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Classical computer: limited computational power 

 

 

       3d magnet 

 

 

Interference   →   Quantum physics could speed up processes 

 

Qubit:     ∣𝜓> =𝛼∣0>+𝛽∣1>    where    𝑎2+𝛽2=1,    𝑎,𝛽∈∁ 

Hilbert spaces:     𝜓1∈𝐻1   ,  𝜓2∈𝐻2 

      → 𝜓12= 𝑎𝑖𝑗ψ𝑖𝑖,𝑗=1,2 ⨂ψ𝑗∈𝐻1⨂𝐻2  

      classical: m bits → 2𝑚 states 

      quantum: m qubits → 2𝑚 basis states 

Entanglement: speeding up classical algorithms  

   

Quantum computation 
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Å Quantum Circuits: unitary operators that act on a Hilbert space, generated by n 
qubits, whose states encode the information we want to process.  

      Quantum Circuits are composed of elementary Quantum gates. 

 

Å Universality: existence of a universal set of quantum gates, the elements of which 
can perform any unitary evolution in SU(N) with arbitrary accuracy 

     Need: 

         1. Singe qubit rotation gates that can span SU(2):                              
         2. A Two - qubit entangling gate:       𝑈∈𝑆𝑈(2) 

  

       
 

 

Examples of quantum  algorithms:   → Deutsch algorithm 

       → Shor’s factoring algorithm 

 

Quantum computation 

𝑈 
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where ⨁ = addition mod 2 

time 

x=0 → y unchanged 

x=1 →  
𝑦=0 →𝑦=1
𝑦=1→ 𝑦=0
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Deutsch Algorithm 

ÅBoolean Function F: Constant (f(0)=f(1)) or Balanced (f(0)≠f(1))? 

 

 

 

 

 

ÅRequires only 1 measurement to answer while classically it takes 2 
evaluations of F 

Decoherence 

Very easy for errors to appear in the system due to interactions with the 
environment: 

 Examples:     1. Bit flips:      ∣0> → ∣1>     ,    ∣1>  → ∣0> 

 

  2. Phase flips:      
1

2
(∣0>+∣1>) →  

1

2
(∣0>−∣1>)  

Quantum computation 
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𝐻=
1

2

1 1
1 −1

 

Single qubit rotation 
gate called Hadamard : 
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Goal: encode information in an environment 
independent way 

Idea: Topological properties are insensitive to 
local perturbations 

Quantum computation 
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Exchanging:   

∣𝜓𝐴>∣𝜓𝐵>   → 𝑒
𝑖𝜃∣𝜓𝐵>∣𝜓𝐴> 

Winding:  

∣𝜓𝐴>∣𝜓𝐵>   →(𝑒
𝑖𝜃)2∣𝜓𝐴>∣𝜓𝐵> 

 

In 3D:    (𝑒𝑖𝜃)2=𝐼 

→Boson: θ=2π+2πn   ∣𝜓𝐴𝐵> → ∣𝜓𝐵𝐴>  

  →Fermion: θ=π+2πn  ∣𝜓𝐴𝐵> → −∣𝜓𝐵𝐴>   

 

 
Move to 2D:         

 

Any θ → “Any”-ons 

 

Exchanging=braiding 

𝐶1(𝑡1) 

𝐶2(𝑡2) 

𝐶0(𝑡0) 

A 

B 

Abelian anyons  
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z 

y 

x 
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Degenerate state space 𝜓𝑖,   𝑖=1,…,𝑑 then:  

    

𝜓1
𝜓2
⋮
𝜓𝑑

       

𝜓′1
𝜓′2
⋮
𝜓′𝑑

  = 
𝑈11 ⋯ 𝑈1𝑑
⋮ ⋱ ⋮
𝑈𝑑1 ⋯ 𝑈𝑑𝑑

  

𝜓1
𝜓2
⋮
𝜓𝑑

  

 

 

 

Non-abelian anyons 

Candidate space to store and process  
quantum information 
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Physical realization of Non-abelian anyons: 

1. Degenerate ground state   

 

2. Finite energy gap ΔΕ for ground state 

 

3. Adiabaticity 

 

4. Anyons being far apart 

 

5. All local operators have vanishing correlation functions apart 
from identity  

 

 

Physical realization of Non-abelian anyons 
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Trapped 𝑒− gas 

Conductance:         𝜎=𝜈
𝑒2

ℎ
          where 𝜈 a fractional number 

   →Fractional charge  

Abelian anyons for 𝜈=
1

3
 

Laughlin states: Trial wavefunctions 
 
  Expect → fractional statistics = anyonic statistics 
 

𝐵𝑧 

𝐸𝑥 

Fractional Quantum Hall effect 
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Time evolution of a state: 

∣𝜓Τ> =expi𝛾𝑛𝐶 exp
−𝑖2𝜋

ℎ
 𝑑𝑡
Τ

0

𝐸𝑛𝑅𝑡 ∣𝜓0> 

 

where 𝛾𝑛(𝐶) is Berry’s geometric phase: 

      𝛾𝑛𝐶 =𝑖 <𝑛,𝑅𝑡∣𝛻𝑅𝑛,𝑅𝑡>𝑑𝑅𝐶
= 𝐴𝜇𝑑𝑅

𝜇
𝐶

= 
1

2
𝐹𝜇𝜈𝑑𝑅

𝜇∧𝑑𝑅𝜈
𝑆

 

 

Geometric phase 
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Vector potential gauge transformation: 
𝐴𝜇→Α𝜇−𝜕𝜇𝑎𝑛 

Vector field: 

(𝐹𝜇𝜈)
𝑖𝑓≔(𝜕𝜇Α𝜈−𝜕𝜈Α𝜇)

𝑖𝑓 

   → invariant under gauge transformations 

If (𝐹𝜇𝜈)
𝑖𝑓≠0 i.e. not diffeomorphic invariant as well: 

 → Case 1: Non-degenerate state space → Abelian geometric 
         phase, U(1) 

Example: 

       

Geometric phase 
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  → Case 2: Degenerate state space ((𝐹𝜇𝜈)
𝑖𝑓 a matrix):   

Example:    𝐴𝐵𝐶≠𝐶𝐵𝐴 
 
 
 
 
 
 
   
    
 
 
 
Transformations of the state space are elements of SU(2) 
For N degenerate state space transformations are elements of SU(N) 

Geometric phase 

Fibonacci anyons & Topological Quantum Computing 
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In general:             ∣𝜓C> =Γ𝐴𝐶 ∣𝜓0> 

                   Γ𝐴𝐶 =expi𝛾𝑛𝐶  

 

 

 

 

the following properties hold: 

(A)      ΓΑ𝐶2∙𝐶1 =ΓΑ𝐶2ΓΑ𝐶1       𝐶1,𝐶2 paths in parametric space  

(B)      ΓΑ𝐶0 =𝐼                  𝐶0 point 

(C)      ΓΑ𝐶
−1 =Γ−1𝐴(𝐶)                  𝐶 clockwise path, 

         𝐶−1 anti-clockwise path 

(D)     ΓΑ𝐶∘𝑓=ΓΑ(𝐶)      𝑓 is a function of time t 

    

 

 

Geometric phase 

(A)+(B)+(C)          Forms a Group 
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ÅRelate parametric space to anyons coordinates  

ÅAssume vector field 𝐹𝜇𝜈 is confined to anyons position 

 

Hence:   

 

 

 

 

 

non-abelian geometric          evolutions in a system  

phases evolutions             of non-abelian anyons 

 

Geometric phase 

A 
B 

M 𝑅2 
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Quasiparticle worldlines forming braids carry out unitary transformations on a 
Hilbert space of n anyons.  
 
This Hilbert space is exponentially large  and its states cannot be distinguished by 
local measurements     
 

         candidate model for fault-tolerant quantum computing  

Topological Quantum Computer 

Fibonacci anyons & Topological Quantum Computing Christos Charalambous                                                         18/45  Fibonacci anyons & Topological Quantum Computers 13/05/13 



Vu Pham 

 

1997 A.Kitaev: System of non-abelian anyons with suitable properties 
can efficiently simulate a quantum circuit 

 

2000 Freedman, Kitaev and Wang: system of anyons can be simulated 
by a quantum circuit 

               

  →Equivalence of the two views of the system, i.e. between an anyonic 
computational model (e.g. a Topological quantum computer) and a 

quantum circuit 

 

Is there an anyonic computational model that can simulate a quantum 
circuit that exhibits universality? 

 

 

 

 

 

Topological Quantum Computer 
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World lines cannot cross  

→ braids 𝜎𝑖 (particle histories) in 

distinct topological classes 

1:1 correspondence of the topological  

classes with distinct elements of a Braid set 

  

1. Any braid can be obtained by  

multiplying elementary braids  

2. The inverse of any braid exists 

3. Existence of Vacuum 

4. Associativity for disjoint 𝜎𝑖 

 

 

Braiding 

Braid group 

Fibonacci anyons & Topological Quantum Computing Christos Charalambous                                                         21/45  Fibonacci anyons & Topological Quantum Computers 13/05/13 

𝜎𝑖≔𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑖+1𝑡ℎ 𝑎𝑛𝑦𝑜𝑛 

𝝆(𝝈𝒊) representations of the Braid group = the unitary transformations 
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Defining relations of Braid group for an anyonic model: 

1. Exchanges of disjoint particles commute: 
σ𝑗σ𝑘=σ𝑘σ𝑗    ∣𝑗−𝑘∣≥2 

 

 

 

2. Yang-Baxter relation:  

σ𝑗σ𝑗+1σ𝑗=σ𝑗+1σ𝑗σ𝑗+1     𝑗=1,2,…,𝑛−2    

 

 

 

 

 

 
 

 

 

= 

Braiding 
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Fusion: The process of bringing two particles together 

 

A non abelian anyonic model is defined starting from the 
superselection sector:  

 Finite set of particles that are linked by the following fusion 
rules, and their charges are conserved under local operations 

 

Fusion algebra:  𝑎×𝑏= 𝑁𝑐𝑎𝑏𝑐𝑐  

    where 𝑁𝑐𝑎𝑏 can be matrices 

Abelian 𝑁𝑐𝑎𝑏=1 

Non-abelian  𝑁𝑐𝑎𝑏𝑐 >1 

 

Associativity:                       𝑁e𝑎𝑏𝑒 𝑁𝑐𝑑𝑒= 𝑁
e
𝑏𝑑𝑒 𝑁𝑐𝑒𝑎 

Commutativity:                  𝑁𝑐𝑎𝑏=  𝑁𝑐𝑏𝑎 

Fusion 
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Same fusion algebra: 

ϕ𝑖×ϕ𝑗= 𝑁
𝑘
𝑖𝑗

𝑘

ϕ𝑘 

 

Commutativity also holds: 

𝑁𝑘𝑖𝑗=𝑁
𝑘
𝑗𝑖 

 

Associativity : 

 𝑁𝑙𝑗𝑘
𝑙

𝑁𝑚𝑖𝑙= 𝑁
𝑙
𝑖𝑗

𝑙

𝑁𝑚𝑙𝑘 

 

  

Recap: Fusion rules for minimal models 

Minimal models can be mapped to anyonic 
models 
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Fusion spaces 𝑉𝑐𝑎𝑏: are subspaces of the space of all possible 
fusion outcomes which are also Hilbert spaces:   

𝑉𝑎⨂𝑉𝑏=⨁𝑐𝑁
𝑐
𝑎𝑏𝑉

𝑐
𝑎𝑏 

The logical states ∣0>  & ∣1> will be encoded in one of these 
fusion spaces  
 

Relation of dimensionality of fusion spaces and quantum 
dimension:        

            𝑑𝑎𝑑𝑏= 𝑁
𝑐
𝑎𝑏𝑑𝑐𝑐  

 
 

Simplest non-abelian example: fusion rule for Spin- 
1

2
 particles

    
1

2
⨂
1

2
=0⨁1 

    (i.e. 2x2=1+3) 
 

 
 

Fusion space 
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Fibonacci anyons fusion rule: 

                                           1 = vacuum 

                      τ = non-abelian anyon 

The Fusion (Anyonic) Hilbert space: 

 

 

       

 

                    

Å Fusion trees are orthogonal basis elements of a Hilbert space  

Å If the initial and final states are fixed then the dimension of this 
space depends on the number of in-between outcomes. For the 
above example the dimension is 2. 

Fusion space basis (fusion trees) 

Fibonacci anyons & Topological Quantum Computing 

τ τ 

τ 

τ 

1 

τ τ 

τ 

τ 

τ 

∣𝜏𝜏→1𝜏→𝜏>                  ∣𝜏𝜏→𝜏𝜏→𝜏> 

𝜏⨂𝜏=1⨁𝜏  
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The order of the fusion should 
not be relevant (associativity):  

 

 

 

 

Therefore there exists a matrix F 
that transforms one basis to the 
other:  

 

Exchange of a & b before fusion= self-
rotation of outcome c after fusion: 

 

 

 

 

therefore just a phase factor is 
obtained. For many in between 
outcomes R = diagonal matrix: 

  

 

F & R matrices 

τ τ 

τ 

τ 

1,τ 

τ τ 

τ 

τ 

1,τ ≅ 

B A 

D 

C B A 

D 

C 

F 

The F-matrix The R-matrix 
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Consider superposition of multiple fusion outcomes, and consider the 
braiding of two particles that do no have a direct fusion outcome  

            exchanges result in a non-diagonal matrix R 
 
By applying F matrices on the R matrices we can change to a basis where 
the anyons do have a direct fusion outcome: 

   
 
 
Example: 
 
 
 
 

F & R fully describe all the processes we can do in an anyonic model of 
computation 
 
 

The unitary braiding matrix: B-matrix 

𝐵=𝐹𝑅𝐹−1=𝜌(𝜎𝑖)  
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Fusion is associative              Associativity of fusion + allow 
pentagon equation must hold:    braiding          Hexagon equation 

 

 

 

 

 

 

 

 

 

These two equations encode all the constraints we can impose on F & R 

 

 

 

 

 

 

 

 

Compatibility equations: Pentagon & Hexagon equations 

Fibonacci anyons & Topological Quantum Computing Christos Charalambous                                                         29/45  Fibonacci anyons & Topological Quantum Computers 13/05/13 



Vu Pham 

1. Quantum Computer 
Quantum Computing 
Decoherence 

2. “Any”-ons 
Abelian anyons 
Non-abelian anyons 
Physical realization of non-abelian anyons 
Fractional Quantum Hall effect 
Geometric phase 
Topological Quantum Computer 

3. Computing using anyons 
Braiding 
Fusion 
Recap: Fusion rules for minimal models 
Fusion space 
F & R matrices 
The unitary B-matrix 
Compatibility equations: Pentagon and Hexagon equations 

4. Fibonacci model 
Fibonacci/Yang Lee model 
Chern-Simons theory 
Recap of WZW models 

5. Summary 
 

Contents 

Fibonacci anyons & Topological Quantum Computing Christos Charalambous                                                         30/45  Fibonacci anyons & Topological Quantum Computers 13/05/13 



Vu Pham 

Simple and rich structure 

 

Encoding of logical states (the naive way): 

 

 

 

 

 

 

 

 

Fibonacci anyonic model 

Fibonacci anyons & Topological Quantum Computing 

𝜏⨂𝜏=1⨁𝜏  

1 

 ̱

∣            >  

∣            >  
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Simple and rich structure 

 

Encoding of logical states: 

 

 

 

 

 

 

 

 

The last state is not a problem as we will see right now: 

Fibonacci anyonic model 

Fibonacci anyons & Topological Quantum Computing 

𝜏⨂𝜏=1⨁𝜏  
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From fusion rules and pentagon equation for Fibonacci model: 

𝐹𝜏𝜏𝜏1=𝐹
1𝜏𝜏
𝜏=𝐹

𝜏1𝜏
𝜏=𝐹

𝜏𝜏1
𝜏=1 

𝐹𝜏𝜏𝜏𝜏=

1

𝜑

1

𝜑

1

𝜑
−
1

𝜑

 

where φ is the golden ratio φ=
(1+ 5)

2
 

 
From hexagon equation and Yang-baxter relation: 

𝑅𝜏1𝜏=𝑅
1𝜏
𝜏=1 

   

𝑅𝜏𝜏= 𝑒𝑖4𝜋/5 0
0 −𝑒𝑖2𝜋/5

 

  

Fibonacci anyonic model 
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Braiding matrices obtained from F and R: 

 

 

 

 

 

 

 

 

 

 

𝜎1= 

𝜎2= 

Fibonacci anyonic model 
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Dimension of Hilbert space for Fibonacci model with the constraint that 
no two consecutive 1’s can appear 

 

 

 

 

 

Bratelli diagram: 

 

 

 

 

 

       

 

 

 

 

 

2 
1 
τ 

τ 
1 
τ 

1 
τ 
τ 
1 
τ 

3 
5 

Fibonacci anyonic model 
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Dimension of the space is ∝Φ𝑛 
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Universality  

 

Solovay and Kitaev (version of brute force search algorithm):  

Combine short braids → can obtain a long braid that with arbitrary 
accuracy ʁ will simulate a desired single qubit unitary operation 

 

Bonesteel, Hormozi: 2-qubit entangling gate CNOT  

1st observation:  

 

 

 
 

Fibonacci anyonic model 
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2nd  observation: 
Case 1: upper qubit is  

 

 

 

 

 

 

Case 2: upper qubit is  

 

Fibonacci anyonic model 
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Ҧ 𝜌(𝜎1) &  𝜌(𝜎2) acting on the logical states can perform any unitary 
evolution in SU(N)  

        Ҧ  universal computations 

 

Conclusion:  

Fibonacci anyonic model:  

ÅCan achieve universal computing 

Åwell-controlled accuracy 

ÅRequires 4n physical anyons for encoding n logical qubits (i.e. 
polynomial scaling)  

 

Fibonacci anyonic model 
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spin-1 particles:      1⨂1=0⨁1⨁2 
Similarity to:    𝜏⊗𝜏=0⊕𝜏     if spin-2 is cut off 

 
𝑆𝑈(2)𝑘: ‘‘ quantized’’ version of SU(2) obtained by truncating the 
possible values of the angular momentum to  

   j=0,
1

2
,1,
3

2
…,
𝑘

2
  

e.g. 𝑆𝑈(2)3={0,
1

2
,1,
3

2
} 

 
Consider only  0 & 1 particles of 𝑆𝑈(2)3 

     →subgroup (‘‘even’’ part) of 𝑆𝑈(2)3≅ superselection sector of        
Fibonacci model 

 
A model described by such symmetry is the 𝑺𝑼(𝟐)𝟑 WZW model 
coupled to a U(1) gauge field 
 

Fibonacci anyons and 𝑆𝑈(2)3 
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𝑆𝐶𝑆𝐴 =
𝑘

4𝜋
 𝑑3𝑥𝜀𝜇𝜈𝜌

Μ

𝑡𝑟𝐴𝜇𝜕𝜈𝐴𝜌+𝑖
2

3
𝐴𝜇𝐴𝜈𝐴𝜌 =

1

4𝜋
 𝑑3𝑥𝐿𝐶𝑆(𝐴)
Μ

 

where k: coupling constant  ,   𝑀=Σ×R  (2+1D)   ,   A is a gauge field 

 

No metric → invariant under diffeomorphisms  

Non Abelian Gauge transformations: 

 𝐴′𝜇=𝑔𝐴𝜇𝑔
−1−𝑖𝑔𝜕𝜇𝑔

−1     where         g:𝑀→𝐺 

 
→𝐿𝐶𝑆𝐴

′=

𝐿𝐶𝑆(𝐴)−𝑘𝜀
𝜇𝜈𝜌𝜕𝜇𝑡𝑟𝜕𝜈𝑔𝑔

−1𝐴𝜌 −
𝑘

3
𝜀𝜇𝜈𝜌𝑡𝑟𝑔−1(𝜕𝜇𝑔)𝑔

−1(𝜕𝜈𝑔)𝑔
−1(𝜕𝜌𝑔) 

 

For suitable boundary conditions the 1st  extra term vanishes in the 
action. 

 

Non-abelian Chern-Simons Theory 
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In the case of simple compact groups e.g. G=SU(2): 

𝜔𝑔 =
1

24𝜋2
𝜀𝜇𝜈𝜌𝑡𝑟𝑔−1(𝜕𝜇𝑔)𝑔

−1(𝜕𝜈𝑔)𝑔
−1(𝜕𝜌𝑔) 

where ˖όg)=winding number and we realize that is proportional to the 
2nd extra term in the Lagrangian. Hence the action becomes: 

→ 𝑆𝐶𝑆𝐴′=𝑆𝐶𝑆𝐴+2𝜋𝜅𝜔(𝑔) 

ÅIf ω(g)=0 (small gauge transformations, low energies)  

    → action is invariant 

ÅIf ω(g)≠0 (large gauge transformations, high energies)  

    → failure of gauge invariance 

             Case 1: k integer → OK 

             Case 2: k not an integer →  gapped pure gauge degrees of 
             freedom for the high energy 
             theory 

Non-abelian Chern-Simons Theory 
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 𝐻=
𝑘

4𝜋
𝑡𝑟𝐴2𝜕0𝐴1−𝐴1𝜕0𝐴2 −𝐿=0 

Easily seen if we choose gauge 𝐴0=0   where the momenta 

canonically conjugated to:    𝐴1:  −
𝑘

4𝜋
𝐴2       ,     𝐴2:  

𝑘

4𝜋
𝐴1 

 
LƴǘǊƻŘǳŎŜ ǎǇŀǘƛŀƭ ōƻǳƴŘŀǊƛŜǎ    𝑀=𝜕Σ×R  
 

Locally (bulk part): Gauge invariance  
BUT globally: topological obstruction in making the gauge field zero 
everywhere if Σ topologically non-trivial 

Ҧ Chern-Simons gauge invariant up to a surface term 
 Ҧ physical topological degrees of freedom     

  
Ҧ Chern-Simons: theory of ground state of a 2D topologically ordered  
      system in ʅ 
 

Non-abelian Chern-Simons Theory 
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Conclusion 
• For low energies: 
→ Chern Simons theory describes non abelian anyons. 
 
• For high energies: 
→ Difficult to disentangle physical topological degrees of freedom from 
unphysical local gauge degrees of freedom 
 
 
 

→ hence have to consider Chern Simons as low energy effective field 
theory 

 
What is the theory that describes the excitations of these 

quasiparticles? 

Non-abelian Chern-Simons Theory 
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WZW models describe Symmetry Protected topological Phases (SPT) 
in 2D at an open boundary with symmetry SU(2). 

Showed global and local SU(2) invariance of 𝐽+ (the WZW charge 
carrying covariant current density) coupled with an external field 
action 

Showed that integrating action with an external field leads to an 
effective field theory:   

WZW action coupled with external field at low energies  

≅ Chern Simon action 

For WZW models: 

  → k= number of anyon species in the theory → integer 

→ gapless WZW gauge degrees of freedom = CS pure gauge degrees of 
freedom 

  

Recap of WZW models 
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→Solved problem of Chern-Simons in higher energies 
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 1. Defined Quantum Computer and identified problem of                
decoherence 

 
 2. Identified topological properties as a remedy for the 
problem 

 
 3. Identified anyons as systems that exhibit such 
topological  properties and hence under specific conditions can 
accomodate a Topological quantum computer 
 
 4. Examined Fibonacci anyons as candidate particles for 
performing Universal Topological quantum computing 

 
 5. Showed that such particles can be theoretically 
described in the context of a CFT model 

Summary 
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