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Quantum computation

e Classical computer: limited computational power

3d magnet

e Interference - Quantum physics could speed up processes

o Qubit: >= 0>+ 1> where 2+ 2=z1 |,
« Hilbert spaces: 1 1, 2 2
2 12=  =uz3 WU 1 2
classical: m bits > 2 states
quantum: m qubits > 2 basisstates
« Entanglement: speeding up classical algorithms
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Quantum computation

A Quantum Circuitsunitary operators that act on a Hilbert space, generated by n
qubits, whose states encode the information we want to process.

Quantum Circuits are composed of elementary Quantum gates.

A Universality: existence of a universal set of quantum gates, the elements of which
can perform any unitary evolution in SU(N) with arbitrary accuracy

Need:

1. Singe qubit rotation gates that can span SU(2): |[y) =  [¥)

2. A Two - qubit entangling gate: (2)
> [y

1 0 0 0 @ x=0 - y unchanged

O 1 0 O time

CNOT'=14 ¢ 0 1 — x=1> _ _
=15 =0

0O 0 1 O 7N\

ly> L/ lx®y> where = addition mod 2

Exampleof quantum algorithms - Deutsch algorithm
— Shor’s factoring algorithm
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Quantum computation

e Deutsch Algorithm
A Boolean Function F: Constant (f(0)=f(1)) or Balanced (f(0)# f(1))?

Single qubit rotation | |
gate called Hadamard : 10 H H /ﬂ
_1n1 o1
v () 1) Hl— BN iy B

A Requires only 1 measurement to answer while classically it takes 2
evaluations of F

Decoherence

Very easy for errors to appear in the system due to interactions with the
environment:

Examples: 1. Bit flips: o>-> 1> , 1> - 0>

e L 1 _
2. Phase flips: \E( 0>+ 1>)9\/§( 0>- 1>)
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Quantum computation

Goal: encode information in an environment
independent way

|

-

ldea: Topological properties are insensitive to
local perturbations

~N
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Abelian anyons

Exchanging:

> > > >
Winding:

> > L ( )3 >
In3D: |( )%=
—Boson: 6=21+2mnn >
—Fermion: 6=m+2nn > -

Move to 2D:

Any 6 - “Any”-ons

Exchanging=braiding /
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Non-abelian anyons

—>  (Candidate space to store and process
qguantum information
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Physical realization of Non-abelian anyons:

1. Degenerate ground state

2. Finite energy gap AE for ground state

3. Adiabaticity

4. Anyons being far apart

5. All local operators have vanishing correlation functions apart
from identity
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Fractional Quantum Hall effect

‘QQQQ M/ \UJ®UU 1

e Trapped = gas
2

e Conductance: = — where a fractional number
—Fractional charge
. 1
e Abelian anyons for = 3

Laughlin states: Trial wavefunctions

Expect - fractional statistics = anyonic statistics
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Geometric phase

e Time evolution of a state:

- 2 T
(T)>=eX('p())eX{|ef (())} 0) >

0

where () is Berry’s geometric phase:
()= <.0 0> = = 2
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Geometric phase

Vector potential gauge transformation:
— A -

Vector field:
( ) ( A- A)
— invariant under gauge transformations
If () # Ol.e. notdiffeomorphic invariant as well:

— Case 1: Non-degenerate state space - Abelian geometric
y phase, U(1)

Example:
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Geometric phase

- Case 2: Degenerate state space (( ) a matrix):
Example:

Transformations of the state space are elements of SU(2)
For N degenerate state space transformations are elements of SU(N)
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Geometric phase

In general: O>=r() (>

r()=ex(@ ()
C()

C, (1) C,(1)
Co (1)
AP ESIETL O

the following properties hold:
(A) Ta( 2 1) =Ta( 2DIMal 1) 1, o pathsin parametric space

(B) Ta( o) = o point
€) TM( H=r"1() clockwise path,
-1

anti-clockwise path
(D) Ta( )=Ta( ) is a function of time t

(A)+(B)+(C) — Forms a Group
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Geometric phase

A Relate parametric space to anyons coordinates

A Assume vector field is confined to anyons position
Hence:
M 2

—¢-
— ¢ ® O
—B—
non-abelian geometric evolutions in a system
phases evolutions of non-abelian anyons
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Topological Quantum Computer

/Z_._ /“*’J

\ qg)[s" . ]Ew]'*PJ

Ay Gy

A,

e Quasiparticle worldlines forming braids carry out unitary transformations on a
Hilbert space of n anyons.

e This Hilbert space is exponentially large and its states cannot be distinguished by
local measurements

—— candidate model for fault-tolerant quantum computing
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Topological Quantum Computer

e 1997 A.Kitaev: System of non-abelian anyons with suitable properties
can efficiently simulate a quantum circuit

e 2000 Freedman, Kitaev and Wang: system of anyons can be simulated
by a quantum circuit

—Equivalence of the two views of the system, i.e. between an anyonic
computational model (e.g. a Topological guantum computer) and a
guantum circuit

|s there ananyoniccomputational model that can simulate a quantur
circuit that exhibits universality?
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B

(+1)

e World lines cannot cross

— braids  (particle histories) in
distinct topological classes
e 1:1 correspondence of the topological

o

classes with distinct elements of a Braid set

1. Any braid can be obtained by ]
multiplying elementary braids

2. The inverse of any braid exists =— — Braid group

3. Existence of Vacuum

4. Associativity for disjoint
() representations of the Braid group = the unitary transformations
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B

Defining relations of Braid group for an anyonic model:
1. Exchanges of disjoint particles commute'

11 =114~ =14 =K1 -

004,10 = 0,100 41 =12,..., —2

L
L L
Cat -
L

9
./
N

./ \/ ,/
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Fusion

e Fusion The process of bringing two particles together

e A non abelian anyonic model is defined starting from the
superselection sector

Finite set of particles that are linked by the following fusion
rules, and their charges are conserved under local operations

Fusion algebra: X =

where can be matrices
Abelian =1
Non-abelian > 1

e Associativity:
e Commutativity:
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e Commutativity also holds:

e Associativity :

—> Minimal models can be mapped to anyonic
models
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Fusion space

e Fusion spaces : are subspaces of the space of all possible
fusion outcomes which are also Hilbert spaces

The logical states 0> & 1 > will be encoded in one of these
fusion spaces

e Relation of dimensionality of fusion spaces and quantum
dimension:

1
¢ Simplest non-abelian example fusion rule for Spln- — particles

1
> 301
(i.e. 2x2=1+3)
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Fibonacci anyons fusion rule:

=1 1 =vacuum

T = non-abelian anyon

The Fusion (Anyonic) Hilbert space:
T T T T T T

T T
( -1 - > ( -) - >
Fusion trees are orthogonal basis elements of a Hilbert space
If the initial and final states are fixed then the dimension of this

space depends on the number of in-between outcomes. For the
above example the dimension is 2.

o I
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The Fmatrix The Rmatrix
The order of the fusion should Exchange of a & b before fusion= self-
not be relevant (associativity): rotation of outcome c after fusion:

T T T T T T b g
a b \ b a
1,t 1,t Ra,b Y = = Rf’;a’ Y
C C
C
T T

therefore just a phase factor is
obtained. For many in between
outcomes R = diagonal matrix:

Therefore there exists a matrix F
that transforms one basis to the
other: o .

A C A C S y
I c
\</ > B Z (R‘b” )ﬂ
7,

D D ¢ ¢
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Consider superposition of multiple fusion outcomes, and consider the
braiding of two particles that do no have a direct fusion outcome

——> exchanges result in a non-diagonal matrix R

By applying F matrices on the R matrices we can change to a basis where
the anyons do have a direct fusion outcome:

[
I

[
~~
—

Example
T T F TGT R T T F T T
|| I b | |
a b c a c a ¢ a b c

F & R fully describe all the processes we can do in an anyonic model of
computation
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Fusion is associative —> Associativity of fusion + allow
pentagon equation must hold: braiding — Hexagon equation

F. NA F R \&
1 2 3 4/Y/\l 2 3 4 F/\%/—)\ﬁ/\F
x{/ V X/R R\Y
d % LN /.

\ 2~ 3 2 3
1 2 3 4 1 2 3 4 N, F
b — d
4 4
4 c c pa
(Flzc)d(F534)b—Z(F234) (F 84)d(F 23)2 Z(F ’Sl)leb(FI% _Rl%(F 13)aR12
b

These two equatlons encode all the constraints we can impose on F & R
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Fibonacci anyonic model

e Simple and rich structure

=1

e Encoding of logical states (the naive way):

0)= (s,0:> = (@0

|
&
-
-__‘I

H= (o> = @G =

13/05/13 Fibonacci anyons & Topological Quantum Computers ' Christos Charalambous



Fibonacci anyonic model

e Simple and rich structure

e Encoding of logical states:

0) = |((e,®)1,0)r) =

e
D=l 00 =Co e, = \Y
=X

The last state is not a problem as we will see right now:
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Fibonacci anyonic model

From fusion rules and pentagon equation for Fibonacci model:

= 1 = 1 = 123
1 1
:/_ V-
11
\v"
(1++/5)

where ¢ is the golden ratio @ = >

From hexagon equation and Yang-baxter relation:
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Fibonacci anyonic model

Braiding matrices obtained from F and R:

0) e~4mi/5 0 0) OB
| =] o —eis| g 1) 1= (A
N 0 0 |—e?m/? N
|N) IN) aD)
p(or)
_ | A A A
|O> _e—mﬁ/gb _Z'e—mfl(]/\/a 0 ‘0> \
1y | = e e | oo || ) o= | A
|N) \ 0 0 —G_QWM)/ IN) @
N — < ®
p(o2) o
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Fibonacci anyonic model

Dimension of Hilbert space for Fibonacci model with the constraint that
no two consecutive 1’s can appear

T T T T T
L L
2 1 T 1
T 3_1 T
51T
1
. . T
Bratelli diagram:
A
<l 1 1-==1 2 3 o] 13 21__
) 1 1 2 3 5 8 13
=
T 2T 3T 4t 5T 6T 7T 8t

—> Dimension of the spaceis @
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Fibonacci anyonic model

Universality

e Solovay and Kitaev (version of brute force search algorithm):

Combine short braids = can obtain a long braid that with arbitrary
accuracy¥ will simulate a desired singlequbit unitary operation

e Bonesteel, Hormozi: 2-qubit entanglinggate CNOT
15t observation:

Te

4
MAANSPIARY =
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Fibonacci anyonic model

2nd observation:

Case 1: upper qubitis |0) = q-
S ———

\1 /
W\ f\ A j\f\ JW‘ £




Fibonacci anyonic model

b ( 1) & ( ») acting on the logical states can perform any unitary
evolution in SU(N)

b universalcomputations

Conclusion

Fibonacci anyonic model:
A Can achieve universal computing
A well-controlled accuracy

A Requires 4n physical anyons for encoding n logical qubits (i.e.
polynomial scaling)
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Fibonacci anyons and (2)5

e spin-1 particles: 1 1=0 1 2
e Similarity to: =0 if spin-2 is cut off

o (2) :‘ quantized” version of SU(2) obtained by truncating the
possible values of the angular momentum to

. 1 3
] = 0,5,1,5...,

e.g. (2)3 - {01%11’2}

2

e Consideronly 0 & 1 particlesof (2)3

—subgroup (“even” part) of (2)3 superselection sector of
Fibonacci model

e |A model described by such symmetryisthe ( ) WZW mode
coupled to a U(1) gauge field
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1
4_|v|3 ()

)

(2+1D) , Ais a gauge field

where k: coupling constant , = 2 X

e No metric = invariant under diffeomorphisms
e Non Abelian Gauge transformations:

"= -1- “1  where g -
> ()=
()- (C O )=5 (7 )7 ) )

For suitable boundary conditions the 15t extra term vanishes in the
action.
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In the case of simple compact groups e.g. G=SU(2):

1
O=57 (7 )7 ) M)

where . @)=windingnumberand we realize that is proportional to the
2"d extra term in the Lagrangian. Hence the action becomes:

> ()= (()+2 ()
AIf w(g)=0 (small gauge transformations, low energies)
— action is invariant
AIf w(g)#0 (large gauge transformations, high energies)
— failure of gauge invariance
Case 1: k integer - OK

Case 2: k not an integer — | gapped pure gauge degrees
freedom for the high energy
theory

13/05/13 Fibonacci anyons & Topological Quantum Computers ' Christos Charalambous



=1 (201 102 —- =0

Easily seen if we choose gauge o= 0 wh e t Bn@omenta

canonically conjugated to: 1 a2 2. 4 1

Ly 0 NBARIzGR Hzff R N& S&% R

e Locally (bulk part): Gauge invariance

e BUT globally: topological obstruction in making the gauge field zero
everywhere if 2 topologically non-trivial

HChernSimons gauge invariant up to a surfatarm
bphysical topological degrees dfeedom

"HChernSimons theory of ground state of a 2D topologically ordered
systemin
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Conclusion
e For low energies:
— Chern Simons theory describes non abelian anyons.

e For high energies:

— Difficult to disentangle physical topological degrees of freedom from
unphysical local gauge degrees of freedom

— hence have to consider Chern Simons as low energy effective field
theory

What is the theory that describes the excitations of these
quasiparticles?
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Recap of WZW models

e WZW models describe Symmetry Protected topological Phases (SPT)
in 2D at an open boundary with symmetry SU(2).

e Showed global and local SU(2) invariance of . (the WZW charge
carrying covariant current density) coupled with an external field
action

e Showed that integrating action with an external field leads to an
effective field theory:

WZW action coupled with external field at low energies

Chern Simon action

For WZW models:
— k= number of anyon species in the theory - integer

— gapless WZW gauge degrees of freedom = CS pure gauge degrees of
freedom

—->Solved problem ofchernrSimons in higher enerqiés
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Summary

1. Defined Quantum Computer and identified problem of
decoherence

2. ldentified topological properties as a remedy for the
problem

3. Identified anyons as systems that exhibit such
topological properties and hence under specific conditions can
accomodate a Topological quantum computer

4. Examined Fibonacci anyons as candidate particles for
performing Universal Topological quantum computing

5. Showed that such particles can be theoretically
described in the context of a CFT model
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