L_m^{\dagger} = L_{\text{pascel Debus}}$

Proseminar Theoretical Physics

Properties Highest Weight Representation Descendant Fields

Analogy to Angular Momentum Algebra SU(2)

- Generators: J^{\pm}, J_z
- States: Maximal set of commuting operators: J^2 and J_z
 - Casimir operator $J^2\text{-eigenvalue}$ denotes representations (j)
 - (2j+1)-dimensional representation space $V^{(j)}$
 - Eigenstates labeled by $J_z\text{-eigenvalues:} \left| j,m \right\rangle$
 - J^{\pm} transforms between states in $V^{(j)}$
- Highest weight state(with maximal m) is annihilated by J^+ : $\boxed{J^+|j,m_{\max}\rangle=0}$
- \bullet All other states obtained by repeated action of J^- on $|j,m_{\rm max}\rangle$
 - Only finitely many states: $(J^-)^{2j+1}|j,m_{\max}\rangle=0$

Properties Highest Weight Representation Descendant Fields

Application to Virasoro-Algebra

We proceed similarly to the SU(2) case:

- Generators: L_n , c
- Unitarity condition: $L_n^{\dagger} = L_{-n}$
- States: Maximal set of commuting operators: c, L_0
 - Representations are labeled by central charge c
 - Each state inside a representation is denoted by $(h,\overline{h}),$ the eigenvalue of L_0
 - $\bullet \; \Rightarrow | c, h, \overline{h} \rangle$ or for fixed central charge c just $| h, \overline{h} \rangle$

Action of L_n on states

Let $|\psi\rangle$ be a state with $L_0|\psi\rangle = h\psi$. The commutator with L_0 yields

$$[L_0, L_n] = -nL_n \quad \Leftrightarrow \quad L_0L_n = -nL_n + L_nL_0$$

It follows:

$$L_0 L_n |\psi\rangle = (L_n L_0 - nL_n) |\psi\rangle = (h - n)L_n |\psi\rangle$$

We see that $L_{-n}|c,h\rangle$ has eigenvalue (h+n) under L_0 . As for the case of J^- , other states can be obtained by successive application of L_{-n} for n > 0

Highest Weight Representation(HWR)

A HWR is a representation containing a state with smallest eigenvalue h of L_0 which is called a Highest Weight State.

- It is reasonable such an representation exists since the Hamiltonian $L_0 + \overline{L}_0$ is usually bounded
- Counterexample: Adjoint representation

Heighest Weight State

Due to the minimality requirement and the previously computed action of L_n , all $L_{n>0}$ must annihilate the highest weight state:

$$L_0|h,\overline{h}\rangle = h|h,\overline{h}\rangle$$
 $L_{n>0}|h,\overline{h}\rangle = 0$

Descendant States

As shown, the generators with negative n, $L_{n<0}$ can be used to generate other states in the given representation, by increasing the eigenvalue by n.

Descendant states

are states of the form

$$L_{-n_1}\cdots L_{-n_k}|c,h\rangle \quad n_i>0$$

where $N = \sum_{i=1}^{k} n_i$ is called the Level of the state.

The set of all descendant states is called a Verma module $V_{c,h}$

Primary field - HW-state correspondence

Let $\phi(z,\overline{z})$ be a primary field of conformal weight (h,\overline{h}) . We define the state $|h,\overline{h}\rangle = \phi(0,0)|0\rangle$ generated by the field acting on the vacuum state and claim it is a HWS.

$$[L_n, \phi(w, \overline{w})] = \oint \frac{\mathrm{d}z}{2\pi i} z^{n+1} T(z) \phi(w, \overline{w})$$

=
$$\oint \frac{\mathrm{d}z}{2\pi i} \left(\frac{h z^{n+1}}{(z-w)^2} \phi(w, \overline{w}) + \frac{z^{n+1}}{z-w} \partial_w \phi(w, \overline{w}) + \cdots \right)$$

=
$$h(n+1) w^n \phi(w, \overline{w}) + w^{n+1} \partial_w \phi(w, \overline{w}) = 0 \quad \text{for} \quad w = 0$$

It follows the annihilation condition for w = 0 and n > 0:

$$L_n|h,\overline{h}\rangle = L_n\phi(0,0)|0\rangle = \phi(0,0)L_n|0\rangle + [L_n,\phi(0,0)]|0\rangle = 0$$

Primary field - HW-state correspondence

Now, for n=0 the commutator yields $[L_0,\phi(0,0)]=h\phi(0,0)$ which means that

$$\begin{split} L_0|h,\overline{h}\rangle &= L_0\phi(0,0)|0\rangle = \phi(0,0)L_0|0\rangle + [L_0,\phi(0,0)]|0\rangle \\ &= h\phi(0,0)|0\rangle = h|h,\overline{h}\rangle \end{split}$$

This proofs that $|h, \overline{h}\rangle = \phi(0, 0)|0\rangle$ is indeed a highest weight state.

Properties Highest Weight Representation Descendant Fields

Descendant states and descendant fields

Start with a descendant state $L_{-k}|h,h'
angle$

$$\begin{split} L_{-k}|h,h'\rangle &= L_{-k}\phi(0,0)|0\rangle \\ &= \overbrace{\oint \frac{\mathrm{d}z}{2\pi i} z^{-k+1}T(z)}^{L_{-k}}\phi(0,0)|0\rangle \\ &= \phi^{(-k)}(0,0)|0\rangle \end{split}$$

This motivates the definition of a corresponding descendant field as

$$\phi^{(-k)}(w,\overline{w}) = \oint \frac{\mathrm{d}z}{2\pi i} \frac{T(z)\phi(w,\overline{w})}{(z-w)^{k-1}}$$

Since L_0 commutes with L_n we can formally assign a conformal weight $(h+k,\overline{h})$ to this field which is given by the L_0 eigenvalue.

Properties Highest Weight Representation Descendant Fields

Example: Descendant Field of the Identity

Consider the identity field: 1

$$(L_{-2}\mathbb{1})(w) = \oint \frac{\mathrm{d}z}{2\pi i} \frac{1}{z-w} T(z)\mathbb{1} = T(w)$$

We see that $\mathbb{1}^{(-2)}(w) = (L_{-2}\mathbb{1})(w) = T(w)$ is a level 2 descendant of the identity operator.

Descendant fields as derivatives

Write the complete(including non-singular terms) OPE of T(z) with a primary field as

$$T(z)\phi(w,\overline{w}) = \sum_{n\geq 0} (z-w)^{n-2} \underbrace{L_{-n}\phi(w,\overline{w})}_{dec}$$
$$= \frac{1}{(z-w)^2} L_0\phi + \frac{1}{z-w} L_{-1}\phi + L_{-2}\phi + (z-w)L_{-3}\phi + \cdot$$

Compare to previously computed OPE:

$$T(z)\phi(w,\overline{w}) = \frac{h}{(z-w)^2}\phi(w,\overline{w}) + \frac{1}{z-w}\partial_w\phi(w,\overline{w}) + \dots$$

We see that $\phi^{(0)} = L_0 \phi = h \phi(w, \overline{w})$ and $\phi^{(-1)} = L_{-1} \phi = \partial_w \phi(w, \overline{w})$

Conformal Family

The set comprising a primary field ϕ and all of its descendants is called a conformal family, and is denoted by:

$$[\phi] = \{\phi, (L_{-n}\phi), \dots, (L_{-k_1}\cdots L_{-k_N}\phi); n > 0, k_i > 0\}$$

level	dimension	field
0	h	ϕ
1	$h{+}1$	$L_{-1}\phi$
2	h+2	$L_{-2}\phi, L_{-1}^2\phi$
3	h+3	$L_{-3}\phi, L_{-1}L_{-2}\phi, \phi, L_{-1}^{3}\phi$
÷	-	÷
Ν	h+N	P(N) fields
where ${\cal P}(N)$ denotes the number of partitions of N into positive		
integers.		

Properties Highest Weight Representat Descendant Fields

BACKUP

Application: Correlation functions

Correlation functions with descedants can be reduced to correlation function of their primary fields:

Let X be $\phi_1(w_1)\cdots\phi_n(w_n)$ a product of primary fields with conformal dimension $(h_i, 0)$.

$$\begin{aligned} \langle \phi^{(-k)}(w)X \rangle &:= \langle \phi^{(-k)}(w)\phi_1(w_1)\dots\phi_n(w_n) \rangle \\ &= \oint_{\mathcal{C}(w)} \frac{\mathrm{d}z}{2\pi i} (z-w)^{-n+1} \langle T(z)\phi(w)X \rangle \\ &= -\sum_i \oint_{\mathcal{C}(w_i)} \frac{\mathrm{d}z}{2\pi i} (z-w)^{-n+1} \langle \phi(w)\phi_1(w_1)\cdots T(z)\phi(i)\cdots\phi_n(w_n) \rangle \\ &= -\sum_i \oint_{\mathcal{C}(w_i)} \left(\frac{h_i(z-w)^{-n+1}}{(z-w_i)^2} + \frac{(z-w)^{-n+1}}{z-w_i} \partial_{w_i} \right) \langle \phi(w)X \rangle \\ &= -\sum_i \left(h_i(1-n)(w_i-w)^{-n} + (w_i-w)^{-n+1} \partial_{w_i} \right) \langle \phi(w)X \rangle \end{aligned}$$

Properties Highest Weight Representation Descendant Fields

Properties Highest Weight Representation Descendant Fields

Contour Deformation

$$= -\sum_{i} \oint_{\mathcal{C}(w_i)} \frac{\mathrm{d}z}{2\pi i} (z-w)^{-n+1} \langle \phi(w)\phi_1(w_1)\cdots T(z)\phi(i)\cdots\phi_n(w_n) \rangle$$

$$= -\sum_{i} \oint_{\mathcal{C}(w_i)} \left(\frac{h_i(z-w)^{-n+1}}{(z-w_i)^2} + \frac{(z-w)^{-n+1}}{z-w_i} \partial_{w_i} \right) \langle \phi(w)X \rangle$$

$$= -\sum_{i} \left(h_i(1-n)(w_i-w)^{-n} + (w_i-w)^{-n+1} \partial_{w_i} \right) \langle \phi(w)X \rangle$$

$$=: \mathcal{L}_{-n} \langle \phi(w)X \rangle$$

Hence, correlation functions of descendant fields are given by differential operators acting in their associated primary fields.

Mode Expansion of field

Expand an arbitrary holomorphic primary field $\phi(z)$ with weight (h,0):

$$\phi(z) = \sum_{n \in \mathbb{Z}} \phi_n z^{-n-h}$$
 with $\phi_n = \oint \frac{\mathrm{d}z}{2\pi i} z^{h+n-1} \phi(z)$

From regularity of $\phi(z)|0\rangle$ at z=0 follows that $\phi_n|0\rangle=0$ for $n\geq -h+1$ and $|h\rangle=\phi_{-h}|0\rangle$

Properties Highest Weight Representation Descendant Fields

Mode-Generator Commutator

$$[L_n, \phi_m] = \oint \frac{dw}{2\pi i} w^{h+m-1} (h(n+1)w^n \phi(w) + w^{n+1} \partial \phi(w))$$

=
$$\oint \frac{dw}{2\pi i} w^{h+m+n-1} (h(n+1) - (h+m+n)) \phi(w)$$

=
$$(n(h-1) - m) \phi_{m+n}$$

$$\Rightarrow [L_0, \phi_m] = -m \phi_m$$