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Introduction The modular group CFT on a torus Orbifolds

Modular transformations

Definition
The modular group Γ is the group of all linear fractional transformations of
the upper half complex plane H of the form

z 7→ az + b
cz + d

,

where a, b, c , d ∈ Z and ad − bc = 1.
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Modular transformations

Group properties

Identify (a, b, c , d) transformation with
(

a b
c d

)
.

Identity: a = 1, b = 0, c = 0, d = 1 corresponds to 1.
Composition corresponds to matrix product and is associative.
Inverse to (a, b, c , d): (d ,−b,−c , a) - like matrix inverse.
No difference between the transformation (a, b, c , d) and
(−a,−b,−c ,−d).

Stefan Huber Modular invariance and orbifolds March 18, 2013 4 / 31



Introduction The modular group CFT on a torus Orbifolds

Modular transformations

Matrix group
As ad − bc = 1, the matrices of modular transformations have unit
determinant.
⇒ SL2 (Z), the special linear group.
Matrices only determined up to a sign!
Γ ∼= PSL2 (Z) = SL2 (Z) / {1,−1}.
"Projective special linear group". From now on, write SL2 (Z).
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Generators of the modular group

T andS
Define:

T : H→ H, z 7→ z + 1. T =

(
1 1
0 1

)
.

S : H→ H, z 7→ −1
z . S =

(
0 1
−1 0

)
.

Defining properties
It is also possible to arrive at T and S via their defining properties:

(ST )3 = S2 = 1.
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Theta functions

Origin

Holomorphic functions of (z , τ) ∈ C×H.
Important for the theory of elliptic functions.
Arise as solutions of the heat equation.
Connected to Riemann’s ζ function via an integral transformation.
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Theta functions

Definition (z = 0)

Let τ ∈ H, let q = exp (2πiτ).

Θ2(τ) =
∑

n∈Z q(n+ 1
2 )

2/2 = 2q
1
8
∏∞

n=1 (1− qn) (1 + qn)2.

Θ3(τ) =
∑

n∈Z q
n2
2 =

∏∞
n=1 (1− qn)

(
1 + qn− 1

2

)2
.

Θ4(τ) =
∑

n∈Z (−1)n q
n2
2 =

∏∞
n=1 (1− qn)

(
1− qn− 1

2

)2
.
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Dedekind’s η function

Definition

η(τ) = q
1
24
∏∞

n=1 (1− qn).

Connection to theta functions

η3(τ) = 1
2Θ2(τ)Θ3(τ)Θ4(τ).
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Modular properties

Table of modular properties

η(τ + 1) = exp
(
πi
12

)
η(τ) η

(
− 1
τ

)
=
√

τ
i η(τ)

Θ2(τ + 1) = exp
(
πi
4

)
Θ2(τ) Θ2

(
− 1
τ

)
=
√

τ
i Θ4(τ)

Θ3(τ + 1) = Θ4(τ) Θ3
(
− 1
τ

)
=
√

τ
i Θ3(τ)

Θ4(τ + 1) = Θ3(τ) Θ4
(
− 1
τ

)
=
√

τ
i Θ2(τ)
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The torus

Definition
Riemann genus: 1
A parallelogram whose opposite edges are identified.
The torus has two periods ω1, ω2. Points which differ by integer
combinations of ω1, ω2 are identified.
The quantity of interest is the modular parameter τ = ω2

ω1
, τ ∈ H.
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The torus

Modular transformations
τ ∈ H⇒ SL2 (Z) can act on τ .
S: Looking at the torus from the side.
T : Cutting the torus, rotating one piece by 2π, stick back together.
Modular transformations of τ do not change the torus.
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The partition function

Establishment
Define space and time directions along real and imaginary axes.
Translation operator over distance a, parallel to ω2 in space-time:
exp
(
− a
|ω2| [H Imω2 − iP Reω2]

)
.

Regard a as lattice spacing. Complete period contains m lattice
spacings (|ω2| = ma), then
Z (ω1, ω2) = Tr exp (− [H Imω2 − iP Reω2]).
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The partition function

In terms of Virasoro generators
Regard the torus as a cylinder of circumference L whose ends have
been stuck together.
Then H = 2π

L

(
L0 + L0 − c

12

)
, P = 2πi

L

(
L0 − L0

)
.

⇒ Z (τ) = Tr
(
qL0− c

24 qL0− c
24

)
.
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The free boson on the torus

Partition function

Remember χ(c,h)(τ) = TrqL0− c
24 = qh+ 1−c

24

η(τ) .

⇒ Zbos ∝ 1
|η(τ)|2 .

Not modular invariant!
Zbos(τ) = 1√

Imτ |η(τ)|2 is modular invariant.
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The free boson on the torus

Detailed derivation with ζ regularization
Path-integral formulation.

Result is a divergent product of the form
∏

n

(
1
λn

) 1
2 .

Define a ζ-like function G (s) =
∑

n
1
λs

n
.

After analytic continuation, our product is regularized to be
exp
(1

2G ′(0)
)
.
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The free fermion on the torus

Action

Free-fermion action: S = 1
2π

∫
d2x

(
ψ∂ψ + ψ∂ψ

)
.

ψ,ψ are decoupled.
⇒ Z = Pf(∂)Pf(∂) =

√
det∇2.
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The free fermion on the torus

Periodicity conditions

ψ(z + ω1) = e2πivψ(z), ψ(z + ω2) = e2πiuψ(z).
Action must be invariant when z 7→ z + ω1 or z 7→ z + ω2.

Possible periodicity conditions

(v , u) = (0, 0) (R,R)

(v , u) =
(
0, 1

2

)
(R,NS)

(v , u) =
(1

2 , 0
)

(NS,R)

(v , u) =
(1

2 ,
1
2

)
(NS,NS)

R: Ramond, NS: Neveu-Schwarz.
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The free fermion on the torus

Periodicity conditions

A set (v , u) of periodicity conditions is called a spin structure.
Decoupled ψ, ψ: consider partition function obtained by integrating
the holomorphic field only, dv ,u.
⇒ Zv ,u = |dv ,u|2 .
When implementing the conditions, find operator anticommuting with
ψ(z):

(−1)F , F =
∑
k≥0

Fk , Fk = b−kbk .
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The free fermion on the torus

Associated partition functions

d0,0 = 0,

d0, 12
=

√
Θ2(τ)

η(τ)
,

d 1
2 ,0

=

√
Θ4(τ)

η(τ)
,

d 1
2 ,

1
2

=

√
Θ3(τ)

η(τ)
.
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The free fermion on the torus

Modular invariance
Check modular properties of d0, 12

, d 1
2 ,0
, d 1

2 ,
1
2
.

Up to phase factors, they mix.
⇒ All the three possibilities (NS,R), (R,NS), (NS,NS) have to be
included in the theory.

Z = Z 1
2 ,

1
2

+ Z0, 12
+ Z 1

2 ,0

=

∣∣∣∣Θ2

η

∣∣∣∣+

∣∣∣∣Θ3

η

∣∣∣∣+

∣∣∣∣Θ4

η

∣∣∣∣
= 2

(
|χ1,1|2 + |χ2,1|2 + |χ1,2|2

)
This is twice the partition function of the Ising model.

Stefan Huber Modular invariance and orbifolds March 18, 2013 21 / 31



Introduction The modular group CFT on a torus Orbifolds

The compactified boson

Boundary conditions
Consider the boundary condition:

ϕ(z + kω1 + k ′ω2) = ϕ(z) + 2πR(km + k ′m′), k , k ′ ∈ Z.

Integration: Decompose ϕ = ϕcl
m,m′ + ϕ̃.

Zm,m′(τ) = Zbos(τ) exp
[
−πR2|mτ−m′|2

2Im τ

]
.
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The compactified boson

Modular invariance
S and T act on Zm,m′ as follows:

Zm,m′(τ + 1) = Zm,m′−m Zm,m′

(
−1
τ

)
= Z−m′,m.

⇒ Sum over all (m,m′) with equal weights.
The final partition function is

Z (R) =
1

|η(τ)|2
∑

e,m∈Z
q( e

R +mR
2 )

2
/2q( e

R−
mR
2 )

2
/2.
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The compactified boson

The final partition function

Sum over all (electric) charges of vertex operators and all possible
"winding numbers" (magnetic charges) of the c = 1 Virasoro
characters squared.
Conformal dimensions:

he,m =
1
2

(
e
R

+
mR
2

)2

, he,m =
1
2

(
e
R
− mR

2

)2

.

The model has a e ↔ m duality

Z
(
2
R

)
= Z (R).
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Orbifolds

Definition
LetM be a manifold with a discrete group action G :M→M. G
possesses a fixed point x ∈M if for g ∈ G, g 6= 1, we have gx = x . Then
we construct the orbifoldM/G by identifying points under the equivalence
relation x ∼ gx for all g ∈ G.
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Orbifolds

Properties
Generalization of manifolds - allows discrete singular points.
If G acts freely (no fixed points) ⇒M/G is a manifold.
Fixed points lead to singularities.
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The S1/Z2 orbifold

Example
TakeM = S1, the circle, with x ≡ x + 2πr .
Let G : Z2 : S1 → S1 with the generator g : x 7→ −x .
Fixed points: x = 0, x = πr .

Figure: The S1/Z2 orbifold.
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The S1/Z2 orbifold

Application
In CFT: Take modular invariant theory T and a discrete symmetry G
on its Hilbert space. Construct a "modded-out" theory T /G which is
also modular invariant.
Take the Z2 action on the compactified free boson.
We have more general boundary conditions:

ϕ(z + kω1 + lω2) = e2πi(kv+lu)ϕ(z).

The action is invariant under ϕ 7→ −ϕ⇒ only half the path-integral
range as compared to circle.
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The S1/Z2 orbifold

Application
Calculate holomorphic partition functions like for the free fermion
(Zv ,u = |fv ,u|2):

f0, 12 = 2

√
η(τ)

Θ2(τ)
,

f 1
2 ,0

= 2

√
η(τ)

Θ4(τ)
,

f 1
2 ,

1
2

= 2

√
η(τ)

Θ3(τ)
,
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The S1/Z2 orbifold

The final partition function

Zorb(R) =
1
2

(
Z (R) +

|Θ2Θ3|
|η|2

+
|Θ2Θ4|
|η|2

+
|Θ3Θ4|
|η|2

)
.
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Conclusion

Key points
Prediction of partition functions from invariance considerations.
ζ regularization of divergent sums/products.
Modular invariance restricts the theory.
Construction of orbifold theories.
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