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What is fusion?

fusion = process of taking the short distance product of two fields

goal: find primaries and descendants created by the
short distance product of different fields

use: differential equations for fields
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Repetition: representation of the Virasoro Algebra

Remember: Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m + c
12n(n2 − 1)δn+m,0

highest weight representation:

L0|h〉 = h|h〉
Ln>0|h〉 = 0

[L0, Lm] = −mLm

Ln>0: lowering operator
L−n<0: raising operator
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Repetition: representation of the Virasoro Algebra

descendant state: L−k1 · · ·L−kn |h〉 (1 ≤ k1 ≤ · · · ≤ kn)
is an eigenstate of L0 with eigenvalue

h′ = h+ k1 + k2 + ...kn = h+N

N: level of the state

Verma module V(c,h): subspace generated by |h〉 and descendants

Hermitian conjugate: L†n = L−n

inner product of two states L−k1 · · ·L−km |h〉 and L−l1 · · ·L−ln |h〉:

〈h|Lkm · · ·Lk1L−l1 · · ·L−ln |h〉

Stephanie Mayer Proseminar Theoretische Physik



Fusion rules from differential equations
Fusion algebra

Repetition: Virasoro algebra
Minimal models
Differential equations for the correlation functions
Fusion rules for minimal models

Repetition: Virasoro algebra

operator - field correspondance:

L−n|h〉 ↔ Φ(−n)(w) =
1

2πi

∮
w
dz

1

(z − w)n−1
T (z)Φ(w)

correlation function including descendant field:

〈Φ(−n)(w)X〉 = L−n〈Φ(w)X〉 (n ≥ 1)

(X = Φ1(w1) · · ·ΦN (wN ), Φi primary fields with conf. weights hi)

→ reduced to correlator of primaries acted on by differential
operator

L−n(w) =
∑
i

(
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

)
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Minimal models

characterized by a Hilbert space made of a finite number of
representations of the Virasoro algebra

describe discrete statistical models (e.g. Ising) at their critical
points

simplicity → complete solution
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Singular vectors

singular (or null) vector: any state |χ〉 - other than the highest
weight state - that fulfills Ln|χ〉 = 0, (n > 0)

Singular vectors & their descendants are orthogonal to the whole
Verma module V(c,h)!

Quotient out the null submodule of V(c,h)
→irreducible representation of the Virasoro algebra
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Conditions for a state to be singular?

denote basis states as |i〉

Gram matrix Mij = 〈i|j〉; M † = M

block diagonal, each block M (l) corresponds to states of level l

→ diagonalize M = UΛU †;

→ for |a〉 =
∑
i
ai|i〉: 〈a|a〉 = a†Ma =

∑
i

Λi|(Ua)i|2

→ ∃ singular vectors if one of eigenvalues Λi vanishes

→ V (c, h) reducible
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Kac determinant

Kac determinant

detM (l) = αl
∏

r,s≥1,
rs≤l

[h− hr,s(c)]p(l−rs)

where

p(l − rs) = number of partitions of the integer l − rs

hr,s(c) = h0 +
1

4
(rα+ + sα−)2

α± =

√
1− c±

√
25− c√

24

h0 =
1

24
(c− 1)
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Kac determinant for minimal models

p, p′ coprime integers st. pα− + p′α+ = 0, then:

c and h for minimal models

c = 1− 6(p− p′)2

pp′

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′

⇒ periodicity: hr,s = hp′−r,p−s

⇒ hr,s + rs = hp′+r,p−s and hr,s + (p′ − r)(p− s) = hr,2p−s

⇒ #(0-vectors) =∞ ⇒ finite set of conformal families

1 ≤ r < p′ and 1 ≤ s < p (Kac table)
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Differential equations for the correlation functions

Suppose V (c, h0) reducible Verma module with singular vector

|c, h0 + n0〉 =
∑

Y,|Y |=n0

αY L−Y |c, h0〉

where

Y = {r1, · · · , rk} (1 ≤ r1 ≤ · · · ≤ rk)
|Y | = r1 + · · ·+ rk

LY = L−r1 · · ·L−rk

set corresponding nullfield to zero and insert into correlator
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Differential equations for the correlation functions

differential equation for the correlator:∑
Y,|Y |=n0

αY L−Y (z)〈Φ0(z0)X〉 = 0

where (X = Φ1(w1) · · ·ΦN (wN ), Φi primary fields with conf. weights hi)

using

〈Φ(−r1··· ,−rk)(z0)X〉 = L−r1(z0) · · · L−rk(z0)〈Φ(w)X〉

with

L−n(w) =

N∑
i=1

(
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

)
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Example

consider state at level 2

χ = (L−2 + aL2
−1)|h〉

conditions on a and h for χ to be singular:

a = − 3

2(2h+ 1)

h =
1

16
(5− c±

√
(c− 1)(c− 25))

differential equation for the correlator:

(L−2 −
3

2(2h+ 1)
L2−1)〈Φ(w)X〉 = 0

⇒

[
N∑
i=1

(
1

w − wi
∂wi +

hi
(wi − w)2

)
− 3

2(2h+ 1)
∂2w

]
〈Φ(w)X〉 = 0
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Example

consider X = Φ1(w1)Φ2(w2)

3-point-function:

〈Φ(w)Φ1(w1)Φ2(w2)〉 =
Ch,h1,h2

(w−w1)h+h1−h2 (w1−w2)h1+h2−h(w−w2)h+h2−h1

→insert into differential eq.

→ obtain constraints on conformal weights (h, h1, h2):

h2 =
1

6
+
h

3
+ h1 ±

2

3

√
h2 + 3hh1 −

1

2
h+

3

2
h1 +

1

16

choose h = h2,1;h1 = hr,s ⇒ h2 ∈ {hr−1,s, hr+1,s}
choose h = h1,2;h1 = hr,s ⇒ h2 ∈ {hr,s−1, hr,s+1}
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Fusion rules for minimal models

found out:

Φ1,2 × Φr,s = Φr,s−1 + Φr,s+1

Φ2,1 × Φr,s = Φr−1,s + Φr+1,s

Can show:

Φr1,s1 × Φr2,s2 =

k=r1+r2−1∑
k=1+|r1−r2|

k+r1+r2=1mod2

l=s1+s2−1∑
l=1+|s1−s2|

l+s1+s2=1mod2

Φk,l

The conformal families [Φr,s] form a closed set under the operator
algebra!
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Fusion algebra

OPE

Φhi(z)Φhj (w) ∼
∑
h

Chkhi,hjΦhk(w)(z − w)hk−hi−hj + ...

fusion numbers N k
ij =

{
0, Chkhi,hj = 0

1, otherwise

fusion algebra Φi × Φj =
∑
k

N k
ijΦk
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Fusion algebra

commutativity: N k
ij = N k

ji

associativity:
∑
l

N l
jkNm

il =
∑
l

N l
ijNm

lk

matrix operators Ni: (Ni)j,k := N k
ij

⇒ associativity: NiNk = NkNi
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properties of the fusion algebra

commutativity → ∃ matrix S that diagonalizes the N-matrices
simultaneously:

Ni = SDiS
−1

⇒ Nk
ij =

∑
l

SjlSil(S
−1)lk

S0l

How does S look like?
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Verlinde:

“The modular transformation
S : τ → −1

τ diagonalizes the
fusion rules. “

(Erik Verlinde; Fusion rules and Modular Transformations in 2D Conformal Field Theory)
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Verlinde formula

remember: character of a Verma module V(c,h):

χc,h(τ) = Tr qL0− c
24 (q := e2πiτ )

under the action of the modular transformation S the minimal
characters transform among themselves:

χr,s(−
1

τ
) =

∑
(ρ,σ)∈Ep,p′

Srs,ρσχρ,σ(τ)

with Srs;ρσ = 2

√
2

pp′
(−1)1+sρ+rσ sin (π

p

p′
rρ) sin (π

p′

p
sρ)

not obvious!!
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Verlinde formula for minimal models

Verlinde formula for minimal models

Nkl
rs,mn =

∑
(i,j)∈Ep,p′

Srs,ijSmn,ijSij,kl
S11,ij

with S being the matrix of the modular transformation S in the
basis of minimal characters
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Verlinde formula

Proof of the Verlinde formula?!

Verlinde:
“In an attempt to convince the reader that our
conjecture is correct we will in the next section
discuss several examples.“

(Erik Verlinde; Fusion rules and Modular Transformations in 2D Conformal Field Theory)
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Example: Ising model

characters of the Ising model: χ0(τ) =
1

2

(√
Θ3(τ)

η(τ)
+

√
Θ4(τ)

η(τ)

)

χ 1
2
(τ) =

1

2

(√
Θ3(τ)

η(τ)
−

√
Θ4(τ)

η(τ)

)

χ 1
16

(τ) =
1√
2

√
Θ2(τ)

η(τ)

modular properties: Θ2(−
1

τ
) =
√
−iτΘ4(τ)

Θ3(−
1

τ
) =
√
−iτΘ3(τ)

Θ4(−
1

τ
) =
√
−iτΘ2(τ)

η(−1

τ
) =
√
−iτη(τ)
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