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1 Basic facts about proper CFT

1.1 Preliminary considerations

It is well known, that symmetries are closely related to conserved quanti-
ties. The more symmetries exist within a given physical theory, the more
conserved quantities can be derived to perform calculations within a certain
framework. In the case of a quantum field theory, symmetries restrict the
form of correlators or can even be used to completely determine the form of
a correlator.
Often, when dealing with a quantum field theory, the appropriate symme-
try group is given by the Poincaré group. However, in a conformal quantum
field theory this group is enlarged and contains also scaling transformations
and special conformal transformations. As was already mentioned in Henrik
Dreyer’s talk, one finds that the conformal group for Rd,1 is isomorphic to
SO(d+ 1, 1). Since this is a finite dimensional group, there are only finitely
many conserved quantities and the corresponding CFT is not completely
solvable (i.e. not all correlators are computable). The above result still
holds for a field theory in d = 2 spatial dimensions with global conformal
invariance and furthermore it can be proven that SO(3, 1) ' SL(2,C). The
Möbius group is only three dimensional over C and thus the theory is not
completely solvable. The analysis presented in Henrik Dreyer’s talk, which
led to the isomorphy between the conformal group and the special orthog-
onal group breaks down only for local conformal invariance in two spatial
dimensions. A modified analysis leads to the conclusion that the appropriate
symmetry group is provided by the group of all holomorphic functions. This
group gives rise to an infinite number of conserved quantities and promotes
two-dimensional CFT to an exactly solvable theory.
The next two sections are devoted to the tools needed to discuss global and
local conformal invariance in two-dimensional conformal field theory. We
will see, how these two types of conformal symmetry manifest themselves in
the formalism of proper CFT.

1.2 Two-dimensional field theory with global conformal in-
variance

Imposing global conformal invariance on a two-dimensional field theory dras-
tically restricts the allowed number of Virasoro modes. As was shown in
Henrik Dreyer’s talk, only the modes L−1, L0 and L1 are compatible with
the requirement of global conformal invariance. These three modes are the
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generators of the Lie algebra sl(2,C) and this means that they generate in-
finitesimal conformal transformations. The general transformation law for
a primary field φh subjected to infinitesimal conformal transformations was
derived in Daniel Herrs talk and reads

φh → φh + δnφh = φh +
(
zn+1∂z + h(n+ 1)zn

)
φh with n ∈ Z. (1)

The differential operator on the right hand side can be rewritten as the
commutator of the primary field with the n-th Virasoro mode,

φh → φh + [Ln, φh] with n ∈ Z. (2)

This notation emphasizes the fact, that infinitesimal conformal transforma-
tions are generated by the Virasoro modes and that these results are also
true in the case of a theory with local conformal invariance. However, in the
global case there are only three allowed Virasoro modes and n is restricted
to the set {−1, 0, 1}.
To implement the requirement of global conformal invariance into our theory,
we have to look at the N -point function GN := 〈φh1(z1)φh2(z2) · · ·φhN (zN )〉.
Since every field appearing in theN -point function infinitesimally transforms
as (1), the behavior of GN is given by

GN → GN + δnGN . (3)

To construct a theory with global conformal invariance we have to demand
δnGN = 0 for all points and for n ∈ {−1, 0, 1}. It is easy to see, using the
differential operator appearing in (1), that this condition can be rewritten
as a system of three partial differential equations of first order:

L−1 :

N∑
i=1

∂ziGN (z1, ..., zN ) = 0

L0 :

N∑
i=1

(zi∂zi + hi)GN (z1, ..., zN ) = 0

L1 :
N∑
i=1

(z2
i ∂zi + 2hizi)GN (z1, ..., zN ) = 0.

(4)

These differential equations, also known as the global conformal Ward iden-
tities, restrict the form of the N -point function and are a manifestation of
global conformal invariance:
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The only compatible Virasoro modes are directly related to the only com-
patible infinitesimal conformal transformations which finally give rise to the
restricting system of partial differential equations. Solving the system for
the two- and three-point function provides the same solution as we have seen
in Daniel Heer’s talk. As a reminder, we found that the two-point function
is completely determined by global conformal invariance (up to an irrele-
vant field normalization factor) and the form of the three-point function is
determined up to a constant factor. The form of higher order functions is
less restricted by global invariance and they are only known up to an arbi-
trary (but conformal invariant) function. For example, solving the conformal
Ward identities for the four point functions leads to

〈φh1(z1)φh2(z2)φh3(z3)φh4(z4)〉 = F (x)
∏
i>j

(zi − zj)
∑4
k=1 hk

3
−hi−hj (5)

where x = (z1−z2)(z3−z4)
(z1−z3)(z2−z4) is the so called anharmonic ratio and F (x) is the

above mentioned arbitrary function[2].

1.3 Two-dimensional field theory with local conformal in-
variance

Two-dimensional field theories which posses a local conformal symmetry
differ very much from their global counterparts. In the case of local confor-
mal symmetry, the appropriate symmetry group is provided by the group
of all holomorphic functions and is thus infinite dimensional. This implies
that all Virasoro modes Ln with n ∈ Z lead to allowed infinitesimal confor-
mal transformations of the form (1) and there are infinitely many conserved
quantities. Put differently: Based on our discussion of the global case we
may expect that infinitely many Virasoro modes lead to constraining equa-
tions for the N -point function.
However, the requirement of local conformal invariance is not so easy to im-
plement. In the global case we demanded δnGN (z1, ..., zN ) = 0 for all points
zi ∈ C, but this is not possible in the local case since we can’t possibly
expect that δnGN (z1, ..., zN ) = 0 is true on whole C. Moreover, how would
we define ”local” and how would we adopt the global condition for the local
case? What happens if all but one points are in a ”local neighborhood”?
The difficulty of finding conserved quantities in the case of a field theory with
local conformal symmetry can be overcome by having a closer look at the al-
gebraic properties of the theory. In the second talk of the Proseminar, when
we studied the representation theory of proper CFTs, we learned that there
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is a highest weight state (HWS) |h, c〉 and the action of the Virasoro modes
on the HWS creates new states. More precisely, we saw that L|n||h, c〉 = 0
and only L−|n||h, c〉 leads to new states. These so called descendant states

can be organized in Verma modules[2]:

Vh,c := span

∏
ni∈I

L−ni |h, c〉
∣∣∣∣I = {n1, ..., nk} ⊂ N , ni+1 ≥ ni

 . (6)

The first condition implies the negativity of the indices −ni and the second
condition implements the natural graduation of the Verma module due to
the Virasoro algebra. It is convenient to rewrite the Verma module as[2]

Vh,c =
⊕
N

V(N)
h,c (7)

where N =
∑k

i=1 ni is the level of the Verma module and V(N)
h,c is given by

V(N)
h,c = span

∏
ni∈I

L−ni |h, c〉
∣∣∣∣I = {n1, ..., nk} ⊂ N ,

k∑
i=1

ni = N

 . (8)

A closer look to the level N Verma module leads to a natural question: Are

all states |λ(N)
h,c 〉 ∈ V

(N)
h,c for a given level N linearly independent?

We have seen in Stephanie Mayer’s talk, that this question can be rephrased

as: Is there a state |λ(N)
h,c 〉 ∈ V

(N)
h,c with 〈ψ|λ(N)

h,c 〉 ≡ 0 ∀|ψ〉 ∈ H?
In Stephanie Mayer’s talk we learned that such states exist and she devel-
oped the general formalism to find these states at any level. We wont go
through the whole formalism again, but we will discuss the very important
example of level two degeneracy in some detail. The discussion will basically
follow the structure presented in subsection 2.3 of reference [2].

To begin with, we note that the Verma module V(N)
h,c for the N = 2 case

contains only linear combinations of the operators L−2 and L2
−1. The

most general null vector in this Verma module can be denoted as |λ(2)
h,c〉 =(

L−2 + aL2
−1

)
|h, c〉. If this vector is really a null vector, it satisfies two con-

ditions (where the second condition one is actually a consequence of the first
condition):

1. 〈ψ|λ(2)
h,c〉 ≡ 0 ∀|ψ〉 ∈ H.

2. The determinant of the 2×2 Gram matrix K(2) is zero.
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The Gram matrix is simply given by

K(2) =

(
〈h, c|L2L−2|h, c〉 〈h, c|L2L

2
−1|h, c〉

〈h, c|L2
1L−2|h, c〉 〈h, c|L2

1L
2
−1|h, c〉

)
(9)

and the matrix elements can easily be computed using the Virasoro algebra
[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0. For the first matrix element
we get for example

L2L−2|h, c〉 = L−2L2|h, c〉+ 4L0|h, c〉+
c

12
(23 − 2)|h, c〉

= 4h|h, c〉+
c

2
|h, c〉.

(10)

Performing analogue computations for the remaining three elements we end
up with

K(2) =

(
4h+ c

2 6h
6h 4h+ 8h2

)
〈h, c|h, c〉 (11)

and the determinant is found to be

det(K(2)) = 2h
(
16h2 + 2(c− 5)h+ c

)
〈h, c|h, c〉2. (12)

According to the first condition, this determinant has to vanish. Obviously,
there are three solutions to the resulting cubic equation and we immediately
see that the first one is given by h = 0. However, h = 0 is the solution one
finds for the null vector at first level and because L−1|h, c〉 = 0 there is no
null vector at second level of the form

(
L−2 + aL2

−1

)
|h, c〉. The other two

solutions can be found by solving the quadratic equation

16h2 + 2(c− 5)h+ c = 0 ⇒ h =
1

16

(
5− c±

√
(c− 1)(c− 25)

)
. (13)

We conclude, that for a fixed central charge c there are only two admissible
values for the conformal weight h such that the corresponding Verma mod-

ule V(2)
h,c contains a level two null vector.

In order to determine the factor a appearing in |λ(2)
h,c〉 =

(
L−2 + aL2

−1

)
|h, c〉

we have to satisfy the second condition. The Hilbert space H can be con-
structed as direct sum of Verma modules: H =

⊕
h Vh,c. Clearly, this space

contains an infinite amount of vectors, which may also assume a rather com-
plicated form. However, it is also clear that all but two types of vectors are

orthogonal to |λ(2)
h,c〉 and we only need to consider vectors of the form L−1|α〉
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and L−2|β〉. The first inner product is quickly computed using again the
Virasoro algebra.

〈α|L1|λ(2)
h,c〉 = 〈α|L1

(
L−2 + aL2

−1

)
|h, c〉

= (3 + 2a(2h+ 1)) 〈α|L−1|h, c〉
!

= 0

⇒ a = − 3

2(2h+ 1)
.

(14)

Finally, the second inner product (together with the expression for a) leads
to an equation which relates the conformal weight h to the central charge c.

〈β|L2|λ(2)
h,c〉 = 〈β|L2

(
L−2 + aL2

−1

)
|h, c〉

=
(

4h+
c

2
+ 6ah

)
〈β|h, c〉 !

= 0

⇒ c = 2h
5− 8h

2h+ 1
.

(15)

Considering both results obtained in exploring the two conditions for null
vectors we learn that there can be a level two null vector only if the conformal
weight h assumes one of the two calculated values and satisfies equation (15).
When both requirements are met, the null vector takes the form

|λ(2)
h,c〉 =

(
L−2 −

3

2(2h+ 1)
L2
−1

)
|h, c〉. (16)

The crucial point now is that a null vector completely decouples from all
other states in the Hilbert space. Hence, a null vector inserted into a cor-
relator inevitably yields zero. And since a null vector is only build up from
Virasoro modes and these modes can be translated into differential opera-
tors, we finally achieve our goal. The fact that we have an identity holding
(null vector in correlator equals zero) and the translation of the Virasoro
modes to differential operators allows us to write down differential equa-
tions for correlators. That’s how local conformal invariance manifests itself.
And it also matches our intuition. As was already mentioned, we expect that
in the case of local conformal invariance infinitely many Virasoro modes lead
to constraining equations for correlators. Since there are infinitely many null
vectors (at higher and higher degeneracy level) there are also infinitely many
differential equations, which can be derived. We recognize that a CFT with
local conformal invariance is in principle exactly solvable and that this is
due to the fact that the symmetry group is infinite dimensional.
To conclude this section and for the sake of completeness we quickly derive
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the differential equation belonging to the level two null vector. For this
purpose we use the well-known relation

〈Φ(−r1,...,−rk)(z)X〉 = L−r1(z) · · · L−rk(z)〈Φ(z0)X〉 (17)

where X = Φh1(z1) · · ·ΦhN (zN ) denotes a product of N − 1 primary fields
Ψhi with conformal weights hi and the translation of the n-th Virasoro mode
to a differential operator reads

L−n(z) =
N−1∑
i=1

(
(n− 1)hi
(zi − z)n

− 1

(z1 − z)n−1

∂

∂zi

)
. (18)

In our case this relations yield[
N−1∑
i=1

(
hi

(z − zi)2
+

1

z − zi
∂

∂zi

)
− 3

2(2h+ 1)

∂2

∂z2

]
〈Φ(z)X〉 = 0 (19)

as constraining differential equation for an arbitrary N -point function.

2 Following the historical path

The last chapter was devoted to two aims. On one side it offers a summary
of important properties of proper two-dimensional CFT, which were mostly
developed in preceding talks and it allows us to directly compare proper CFT
with logarithmic CFT. On the other side, it provides a good preparation to
understand Gurarie’s original approach to LCFT presented in [1] which will
be our guideline.

2.1 Setting up the theory framework

Historically, Gurarie was interested in studying a CFT with central charge
c = −2. Such CFTs often appear in applications and already before Gu-
rarie’s work it was understood, that in some c = −2 CFTs the conventional
formalism breaks down.
Since the form of the two- und three-point functions is determined by the
conformal Ward identities, Gurarie tackled the task to compute the four-
point function from local conformal invariance. This can be achieved by the
use of null vectors.
At first level we find the null vector L−1|h, c〉, recover the third Ward iden-
tity and we don’t gain any additional information. Fortunately, we found a
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level two null vector
(
L−2 + aL2

−1

)
|h, c〉 and a non-trivial differential equa-

tion corresponding to it in the previous section.
These simple requirements define the framework of the theory we want to
study:

1. The central charge is set to be c = −2.

2. According to equation (13), the requirement of a level two null vector
implies two possible values for the conformal weight: h ∈ {−1

8 , 1}.
Following Gurarie we choose h = −1

8 . Thus, our theory contains a
primary field µ of conformal weight hµ = −1

8 which is degenerate to
the second level.

3. From (16) we find |λ(2)
hµ,c
〉 =

(
L−2 − 2L2

−1

)
|hµ, c〉 as null vector. Note

by the way that the above definition of the primary field µ implies

µ|0〉 = |hµ, c〉 and thus |λ(2)
hµ,c
〉 =

(
L−2 − 2L2

−1

)
µ|0〉. This property is

crucial for the next subsection.

2.2 Computing the four-point function

Having defined the framework of our theory we can finally move on to the
actual task: Compute the four-point function of four equal primary fields.
Using (20) we can write the correlator as

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = (z1 − z3)
1
4 (z2 − z4)

1
4 [x(1− x)]

1
4 F (x) (20)

where we also redefined F (x) to be [x(1− x)]
1
4 F (x). Since the prefactor

only depends on the anharmonic ratio, it is conformal invariant and there’s
nothing bad about extracting this factor from F (x). As we will see later, it
is convenient to do so because this prefactor simplifies some calculations.
The next thing to do is of course to insert the null vector into the correlator
and to derive the corresponding differential equation:〈

µ(z1)µ(z2)µ(z3)
(
L−2 − 2L2

−1

)
µ(z)

〉
= 0

⇒

[
3∑
i=1

(
1

z − zi
∂

∂zi
− 1

8

1

(z − zi)2

)
− 2

∂2

∂z2

]
〈µ(z1)µ(z2)µ(z3)µ(z)〉 = 0.

(21)
The obtained differential equation looks pretty complicated since it involves
derivatives and rational prefactors in all four points zi.

Remember however, that we extracted a useful prefactor of the form
[x(1− x)] from the function F (x). It’s this prefactor which allows to recast
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the differential equation into the form

x(1− x)
d2F (x)

dx2
+ (1− 2x)

dF (x)

dx
− 1

4
F (x) = 0 (22)

where only derivatives and polynomial prefactors in x appear. The new
differential equation is much easier and it can be solved using Frobenius
method. According to Frobenius, the most general ansatz to solve equation
(22) is provided by

F (x) = xs
∞∑
n=0

anx
n with a0 6= 0. (23)

This ansatz introduces a new parameter, s, which has to be determined
before we can procede in calculating the coefficents an. Since a0 is defined
to be the first non-zero coefficent of the power series, we can use the following
procedure to determine s: Plug the ansatz into the differential equation (22),
group the coefficents by power and start comparing them. This leads to an
expression of the form f(s, n)a0 = 0 which implies f(s, n) = 0. By solving
this equation (the so-called indicial equation), we find the possible values of
the new variable s.
In our case we get

[s(s− 1) + s] a0 = 0⇒ s2 = 0 (24)

from which we conclude that both roots of the indicial equation are zero.
From a qualitative point of view we would deduce from the fact that there are
two solutions to the indicial equation, say s1 = 2 and s2 =

√
2, that there are

two linearly independent solutions to the differential equation. Conversely,
we would expect that in our case there is only one solution to equation (22).
Unfortunately, this time our intuition is wrong. Indeed, despite the fact that
s1 = s2 = 0, there are two linearly independent solutions. Actually, there is
a deeper mathematical reason for having two linearly independent solutions
and the discussed differential equation is only a special case belonging to a
whole class of differential equations which are governed by a theorem known
as Fuch’s theorem. However, we want to continue our discussion using only
basic analytical tools which don’t ask for special knowledge in the theory of
differential equations.
Before we can gain any deeper insight, we have to find the recursion relation
for the coefficients an. Now that we know the value of s we immediately
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find
∞∑
n=0

ann
2xn−1 −

∞∑
n=0

(
ann(n− 1) + 2ann+

1

4
an

)

=

∞∑
n=0

ann
2xn−1 −

∞∑
n=0

an

(
n2 + n+

1

4

)
xn

=
∞∑
n=0

ann
2xn−1 −

∞∑
n=0

an

(
n+

1

2

)2

xn = 0

(25)

and simply by adjusting the second sum with n → n − 1 and comparing
coefficents, we get the recursion relation

ann
2 − an−1

(
n− 1

2

)2

= 0. (26)

By writing down the first few coefficents one recognizes that the recursion
relation is solved by

an = a0

[
(2n− 1)!!

(2n)!!

]2

(27)

which finally leads to the first solution of the differential equation:

F (x) = a0

∞∑
n=0

[
(2n− 1)!!

(2n)!!

]2

xn. (28)

Using the well-known formula r = limn→∞ |an/an+1| for the radius of conver-
gence, we find that the power series is finite only for x ∈ D =

{
x ∈ C

∣∣|x| < 1
}

.
Fortunately, the power series in (28) is a well-known expansion. It can be
identified (up to a constant factor) as the expansion of the analytic continua-
tion of the elliptic integral of the first kind in the unit disk. This is certainly
not an obvious fact but it can easily be checked and once we accepted it, we
can substitute the power series by an integral:

F (x) ∝ G(x) =

∫ π
2

0

dθ√
1− x sin2(θ)

. (29)

As we noted before, the power series (28) behaves well in the unit disc and
diverges for |x| ≥ 1. A look at the elliptic integral reveals that it converges
also for values of x which lie outside of the unit disc. Indeed, the integral
converges on whole C, exept for points where x sin2(θ)− 1 = 0. Obviously,
this can only happen for |x| = 1 and x ∈ R. From the two possible solutions
to this problem we can immediately discard x = −1 since sin2(θ) ≥ 0. The
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solution x = 1 leads to the equation sin2(θ)−1 = 0 which is solved by θ = π
2 .

Due to the fact that this solution lies in the integration interval
[
0, π2

]
, we

get a divergency in x = 1.
To find out with what type of divergence we have to deal with, we set x = 1
and compute the integral

G(1) = lim
α→π

2

∫ α

0

dθ√
1− sin2(θ)

= lim
α→π

2

∫ α

0

dθ

cos(θ)

= lim
α→π

2

ln

∣∣∣∣tan

(
θ

2
+
π

4

)∣∣∣∣
∣∣∣∣∣
α

0

→∞.
(30)

Hence, we learn that limx→1G(x) is logarithmically divergent and we com-
plete our discussion of the first solution by noting that now we basically
know how it behaves and therefore we also know the behavior of the four-
point function.
However, this is not the end of the story. A closer look at the differential
equation (22) reveals that there is a second solution. Indeed, for symmetry
reasons also G(1 − x) has to be a solution. Since G(x) diverges logarith-
mically for |x| → 1, G(1 − x) has to diverge in the same way for |x| → 0.
Interestingly, this fact allows us to learn more about G(1 − x): Choose as
ansatz

G(1− x) = log(x)

∞∑
n=0

bnx
n +

∞∑
n=0

cnx
n. (31)

The logarithm explicetly produces the wanted behavior for |x| → 0 and the
two power series are finite in x = 0 by construction. By plugging in this
ansatz into the differential equation, we find that the coefficents bn are the
same as the coefficents an from the first solution. Hence,

G(1− x) = log(x)G(x) +H(x) (32)

where H(x) is some analytic (but for our discussion unimportant) function.
The important thing is that the second solution can be expressed using the
first solution and that the two solutions are manifestly linear independent
from each other. Of course, the full solution to (22) is given by the linear
combination

F (x) = AG(x) +BG(1− x) (33)

which makes clear, that we can’t get rid of the logarithmic divergence. This
is a very important statement and the consecutive subsections will be dedi-
cated to the consequences related to the logarithmic divergencies.
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2.3 Reinterpretation of the four-point function as OPE

In the previous section we found as solution to the differential equation
a power series, which converges only in the unit disc. This is due to the
presence of a singularity on the boundary of the unit disc. Fortunately, we
regocnized the power series as expansion of the analytic continuation of the
elliptic integral of the first kind. The integral representation allowed us to
identify the singularity in x = 1 and to extend the domain of the solution
from D to C\{1}. Moreover, we learned that the full solution (33) of the
differential equation always displays a logarithmic divergence. This gives
rise to the natural question: Is there something bad about this type of di-
vergence?
Remember that also other correlators, as for example the two- and three-
point function, show divergent behavior. Divergencies are therefore nothing
new. But one may object that logarithms aren’t conformal invarant func-
tions and we therefore constructed a correlator which violates conformal
invariance and something must have gone terribly wrong. We invalidate
this objection by observing that the logarithm appearing in G(1 − x) de-
pends on the anharmonic ratio. Since the argument is conformal invariant,
the logarithm itself is conformal invariant, too.
The first problems caused by the logarithmic behavior appear when we try
to reinterprete the four-point function as operator product expansion. Ac-
cording to [3], the most general expression for an OPE of two primary fields
φhn(z)φhm(0) can be written as

φhn(z)φhm(0)|0〉 =
∑
p

∑
{k}

Cp,{k}nm zhp−hm−hn+
∑
i kiφ{k}p (0)|0〉

=
∑
p

Cpnmz
hp−hm−hn+

∑
i kiΨp(z|0)|0〉

(34)

where φ
{k}
p denotes descendant fields belonging to the conformal family [φp]

and Ψp(z|0) =
∑
{k} β

p,{k}
nm z

∑
i kiφ

{k}
p (0) is introduced to split up summation

over conformal families (sum over p) and summation over the level of the de-
scendant fields (sum over {k}). To achieve the splitting up we also have to in-

troduce the {k}-independent constants Cpnm defined by C
p,{k}
nm = Cpnmβ

p,{k}
nm .

In our specific case, expression (34) simplifies a lot since we are interested
in the OPE of µ(z)µ(0)|0〉. This implies hm = hn = −1

8 . Moreover, we
can restrict ourselves to the hp = 0 case. This is not an approximation, it
is shown in [3] that the indicial equation α2 = 0 implies the existence of
two operators with conformal weight hp = 0 (two identity operators which
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coincide in each point z). This means, there are two OPEs which involve
only the conformal family of the identity operator I (hence, both OPEs are
equal). Consequently, the sum over p drops out and hp = 0. Finally, we end
up with (Cpnm ≡ C)

µ(z)µ(0)|0〉 ∼ Cz−2hµΨ(z|0)|0〉 = z−2hµ
∑
{k}

z
∑
i kiCβ{k}I{k}(0)|0〉

= z
1
4

∞∑
k=0

zk Cβ{k}I{k}(0)|0〉︸ ︷︷ ︸
=:|I,k〉

= z
1
4

∞∑
k=0

zk|I, k〉︸ ︷︷ ︸
=:|I,z〉

.
(35)

At first sight, the result µ(z)µ(0)|0〉 ∼ z
1
4 |I, z〉 looks as if it can reproduce the

four-point function. By applying (35) on the four-point function we produce

a factor z
1
4w

1
4 , just as in (20). The product 〈I, l|I, k〉 should then account for

the rest of the four-point function and in particular, it should reproduce the
logarithmic divergence. However, it is impossible to create the z-dependent
logarithm log(z) appearing in the second solution of the differential equation
just by using the OPE (35). Moreover, it can be proved, that our theory
together with the usual OPE (34) violates the crossing symmetry[2]. The
validity of the crossing symmetry condition (see [3] for a detailed discussion
on this condition) can also be seen as a self-consistency condition of every
conformal field theory since it simply reflects the associativity of the opera-
tor product.
The fact that the usual OPE applied on our theory fails to explain the loga-
rithmic behavior of the four-point function and that it violates the crossing
symmetry condition tells us two things:

1. Our theory is not self-consistent.

2. If there is any chance to make our theory self-consistent we have to
modify the usual OPE. The OPE is the source of all problems.

This two facts were first recognized by Gurarie and he proposed the following
modification of the OPE:

µ(z)µ(0)|0〉 = z
1
4 |I, z〉 (consistent with 1st solution)

µ(z)µ(0)|0〉 = z
1
4 (log(z)|I, z〉+ |I1, z〉) (consistent with 2nd solution)

(36)

(Actually, the second solution is the only correct one and everything that
follows could be derived using the second solution only. However, we will
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stick to Gurarie’s notation since it simplifies the discussion.)
As was already mentioned, the fusion rules developed in [3] imply that the
OPE involves two operators of conformal weight hp = 0 (identity operators)
which coincide. So, in the usual OPE the expression corresponding to the
first solution and the one corresponding to the second solution are equal and
they fail to explain the properties of the four-point function. In Gurarie’s
modification, the forms of the OPEs already resemble the forms of the two
solutions and there are still two operators of conformal weight hp = 0, but
they no longer coincide. This modification promotes our ill-defined theory
to a self-consistent theory, but the price we have to pay is the introduction
of a new kind of operator. As we will discover, the so-called logarithmic
partner I1 of the primary field I has some unusual properties which will
modify many aspects of our theory.

2.4 The unusual properties of the logarithmic partner

Originally, we started with a special c = −2 CFT which contained only
one (non-trivial) operator. However, we have seen in the last subsection,
that the primary field µ is not enough to construct a self-consistent theory
based on the OPE. Consistency required from us to introduce a new kind
of operator. Though, a priori it’s not clear that I1 isn’t a primary field. In
order to see it and to explore the properties of I1 we will consider the action
of the Virasoro modes Ln≥0 on both OPEs (36) and calculate the results in
two different ways. We have seen in (35) that

|I, z〉 =

∞∑
k=0

zk|I, k〉 (37)

and we already argued, that due to the fusion rule and Gurarie’s modification
there should be two identity operators, which aren’t equal. This justifies the
ansatz

|I1, z〉 =
∞∑
k=0

zk|I1, k〉. (38)

These two expansions together with the commutation relation of Ln with
the primary field µ (also a result of proper CFT which we often encountered
in previous talks)

[Ln, µ(z)] =

(
zn+1 ∂

∂z
+ (n+ 1)hµz

n

)
(39)
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are needed to evaluate Lnµ(z)µ(0)|0〉 for n ≥ 0. Let’s start with the n = 0
case and the first OPE in (36):

L0µ(z)µ(0)|0〉 =

(
z
∂

∂z
(µ(z)µ(0)) + hµµ(z)µ(0)

)
|0〉+ µ(z)L0µ(0)|0〉︸ ︷︷ ︸

=hµµ(0)|0〉

=

∞∑
k=0

(k − 2hµ) zk−2hµ |I, k〉+ 2hµµ(z)µ(0)|0〉

=

∞∑
k=0

kzk−2hµ |I, k〉 !
=

∞∑
k=0

zk−2hµL0|I, k〉

⇒ L0|I, k〉 = k|I, k〉.
(40)

On the first line we simply use the commutation relation and the fact that
µ(0)|0〉 is the HWS of the theory. To actually evaluate the derivative of the
product we insert the first OPE of (36), use expansion (37) and simplify
the result on the third line (the terms proportional to hµ cancel). The final
result has to be equal to L0 directly applied on the OPE. This leads to the
eigenvalue equation on the last line of (40) which can be obtained in any
conventional CFT.
The evaluation of L0µ(z)µ(0)|0〉 for the second OPE is performed in nearly
the same way:

L0µ(z)µ(0)|0〉 1)
=

=z
∂

∂z

(
log(z)

∞∑
k=0

zk−2hµ |I, k〉+

∞∑
k=0

zk−2hµ |I1, k〉

)
+ khµµ(z)µ(0)|0〉

2)
=

∞∑
k=0

zk−2hµ |I, k〉+ log(z)

∞∑
k=0

(k −
�
�2hµ)zk−2hµ |I, k〉

= +

∞∑
k=0

(k −
�
�2hµ)zn−2hµ |I1, k〉+

∞∑
k=0

zk−2hµ
(
�
�2hµ log(z)|I, k〉+

�
�2hµ|I1, k〉

)
3)
=

∞∑
k=0

zk−2hµ |I, k〉+
������������

log(z)

∞∑
k=0

zk−2hµk|I, k〉+

∞∑
k=0

kzk−2hµ |I1, k〉

!
=

������������
log(z)

∞∑
k=0

zk−2hµ L0|I, k〉︸ ︷︷ ︸
=k|I,k〉

+
∞∑
k=0

zk−2hµL0|I1, k〉

⇒ L0|I1, k〉 = |I, k〉+ k|I1, k〉.
(41)
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In 1) we use again the commutation relation (39) and the second OPE of
(36) to evaluate the derivative of the product µ(z)µ(0)|0〉. The result of
this computation is shown in 2) and we recognize that some terms cancel
(indicated be the red and blue slashes). Finally, the simplified expression in
3) has to be equal to the direct application of L0 on the OPE. After using
the relation L0|I, k〉 = k|I, k〉, which we found in (40), we see that there are
two cancelling terms (green slashes). By comparing coefficients we find the
first unusual property of the logarithmic partner.
There are additional properties for the primary field and its logarithmic
partner which follow from analyzing Ln>0µ(z)µ(0)|0〉. Since the calculations
for these cases are rather lengthy, but are performed in an analogous way,
we won’t explicitly derive the properties

Ln|I, n+ k〉 = (k + (n− 1)hµ) |I, k〉 (42)

and
Ln|I1, n+ k〉 = |I, k〉+ (k + (n− 1)hµ) |I1, k〉. (43)

Equation (42) is again valid for any conventional CFT and equation (43)
holds only for theories containing a logarithmic partner. As was already
mentioned, the unusual properties of the logarithmic partner will modify
many aspects of conventional CFT. In the next chapter we will discuss the
modifications and compare them with the usual CFT formalism.

3 Comparison of proper CFT and logarithmic CFT

The formalism of conventional CFT was developed step by step in preceding
talks and we learned about many aspects such as HWS, null vectors and
conformal Ward identities. To properly compare LCFT with CFT, we should
develop the LCFT formalism up to the point where we developed the CFT
formalism. Since this goes beyond the scope of this rewiev, we will skip the
details of the derivations and simply state the differences of the two theories,
focus on the consequences of the unusual LCFT properties and refer to the
relevant literature.

3.1 Representation theory

The starting points of our comparison are the properties of conventional
CFT we derived in the previous chapter

L0|I, k〉 = k|I, k〉
Ln|I, n+ k〉 = (k + (n− 1)hµ) |I, k〉

(44)
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and its unusual counterparts

L0|I1, k〉 = |I, k〉+ k|I1, k〉
Ln|I1, n+ k〉 = |I, k〉+ (k + (n− 1)hµ) |I1, k〉

(45)

which only appear in logarithmic CFTs. By comparing these two sets of
identities we see that the logarithmic identities contain an additional |I, k〉
term and thus combine contributions from the primary operator and the
logarithmic partner.
This superficial observation has actually important implications when we
turn to representation theory. We immediately see that L0|I, k〉 = k|I, k〉
implies that L0 is diagonalizable. However, the logarithmic counterpart
contains an additional term, which produces off-diagonal terms. Hence, L0

can’t be diagonalized in the LCFT framework and the simplest possible form
of L0 is of Jordan block form:

L0 ∼
(
M1 M2

0 M3

)
. (46)

The Mi represent non-trivial submatrices and their form and the way how
they are computed can be found in any text book about linear algebra.
What matters for our purpose isn’t the exact content of this matrices, but
the general structure of the matrix (46). It is known from representation
theory, that matrices of the form (46) lead to reducible but indecomposable
representations. The situation so far was a different one: We found the rep-
resentations of the Virasoro algebra to be reducible and decomposable. This
means, that we can find irreducible subrepresentations ρi of the representa-
tion ρ of the Virasoro algebra (reducibility) and that we can write ρ =

⊕
i ρi

(decomposability). In other words: If we know the building blocks of ρ (the
irreducible subrepresentations) we can construct ρ straightforward.
In LCFT we encounter a different situation. The representations of the
Virasoro algebra are still reducible, so there are still irreducible building
blocks. However, the representations are no longer decomposable and we
don’t know how to use the building blocks to construct the whole repre-
sentation. This fact makes the analysis of the representation theory of an
LCFT much harder than in the case of a conventional CFT.
There is one additional observation we can make if we go back to the full
solution of the differential equation (33). As we have seen, it is impossible
to get rid of the logarithmic divergence and the full solution of the differ-
ential equation always contains this type of divergence. This fact forced us
to modify the OPE and the modification led to a new kind of operator with
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unusual properties. As we learned in this section, the new properties are
responsible for off-diagonal terms in the representation of L0 which can’t be
transformed away. A similarity transformation brings L0 into Jordan block
form and this finally implies reducible but indecomposable representations
of the Virasoro algebra. These lines of reasoning do not only show a nice
interplay between calculus and algebra, but it turns out that the logic can
be inverted and starting from algebraic properties of the theory, one can
derive the analytic properties[4]. This opens the door to two (equivalent)
definitions of LCFT:

• Analytic definition: A logarithmic CFT is a two-dimensional CFT
where some of the correlators show a logarithmic divergence.

• Algebraic definition: A logarithmic CFT is a two-dimensional CFT
where the representation of the Virasoro algebra is reducible but in-
decomposable.

The first definition is the one we implicitly used through out this report,
but the second one represents the modern point of view.

3.2 The full correlator

Since in conventional CFT holomorphic and anti-holomorphic parts often
factorize (as for example in φh,h̄(z, z̄)) = φh(z)φh̄(z̄)), it is convenient to re-
strict the analysis of a problem to the holomorphic part and construct the full
solution a posteriori by multiplying with the appropriate anti-holomorphic
part. In the case of the full correlator of a proper CFT this factorization
reads[1] ∑

k

Gk(z)Gk(z̄) (47)

where Gk(z) denotes the k-th holomorphic solution of a differential equa-
tion and Gk(z̄) is the corresponding anti-holomorphic solution. The above
procedure is consistent with the requirement that the correlator should be
a single-valued analytic function. However, one can show that in the log-
arithmic case, the requirement of a single-valued correlator leads to the
expression[1] (for the special case discussed in section 2 of this report)

G1(z)G2(z̄) +G1(z̄)G2(z). (48)

This ”non-diagonal” mixing of holomorphic and anti-holomorphic parts is
basically due to the appearance of the logarithm which is ambiguous for
complex variables.
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The above consideration shows that in LCFT the full solution of a problem,
i.e the solution containing holomorphic and anti-holomorphic parts, is not
always trivial to find. A little more care is required.

3.3 Null vectors

We have seen that null vectors appear quite naturally in the framework
of conventional CFT. Mathematically speaking, null vectors are just linear
combinations of finitely many vectors from the same Verma module, which
turn out to be linearly dependent and thus decouple from all other states
in the Hilbert space. So, null vectors are simply part of the mathematical
structure of the conventional CFT. From a physical point of view, null vec-
tors are a manifestation of local conformal invariance.
We discussed this point of view in some detail and we recognized its im-
portance. In fact we learned that null vectors are a powerful tools when it
comes to calculate correlators, which involve more than three fields. Due
to their computational power, we would like to have null vectors also in the
logarithmic CFT. We know of course, that there are null vectors in LCFT!
A big part of this report relys on the existence of a null vector at second
level for the specific c = −2 CFT we studied in section 2. However, this is

a null vector which lives in the Verma module V(2)
h,c of the primary field µ.

Since any LCFT contains besides some primary fields also their respective
logarithmic partners, we are tempted to ask, if there are null vectors for the
logarithmic operators. The answer is yes, but they are harder to find.
As first attempt to find a logarithmic null vector one could try the follow-
ing procedure: Suppose |χφ〉 is a null vector in the Verma module of the
primary field φ. Then, the replacement φ → ψ (where ψ is the logarithmic
partner of φ) should lead to a new null vector (due to the observation, that
both operators have the same conformal dimension). This procedure clearly
works for primary fields of the same conformal dimension, but it can’t be
correct for logarithmic operators.
The reason lies in the unusual properties of the LCFT. It is also true for
more general LCFTs than the one we have studied here, that the action of
the Virasoro modes on HWS produces off-diagonal terms. These terms mix
contributions coming from primary fields and logarithmic fields and leads
to two consequences: The procedure described above doesn’t work and the
structure of the Verma module of a logarithmic field is more complicated
than the conventional one. From the failure of this näıve procedure we learn,
that we have to study the structure of the Verma module in more detail.
The insights we gain by this analysis shed light on the right path towards
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a construction of logarithmic null vectors. However, this kind of analysis
is beyond the scope of this report and we therefore just mention that it
is indeed possible to construct a formalism to find logarithmic null vectors,
which is similar to the formalism developed in Stephanie Mayer’s talk. More
details can be found in reference [2].

3.4 Transformation properties of the logarithmic field

In some of the preceeding talks and also in this report, it was important to
compute the action of a Virasoro mode on a field within a correlator. We
know exactly what to do when we work with primary fields only. As soon as
we consider also logarithmic operators, we have to account for the unusual
properties of those operators and according to [2] we find

Ln〈φh1(z1) · · ·φhk(zk)〉 =

k∑
i=1

zn [z∂i + (n+ 1)(hi + ∆hi)] 〈φh1(z1) · · ·φhk(zk)〉

(49)
where the nilpotent operator ∆hi is a manifestation of the off-diagonal con-
tributions. As Flohr explains further in reference [2], equation (49) is a
reflection of the transformation properties of a logarithmic CFT under con-
formal transformations of the fields. It can be shown that the transformed
field is given by

φhi(z) =

(
∂f(z)

∂z

)hi
[1 + log(∂zf(z))∆hi ]φhi(f(z)). (50)

At this point we have to be very careful. Since we consider a logarithmic
CFT we could have correlators containing only primary fields, only loga-
rithmic fields or a combination of both fields. This means that in (49) the
Virasoro mode could act on both types of fields. Secretely, we introduced
a new notation to take this into account. The field φhi could be both, a
primary field Φhi or the corresponding logarithmic partner Ψhi . Moreover,
the operator ∆hi doesn’t only account for the off-diagonal contributions of
logarithmic fields but it allows us to treat different types of correlators at the
same time, just by virtue of its properties: ∆hiΦhj = 0 and ∆hiΨhj = δijΦhi .
We see, that if a correlator contains only primary fields, we recover from (49)
the result of conventional CFT. If there are also logarithmic fields contained
in the correlator, the ∆hi operator produces additional terms which do not
appear in conventional CFT.
The properties of this nilpotent operator affect also the transformation law
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(50). Again, if φhi = Φhi we recover the usual transformation law for a
primary field. But if we subject a logarithmic field to a conformal transfor-
mation z → f(z), it behaves quite differently than a primary field. There is
an additional term which is proportional to log(∂zf(z))Φhi(f(z)).

3.5 Modified Ward identities

In section 1 we haven seen how the conformal Ward identities can be de-
rived by demanding global conformal invariance. After the discussion of the
transformation properties of logarithmic fields it should be clear, that the
conformal Ward identities have to be modified in the context of a logarith-
mic CFT. To what extend they have to be modified can be seen as follows:
Starting from (50) one can derive, using the same techniques as in conven-
tional CFT, an analogue of equation (1). Since also in the logarithmic case
it holds true that only L−1, L0 and L1 are the only Virasoro modes which
are compatible with global conformal invariance, we can use the same proce-
dure to derive the conformal Ward identities. Putting all the steps together
one arrives at a modifies system of three partial differential equations for
the N -point function GN :

L−1 :

N∑
i=1

∂ziGN (z1, ..., zN ) = 0

L0 :
N∑
i=1

(zi∂zi + (hi + ∆hi))GN (z1, ..., zN ) = 0

L1 :
N∑
i=1

(z2
i ∂zi + 2zi(hi + ∆hi))GN (z1, ..., zN ) = 0.

(51)

These differential equations look nearly the same as in the case of a con-
ventional CFT. The only difference lies in the appearance of the nilpotent
operator ∆hi . In the case of a corelator which contains only primary fields,
the action of ∆hi vanishes and we recover the conformal Ward identities of
conventional CFT. This is a sign of consistency: The form of the four-point
function in section 2 follows from the conventional Ward identities and from
the detailed analysis of section 2 we constructed an extended theory. Thus,
the conventional Ward identities have to be contained in the extended the-
ory as a special case because any deviation would lead to a different form
of the four-point function. This would contradict our starting point of the
analysis and the theory wouldn’t be self-consistent.
A more intresting case is provided by a correlator which contains logarithmic
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fields or a combination of both field types. Whenever the ∆hi operator hits a
logarithmic field, it creates a primary field and an additional term (which is
absent in the conventional case) appears. Clearly, this additional terms and
the mixing of primary and logarithmic contributions (especially in the case
of a correlator with a pure logarithmic content) affect the solutions of the
equations. As an example, one could try to compute the two-point function
〈Ψh1(z1)Ψh2(z2)〉 of two logarithmic operators:

2∑
i=1

∂zi〈Ψh1Ψh2〉 = 0

2∑
i=1

(zi∂zi + hi)〈Ψh1Ψh2〉+ 〈Φh1Ψh2〉+ 〈Ψh1Φh2〉 = 0

2∑
i=1

(z2
i ∂zi + 2zihi)〈Ψh1Ψh2〉+ 〈Φh1Ψh2〉+ 〈Ψh1Φh2〉 = 0.

(52)

The differential equations are more difficult than in the conventional case
(and look even worse when one reinserts the zi-dependence), but they are
still solvable for this special case. The solution is found to be

〈Ψh1(z1)Ψh2(z2)〉 = δh1,h2
B − 2A log(z1 − z2)

(z1 − z2)2h1
(53)

where A and B are two constants and the form resembels the one of the
two-point funcion of two primary field in the conventional case:

〈Φh1(z1)Φh2(z2)〉 = δh1,h2
C

(z1 − z2)2h1
. (54)

However, the logarithm is a new feature and it clearly changes the behavior
of the two-point function.

4 Applications of LCFT

So far, we understand LCFT as an extension of conventional CFT. Loga-
rithmic divergencies forced us to introduce logarithmic operators and LCFT
can thus be regarded as a richer CFT. But is this ”richness” just a mathe-
matical curiosity or do LCFTs appear in actual applications?
Indeed, already Gurarie discussed possible applications of LCFT in his orig-
inal 1993 paper. He shows that the free ghost model described by the action

S ∼
∫

d2z∂θ∂̄θ̄ (55)
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where θ is a Grassmann variable, gives rise to a logarithmic conformal field
theory. As he explains further, this type of model is used in polymer physics
(see [1] and reference therein).
An other early application of LCFT is percolation. Percolation is related to
a generalization of the Ising model known as Potts model and can be un-
derstood as a critical two-dimensional system, which is studied in statistical
physics. A good introduction to the topic is provided by J. Cardy in [5].
More on critical two-dimensional systems, percolation and their relation to
LCFT can be found in an original work of V. Gurarie and A. Ludwig in [6].
In reference [7] by M. Flohr, several applications of LCFT are mentioned
concretely (but note that the paper is written in German). Flohr briefly
discusses conformal turbulences in two-dimensional systems, Seiberg-Witten
theory and the fractional quantum hall effect. It is also mentioned, that the
quantum hall effect with filling factor ν = 5/2 can only be explained by a
c = −2 LCFT.
Clearly, logarithmic conformal field theory is not a mathematical curiosity.
It extends the framework of conventional CFT and leads to a new regime of
applications.
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