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1 Introduction

1 Introduction

This report is based on a talk that I held in context of the Proseminar Conformal Field Theory and

String Theory taking place at the Federal Institute of Technology Zurich in the spring semester 2013.
Since the participants of the proseminar including myself did not have much prior knowledge of conformal
�eld theory (CFT), the aim of my talk was to give an introductory overview of minimal models, fusion
rules and the Verlinde formula.

In a conformal �eld theory we wish to compute correlation functions as they give us the expectation values
of the action of di�erent �eld operators on the vacuum. Using the operator product expansion (OPE) of
two �elds, we can reduce every n-point correlation function to a (n− 1)-point correlation function. This
is very helpful, since we know the form of the two-point function up to a constant:

〈Φ1(w1)Φ2(w2)〉 =

{
C12

(w1−w2)2h
, if h1 = h2 = h

0, if h1 6= h2
(1)

Therefore, it makes sense to look at the OPE of the �elds of our theory in order to determine higher
point correlation functions. But we can also look at this the other way around: Put the case that we
assume the OPE of two �elds Φ1,Φ2 to be of the form

∑
j

cj12Φj without knowing which �elds e�ectively

appear in the sum (i.e. which coe�cients cj12 are not equal to zero). Then we can gain information by
inserting this general expression into the correlator, yielding:

〈Φ1Φ2Φ3〉 =
∑
j

cj12 〈ΦjΦ3〉 (2)

From (1) and (2) we can conclude that a fusion from Φ1 and Φ2 onto Φ3 is possible if their correlation
function does not vanish.

The so called fusion rules determine which conformal families appear in the OPE of two conformal �elds.
As we will see later, these fusion rules give constraints on the central charge and the conformal dimension
of the CFT. As a consequence of these constraints it turns out that some CFT's consist of only a �nite
number of conformal �elds. These theories are called rational CFT's.

In section 2, a quick overview of the Virasora algebra is given. The next section deals with minimal
models, which are a special kind of rational CFT's. Putting emphasis on the case of the minimal models,
we explain how to get from di�erential equations for the correlators to the fusion rules for the conformal
families (section 4). In section 5, we introduce the fusion algebra which abstracts the concept of the
OPE. Finally, we look at the connection of the fusion algebra to the modular transformations which is
expressed in the famous Verlinde Formula. All these concepts are illustrated by a simple example for
two-dimensional CFT's, the Ising model.

The main reference for this text is [1].
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2 The Virasoro algebra

2 The Virasoro algebra

The Virasoro Algebra plays a very important role in two-dimensional CFT's as it describes the in�nite
local conformal symmetry of those �eld theories. The generators Ln, L̄n (n ∈ Z) of the Virasoro Algebra
with central charge c can be expressed as expansion coe�ecients of the energy-momentum tensor:

Ln =
1

2πi

∮
zn+1T (z)dz (3)

L̄n =
1

2πi

∮
z̄n+1T̄ (z̄)dz̄ (4)

With these de�nitions we can write the Laurent expansion of the energy momentum tensor as

T (z) =
∑
n∈Z

z−n−2Ln (5)

T̄ (z̄) =
∑
n∈Z

z̄−n−2L̄n (6)

By deforming the contours of the integrals (3) and (4) and by making use of the operator product
expansion, the commutator of the Virasoro generators can be computed (see [1] for a derivation):

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (7)

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0 (8)

[Ln, L̄m] = 0 (9)

Thus, the Virasoro algebra can be split into a holomorphic and an anti-holomorphic part, which are
independent from each other. In the following, we will construct a representation of the holomorphic part
(7). The representation of the antiholomorphic part can be found with the same method and the overall
representation is then obtained by taking the tensor product of the two indepedent components.

Following the concept of constructing a heighest weight representation that we know from the su(2)
representation of the angular momentum in quantum mechanics, we de�ne a highest weight state |h〉
with the properties:

L0 |h〉 = h |h〉 (10)

Ln |h〉 = 0, n > 0 (11)

This so called asymptotic state is created by the action of a primary �eld on the vacuum. A primary
�eld φ(z) is de�ned to be a �eld that transforms as

φ′(w) = (
dw

dz
)−hφ(z) (12)

under any local two-dimensional conformal transformation z → w(z).

Making use of the commutation relation (7) we can compute

[L0, Lm] = −Lm (13)
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3 Minimal Models

and because |h〉 is an eigenstate of the L0 operator we get on the other hand:

[L0, Lm] = (L0Lm − h) |h〉 (14)

By combining (13) and (14) we can conclude that for m>0 the operator Lm lowers the eigenvalue of the
eigenstate of the L0 operator by m:

L0(Lm |h〉) = (h−m)Lm |h〉 (15)

Similarly, L−m(m > 0) acts as a raising operator.

So how does the representation of the Virasoro algebra look like? A basis of the representation space is
built by the descendant states:

L−k1 · · ·L−kn |h〉 (1 ≤ k1 ≤ · · · ≤ kn) (16)

By induction we can see that states of this form (16) are eigenstates of L0 with eigenvalue

h′ = h+ k1 + k2 + ...kn (17)

Here we call N :=
n∑
i=1

ki the level of the desecendant.

The space of the highest weight state and all its descendants is called Verma module (V (c, h)) and is
obviously mapped onto itself by the Virasoro algebra. Therefore it is a representation of the Virasoro
algebra.

The hermitian conjugate of a Virasoro generator Ln is given by L†n = L−n which leads to the de�nition
of the inner product of two states L−k1 · · ·L−km |h〉 and L−l1 · · ·L−ln |h〉 as:

〈h|Lkm · · ·Lk1L−l1 · · ·L−ln |h〉 (18)

This expression can be evaluated by using the commutation relation (7). By doing so, the Lkj (kj > 0)
will at some point act on the heighest weight state |h〉 and annihilate it, unless the states are at the same
level. This can also be seen by the fact that two eigenspaces of the Hermitian operator L0 with di�erent
eigenvalues are orthogonal.

Note that the term "inner product" is not applied correctly for expression (18), since this de�nition
admits negative and zero norm states. So the requirement for an inner product to be positive de�nite is
not ful�lled. In the next section we will see that the states with vanishing norm play an important role
regarding the representation of the Virasoro algebra.

3 Minimal Models

The minimal models are an important subclass of conformal �eld theories. A minimal model has �nitely
many primary �elds, so there exists only a �nite number of representations of the Virasoro algebra. Due
to the limited number of conformal families, i.e. primary �elds and their descendants, this model is
completely solvable. Here we mean solvable in the sense that all correlation functions can be calculated,
eventhough this turns out to be rather technical. In practice, minimal models describe discrete statistical
models such as the Ising model, which is presented in section 6.
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3 Minimal Models

3.1 Null Submodules of Reducible Verma Modules

Depending on the values that the conformal weight h and the central charge c obtain, the representation
of the Virasoro algebra may be reducible. In order to show that the representation is reducible we need to
�nd a proper submodule of the Verma module that is invariant under the action of the Virasoro algebra.
Such a subrepresentation is generated by a state |χ〉 ∈ V (c, h) that ful�lls Ln |χ〉 = 0 for all positive n
and that is of course not equal to the highest weight state|h〉. Such a state is called singular vector. The
important characteristic of a singular vector is that it is a so called null state. Null states are orthogonal
to the whole Verma module: Let |χ〉 be a singular vector and L−k1 · · ·L−kn |h〉 a basis state. Then we
can calculate the inner product of these two states to be zero, considering that Ln |χ〉 = 0for all n > 0:

〈χ|L−k1 · · ·L−kn |h〉 = 〈h|Lkn · · ·Lk1 |χ〉
∗

= 0 (19)

Especially, we can conclude that the singular vector has zero norm. Singular vectors are of special
importance since they can be used to derive di�erential equations for the correlation functions as we will
see in section 4. Singular vectors are not the only null states, as their descendants are orthogonal to
the whole Verma module too. We have seen before, that states having di�erent levels are orthogonal to
each other. Thus, we only need to show that the inner product of any descendant L−k1 · · ·L−kn |χ〉 of a
singular vector |χ〉 and any state L−b1 · · ·L−bm |h〉 belonging to the same level vanishes. As a consequence
from the conditon for the states to have the same level and from the fact that the level of the singular
vector |χ〉 is not equal to zero, we note that

∑
i

bi >
∑
i

ki . This means that we can commute all the Lbi

over the the L−ki until they hit the singular vector. As a result we obtain:

〈h|Lbm · · ·Lb1L−k1 · · ·L−kn |χ〉 = 0 (20)

In order to illustrate the existence of singular vectors, we consider a theory with conformal weight h = 0
and look at the subspace generated by L−1 |0〉. To see that L−1 |0〉 is indeed a singular vector, we need
to show that this state is annihilated by all generators Lm,m > 0:

LmL−1 |0〉 = ([Lm, L−1]− L−1Lm) |0〉
= (m+ 1)Lm−1 |0〉
= 0 ∀m > 0 (21)

Obviously, this subspace consisting of states of the form

L−n1
· · ·L−nl

L−1 |0〉 (22)

is invariant under the action of the Virasoro generators. But why is it a proper subspace of the Verma
module? To prove this, we want to show that the highest weight state |0〉 itself is not included in this
subspace: The only possibility to reduce the conformal weight of L−1 |0〉 by 1 consists in applying the L1

operator on this state. But from (21) we already know that L1L−1 |0〉 = 0 6= |0〉. Hence we have found a
proper subrepresentation.

By quotienting out of the Verma module V (c, h) all the null submodules generated by the contained
singular vectors, the representation of the Virasoro algebra is made irreducible. Quotienting a null
submodule N(c, h) out of V (c, h) means that we de�ne an equivalence relation on V (c, h) by identifying
two states |x〉 , |y〉 ∈ V (c, h), i.e. |x〉 ∼ |y〉, if they di�er by a state of zero norm, i.e. if |x〉−|y〉 ∈ N(c, h).
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3 Minimal Models

3.2 The Kac Determinant

What are the conditions for a state to have a vanishing norm? To anwer this question, we just have to
make some linear algebra considerations: Assuming our Verma module V (c, h) to be �nite dimensional
with basis vectors {|i〉}, we look at the Gram matrix Mij = 〈i|j〉 of all inner products of the basis
states. We know that for two states at di�erent levels the corresponding matrix element vanishes, which
allows us to write the Gram matrix in a block diagonal form, with each block M (N) corresponding to one
level N . Furthermore the Gram matrix is Hermitian, hence it can be diagonalized by a unitary matrix
U : M = U†ΛU . Let Λi denote the eigenvalues of the Gram matrix and let |x〉 =

∑
i

xi |i〉 be an arbitrary

element of V (c, h). Then we have

〈x|x〉 = x†Mx (23)

=
∑
i

Λi |(Ux)i|2 (24)

from which we conclude that there will be a state of zero norm if one of the eigenvalues Λi vanishes.
Since a state of zero norm is either a singular state or one of its descendants, we can conclude that the
Verma module is reducible if one or more eigenvalues of the Gram matrix are zero. As the determinant
of a matrix is equal to the product of its eigenvalues, it makes sense to calculate the determinant of the
Gram block matrices.

In order to illustrate this procedure, we calculate the matrices M (N)(c, h) for the lowest levels N = 1, 2:
There exists only one basis state at level N = 1, namely L−1 |h〉, hence we �nd using the Virasoro algebra
(7):

M (1)(c, h) = 〈h|L1L−1 |h〉
= 〈h| 2L0 |h〉
= 2h

In this case the determinant is trivially given by

detM (1)(c, h) = 2h (25)

Thus, at level N = 1 we have a singular vector if and only if h = 0.

At level N = 2 we have the two di�erent basis vectors L−2 |h〉 and L−1L−1 |h〉 in the Verma module. We
calculate the entries of M (2)(c, h) making repeatedly use of the Virasoro algebra:

〈h|L2L−2 |h〉 = 〈h| c
2

+ 4L0 |h〉 = 4h+
c

2
(26)

〈h|L1L1L−2 |h〉 = 〈h|L13L−1 |h〉 = 6h (27)

〈h|L1L1L−1L−1 |h〉 = 〈h|L1 [L1, L−1]L−1 |h〉+ 〈h|L1L−1L1, L−1 |h〉 (28)

= 〈h|L12L0L−1 |h〉+ 〈h| [L1, L−1] [L1, L−1] |h〉 (29)

= 2 〈h|L1 [L0, L−1] |h〉+ 8 〈h|L2
0 |h〉 (30)

= 4h+ 8h2 (31)

So for the determinant at level N = 2 block we have

detM (2)(c, h) = det

(
4h+ c

2 6h
6h 4h(2h+ 1)

)
(32)

= 32(h− h1,1(c))(h− h1,2(c))(h− h2,1(c)) (33)
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3 Minimal Models

where the roots are given by:

h1,1 = 0 (34)

h1,2 =
1

16
(5− c−

√
(1− c)(25− c) (35)

h2,1 =
1

16
(5− c+

√
(1− c)(25− c) (36)

This means that there exist three states with zero norm at level N = 2. Note that the �rst root h1,1 = 0
results from the descendant state of the singular vector at level one.

The mathematician Kac found a general formula for the determinant of the Gram matrix at an arbitrary
level l, the Kac determinant :

detM (l) = αl
∏

r,s≥1,
rs≤l

[h− hr,s(c)]p(l−rs) (37)

where

hr,s(c) = h0 +
1

4
(rα+ + sα−)2 (38)

α± =

√
1− c±

√
25− c√

24
(39)

h0 =
1

24
(c− 1) (40)

and p(l − rs) equals the number of partitions of the integer l − rs. This exponent re�ects that with
increasing level l the multiplicity of the roots of the Kac determinant increase due to the descending
states. Moreover it shows that the �rst singular state in the reducible Verma module V (c, hr,s) occurs at
level l = rs.

The important information that we get from the Kac formula is that a representation with highest weight
h is reducible if and only if h is of the form form (38) for some non negative integers r, s. Note that the
formula for the Kac determinant is not obvious at all!

3.3 Kac Determinant for Minimal Models

With a further analysis of the formulae (38) to (40) it is possible to �nd out that if there exist two
coprime positive integers p and p′, p > p′ such that pα− + p′α+ = 0, then we can write the roots of the
Kac determinant as

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
(41)

and the central charge as

c = 1− 6(p− p′)2

pp′
(42)

in terms of these integers.

Having a closer look at the expression for the conformal weight (41) we detect some important proper-
ties:

hr,s = hr+p′,s+p (periodicity) (43)

hr,s = hp′−r,p−s (symmetry) (44)

hr,s + rs = hp′+r,p−s = hp′−r,p+s (45)

hr,s + (p′ − r)(p− s) = hr,2p−s = h2p′−r,s (46)
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3 Minimal Models

These properties contain a lot of information about the structure of the Verma module: From the formula
for the Kac determinant (37) we know that in the reducible Verma module V (c, hrs) the �rst singular
vector appears at level l = rs. But this singular vector is again the highest weight of a reducible Verma
module V (c, hp′+r,p−s), since using equation (45) its conformal weight can be rewritten as a root of
the Kac determinant. Similarly, the singular vector at level (p′ − r)(p− s) generates a further reducible
submodule V (c, hr,2p−s). Repeatedly applying the periodicities given by the equations (44)-(46) we get:

hp′+r,p−s + (p′ + r)(p− s) = h2p′−(−r),s (47)

= h−r,2p−s (48)

= hp′−r,3p−s (49)

= hr, 2p− s+ r(2p− s) (50)

Thus, the degenerate submodules V (c, hp′+r,p−s) and V (c, hr,2p−s) share again two submodules. Iter-
ating this method, we �nd an in�nite tower of submodules that contain in�tely many null vectors. By
quotienting all these null submodules out of the original Verma module V (c, hr,s), we obtain a reducible
representation. In section 4, we will see that each singular vector results in a di�erential equation that
constraints the conformal weights and the central charge appearing in the correlation function. Due to
the in�nite number of singular vectors we have so many restrictions on the set of conformal weights hr,s
such that after quotienting out the null sumbmodules a �nite set of conformal families remains. This
�nite set is closed under fusion and the number of conformal families is limited by

1 ≤ r < p′ and 1 ≤ s < p (51)

and the symmetry property (44) such that there are (p−1)(p′−1)
2 di�erent conformal families left. A

model characterized by the coprime positive integers p and p′ with a �nite number of primary �elds Φr,s
restricted by (51) with conformal weight and central charge given by (41) and (42) is called minimal

model and denoted by M(p, p′).
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4 Fusion Rules

4.1 Di�erential Equations for the Correlation Functions

How do we get from the singular vectors of a reducible Verma module to the fusion rules of the primary
�elds? In section 1 we have already seen that we can extract information about possible fusions from
the correlation functions. In the following, we will make use of the orthogonality of a singular vector to
the whole Verma module in order to derive di�erential equations for the correlators. These di�erential
equations in turn restrict the conformal weights of the �elds that are created by fusion.

One important property that we will use here is the fact that to each descendant L−n |h〉 of the highest
weight state |h〉 there corresponds a descendant Φ(−n)(w) of a primary �eld Φ(w) which is de�ned to be
the �eld appearing in the operator product expansion of the primary with the energy momentum tensor
T (z):

T (z)Φ(w) =
∑
n≥0

(z − w)n−2Φ(−n)(w) (52)

By performing an integration with deformed contours the descendant �eld Φ−n can be derived (see [1],
chapter 6):

Φ(−n)(w) =
1

2πi

∮
w

dz
1

(z − w)n−1
T (z)Φ(w) (53)

Assume that we have N primary �elds Φ1(w1), · · · ,ΦN (wN ) with conformal weights (hi)
N
i=1 and that we

are interested in the correlation function of those primaries with an arbitrary descendant �eldΦ(−n)(w).
Then we can show that the correlator of these �elds can be rewritten as a correlation function of primary
�elds, that is acted on by a di�erential operator

〈Φ(−n)(w)Φ1(w1) · · ·ΦN (wN )〉 = L−n 〈Φ(w)Φ1(w1) · · ·ΦN (wN )〉 (n ≥ 1) (54)

where the di�erential operator L−n is of the form:

L−n(w) =
∑
i

(
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

)
(55)

To derive these expressions, we �rst deform the contour around w to a contour circling around each of
the wi and pick up a minus sign due to the change of the orientation of the contour. In the next step we
plug in the OPE of the energy momentum tensor with a primary �eld. In the last step we use the residue
theorem.
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4 Fusion Rules

〈Φ(−n)(w)Φ1(w1) · · ·ΦN (wN )〉 (56)

=
1

2πi

∮
C(w)

dz
1

(z − w)n−1
〈(T (z)Φ(w))Φ1(w1) · · ·ΦN (wN )〉 (57)

=− 1

2πi

N∑
i=1

∮
C(wi)

dz
1

(z − w)n−1
〈Φ(w)Φ1(w1) · · · (T (z)Φi(wi)) · · ·ΦN (wN )〉 (58)

=− 1

2πi

N∑
i=1

∮
C(wi)

dz
1

(z − w)n−1

(
hi

(z − wi)2
+

1

z − wi
∂wi

)
〈Φ(w)Φ1(w1) · · ·ΦN (wN )〉 (59)

=−
N∑
i=1

((1− n)(wi − w)−nhi + (wi − w)1−n∂wi
) 〈Φ(w)Φ1(w1) · · ·ΦN (wN )〉 (60)

Repeating this calculation shows, that a correlator including a descendant of the form Φ(−k1,··· ,−kn)(w)
that corresponds to the state L−k1 · · ·L−kn |h〉 in the Verma module can be replaced by a correlation
function of primaries acted on by a string of di�erential operators:

〈Φ(−k1,··· ,−kn)(w)Φ1(w1) · · ·ΦN (wN )〉 = L−k1 · · · L−kn 〈Φ(w)Φ1(w1) · · ·ΦN (wN )〉 (61)

Now we want to apply this important result by inserting the �eld corresponding to some singular vector of
the reducible Verma module V (c, h0) into a correlator. So suppose that |h0 + n0〉 =

∑
Y,|Y |=n0

αY L−Y |h0〉

is a singular vector at level n0, where we used the following notation:

Y = {r1, · · · , rk} (1 ≤ r1 ≤ · · · ≤ rk) (62)

|Y | = r1 + · · ·+ rk (63)

LY = L−r1 · · ·L−rk (64)

Quotienting this singular vector out of the Verma module means that we also set the corresponding �eld
to zero. Let Φ0 be the �eld that corresponds to the highest weight state |h0〉. Of course, the correlation
function of this null�eld with a chain of primary �elds must also vanish. Using (61), the vanishing
condition for the singular vector can be converted into a di�erential equation for the correlator of the
primary �elds:

0 = 〈
∑

Y,|Y |=n0

αY Φ
(−r1,··· ,−rn)
0 (w0)Φ1(w1) · · ·ΦN (wN )〉 (65)

=
∑

Y,|Y |=n0

αY L−Y 〈Φ0(w0)Φ1(w1) · · ·ΦN (wN )〉 (66)

How does such a di�erential equation restrict the conformal weights of the primaries appearing in the
correlator? To illustrate this, we look at an example: Suppose we have a Verma module V (c, h) and
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want to �nd the singular vector at level two. A level two state can be written as a linear combination
|χ〉 = (L−2 + aL2

−1) |h〉 and to be a singular state it must ful�ll the condition

Ln |χ〉 = 0 (67)

for all positive n. But it is already enough to demand that this equation holds for n = 1 and n = 2
since the Virasoro algebra implies that |χ〉 is also annihilated by the Ln-generators for n ≥ 3. Hence we
calculate, making repeatedly use of the Virasoro algebra:

L1χ = ([L1, L−2] + a[L1, L
2
−1]) |h〉 (68)

= 3L−1 |h〉+ a(L−1[L1, L−1] + [L1, L−1]L−1) |h〉 (69)

= 3L−1 |h〉+ a(L−12L0 + (2L0)L−1) |h〉 (70)

= 3L−1 |h〉+ 2a([L0, L−1] + 2L−1L0) |h〉 (71)

= 3L−1 |h〉+ 2a(L−1 + 2hL−1) |h〉 (72)

= (3 + 2a(2h+ 1))L−1 |h〉 (73)

So in order to make expression (73) vanish, we get the condition

a = − 3

2(2h+ 1)
(74)

if h 6= 0. If h = 0, we do not have to impose any condition on a. To get a condition on the relation
between the central charge c and the conformal weight h, we apply L2 on |χ〉 and set this state equal to
zero:

L2χ = ([L2, L−2] + a[L2, L
2
−1] |h〉 (75)

= (4L0 +
c

2
) |h〉+ a(L−1[L2, L−1] + [L2, L−1]L−1) |h〉 (76)

= (4h+
c

2
) |h〉+ a(L−13L1 + (3L1)L−1) |h〉 (77)

= (4h+
c

2
) |h〉+ 3a([L1, L−1] + 2L−1L1) |h〉 (78)

= (4h+
c

2
) |h〉+ 3a(2L0) |h〉 (79)

= (2h(2 + 3a) +
c

2
) |h〉 (80)

Thus, the central charge is restricted to be of the form:

c = 2h
5− 8h

2h+ 1
(81)

which can be solved for h:

h =
1

16
(5− c±

√
(c− 1)(c− 25)) (82)

So plugging the corresponding null�eld into a correlator with a product X = Φ1(w1), · · · ,ΦN (wN ) of
primary �elds and using (54) we get a di�erential equation

(L−2 −
3

2(2h+ 1)
L2
−1) 〈Φ(w)X〉 = 0 (83)

Fusion Rules and the Verlinde Formula Page 11



4 Fusion Rules

which can be written as

[
N∑
i=1

(
1

w − wi
∂wi

+
hi

(wi − w)2

)
− 3

2(2h+ 1)
∂2w

]
〈Φ(w)X〉 = 0 (84)

inserting the expression for the di�erential operators Ln (eq. (55)). Here Φ(w) is the �eld corresponding
to the highest weight state |h〉.

In order to �nd restrictions on the conformal weights of the primaries, it is very helpful that we know
the form of correlation functions up to a constant. The two-point function does not vanish if and only if
the conformal weights of the primaries are the same:

〈Φ1(w1)Φ2(w2)〉 =

{
C12

(w1−w2)2h
, if h1 = h2 = h

0, if h1 6= h2
(85)

But plugging only one primary �eld X = Φ(w1) into (84) and then using the form of the two-point
function (85), we do not get any new information, since the di�erential equation is then just trivially
satis�ed.

So let us plug in X = Φ(w1)Φ(w2) and use the general form of the three-point function

〈Φ(w)Φ1(w1)Φ2(w2)〉 =
Ch,h1,h2

(w − w1)h+h1−h2(w1 − w2)h1+h2−h(w − w2)h+h2−h1
(86)

where C(h, h1, h2) is a constant depending on the conformal weights. As a consequence of equation (84),
we get the following constraint on the conformal weights:

h2 =
1

6
+
h

3
+ h1 ±

2

3

√
h2 + 3hh1 −

1

2
h+

3

2
h1 +

1

16
(87)

If we choose for example h = h2,1(c) and h1 = hr,s(c) then formula (87) gives us two possible solutions
for h2. Comparing the result to the formula for the roots of the Kac determinant (38) we �nd that these
solutions are precisely [hr−1,s, hr+1,s]. So we have found our �rst fusion rule! We found out that the
OPE of the �elds Φ2,1 with an arbitrary primary �eld Φr,s in a minimal model may only contain the
�elds Φr+1,s and Φr−1,s. We use the following notation to express this fusion rule:

[Φ2,1]× [Φr,s] = [Φr−1,s] + [Φr+1,s] (88)

Here [Φ(r,s)] denotes the conformal family consisting of Φ(r,s) and its descendants. The right-hand side
of equation (88) says that at most those two conformal families appear in the OPE but their coe�cients
could also be zero.

By generalising the same method for higher level singular vectors, the closed algebra for all conformal
families in a minimal model can be found:

[Φr1,s1 ]× [Φr2,s2 ] =

k=r1+r2−1∑
k=1+|r1−r2|

k+r1+r2=1mod2

l=s1+s2−1∑
l=1+|s1−s2|

l+s1+s2=1mod2

[Φk,l] (89)
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5 The Fusion Algebra

If we are interested in the �elds that are possibly created by the fusion of two primary �elds Φhi
and

Φhj , we can look at the OPE of these �elds:

Φhi(z)Φhj (w) ∼
∑
h

Chk

hi,hj
Φhk

(w)(z − w)hk−hi−hj + ... (90)

In order to extract the relevant information we can use a notation that is similar to the one that we used
to express the fusion rules for the minimal model (89). Therefore, we introduce the fusion numbers

N k
ij =

{
0, Chk

hi,hj
= 0

1, otherwise
(91)

which indicate if a given �eld Φhk
appears in the OPE. The fusion numbers N k

ij count the number of
independent possibilities to obtain a �eld Φk by fusing two �elds Φi and Φj . So generally they can also
take larger values than 1 but they do not do so in the case of minimal models.

The fusion algebra which is de�ned as

[Φi]× [Φj ] =
∑
k

N k
ij [Φk] (92)

indicates, which conformal families appear in the OPE of a �eld of the conformal family [Φi] and a member
of the conformal family [Φj ] without telling the precise form of the OPE. Due to this interpretation, the
fusion numbers ful�ll the symmetry N k

ij = N k
ji. Hence the fusion algebra is commutative. The identity

element of the algebra is given by Φ0, the vacuum �eld, so Nk
i0 = δik. Moreover, due to the associativity

of the OPE of primary �elds, the fusion algebra is associative. This can be turned into an equation
containg the fusion numbers: Combining

Φi × (Φj × Φk) = Φi ×
∑
l

N l
jkΦl (93)

=
∑
l,m

N l
jkNm

il Φm (94)

and

(Φi × Φj)× Φk) =
∑
l

N l
ijΦl × Φk (95)

=
∑
l,m

N l
ijNm

lk Φm (96)

we �nd: ∑
l

N l
jkNm

il =
∑
l

N l
ijNm

lk (97)

If we are looking at theories with a �nite number of �elds, it makes sense do de�ne matrices Ni with
entries given by the fusion numbers N k

ij :

(Ni)j,k := N k
ij (98)
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5 The Fusion Algebra

Then the condition (97) obtained from the associativity of the fusion algebra can be rewritten as a
commuting condition for the matricies:

NiNk = NkN (99)

5.1 The Verlinde Formula

Since the fusion matrices commute and are furthermore normal which we will not show here, we can
diagonalize them simultaneously: Let us denote the diagonalizing matrix by S and the eigenvalues of Ni
by λ

(l)
i . Then:

N k
ij = (SDS−1) (100)

=
∑
lm

Sjlλ
(l)
i δ

m
l (S(−1))mk (101)

=
∑
l

Sjlλ
(l)
i (S−1)lk (102)

Additionally, we can calculate using Nk
i0 = δik:

Sin =
∑

kNk
i0Skn (103)

=
∑
lk

S0lλ
(l)
i (S(−1))lkSkn (104)

=
∑
l

S0lλ
(l)
i δln (105)

= S0nλ
(n)
i (106)

Hence, inserting the eigenvalues

λ
(l)
i =

Sil
S0l

(107)

into (102) yields an expression for the fusion numbers in terms of the entries of the diagonalization matrix
S:

N k
ij =

∑
l

SjlSil(S
−1)lk

S0l
(108)

How do we interpret this formula? Without knowing how S looks like, what we did is just a simple
calculation. It needs great mathematicians to �nd a deeper meaning of a super�cial accumulation of
letters and indices. In this case, it was Erik Verlinde who succeeded in giving an interpretation and his
name to equation (108): He stated that the modular transformation S : τ → − 1

τ diagonalizes the fusion
rules. In this context, equation (108) is called Verlinde formula and is one of the most important results
of conformal �eld theory.
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5 The Fusion Algebra

Since proving the Verlinde formula is very demanding, we will just try to understand its deep meaning
and consequences. The �rst question we might ask ourselves is: What is the modular transformation
S : τ → − 1

τ ? This map describes an inversion in the unit circle, followed by ra re�ection about Rez = 0
and is one of the two generators of the modular group which in turn describes the equivalence classes of
two-dimensional tori.

To understand the meaning of the matrix elements of this modular transformation S that appear in the
Verlinde formula we have to be aware of a further important result of conformal �eld theory: Under
the action of the modular transformation S the characters of the representations of the Virasoro algebra
transform among themselves.

The character of a Verma module V (c, h) with conformal weight h and central charge c is de�ned as

χc,h(τ) = Tr qL0− c
24 (q := e2πiτ ) (109)

Since any state in the Verma module is an eigenstate of L0 with an eigenvalue of the form h+N , we can
also write the character as

χc,h(τ) = qh−
c
24

∞∑
N=0

p(N)qN (110)

where the function p(N) counts the number of states at level N .

Now it is not obvious but true that in the case of rational conformal �eld theories the action of the
modular S-matrix can be written in terms of a linear combination of the characters themselves. The
numbers appearing on the right-hand side of the Verlinde formula (108) are the entries of the S-matrix
in the basis of the characters respectively the entries of its inverse S−1! Especially for minimal models
we can write:

χr,s(−
1

τ
) =

∑
(ρ,σ)∈Ep,p′

Srs,ρσχρ,σ(τ) (111)

Here Ep,p′ is the set of all irreducible highest weight representations, i.e. it consists of (p−1)(p′−1)
2 ele-

ments.

The coe�cients Sr,s can be calculated to be:

Srs;ρσ = 2

√
2

pp′
(−1)1+sρ+rσ sin (π

p

p′
rρ) sin (π

p′

p
sρ) (112)

A derivation of this can be found in [1], chapter 10. Note that the numbers Srs,ρσ are real and symmetric
and that the S-matrix is moreover unitary. Hence the fusion numbers Nkl

rs,mn for minimal models can be
computed from the S-matrix by the Verlinde formula:

N kl
rs,mn =

∑
(i,j)∈Ep,p′

Srs,ijSmn,ijSij,kl
S11,ij

(113)
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In the case of minimal models the identity element of the fusion algebra is given by Φ11 since the vacuum
state |0〉 corresponds to the highest weight h1,1 = 0 (see eq.(41)). This explains, why S0l in the Verlinde
formula (108) is replaced by S11,ij in the version for minimal models (113).

It is very astonishing that the combination of Sij ∈ R on the right-hand side of (113) always sums up to
either 0 or 1! So the S-matrix is greatly restricted by this formula! The outstanding importance of the
Verlinde formula can be seen in the fact that it combines local as well as global properties in conformal
�eld theory: The fusion numbers Nk

ij contain information about the local OPE of two �elds whereas
the modular transformation S is related to the global modular invariance of partition functions on the
torus!

6 Example: The Ising Model

Now we want to illustrate the basic theory of minimal models, fusion rules and the Verlinde formula that
we have learnt in the preceding chapters. Therefore we look at the simple example of the two-dimensional
Ising model.

The conformally invariant action of the Ising model at the critical point of its second-order phase transition
yields a central charge of c = 1

2 . In the holomorphic part of the theory we have three conformal families
arising from three di�erent primary �elds: These are the vacuum �eld 1 (h1 = 0), the spin �eld σ
(hσ = 1

16 ) and the energy �eld ε (hε = 1
2 ). We can identify this model with the minimal model M(4, 3)

characterized by p = 4 and p′ = 3. Plugging in these values into the expressions for the conformal weights
hr,s, (1 ≤ r < 3; 1 ≤ s < 4) and the central charge c

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
(114)

c = 1− 6(p− p′)2

pp′
(115)

leads exactly to the given values for the Ising model. We can draw a conformal grid which shows the
conformal weights in dependance on r and s and which is invariant by a rotation by π around its center
due to the symmetry hr,s = hp′−r,p−s:

r = 1 r = 2

s = 1 0 1
2

s = 2 1
16

1
16

s = 3 1
2 0
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We identify the following �elds:

1 ⇔ Φ1 := Φ1,1 (116)

ε ⇔ Φ2 := Φ2,1 (117)

σ ⇔ Φ3 := Φ2,2 (118)

Since the Kac-formula predicts the �rst singular vector of a representation with highest weight hr,s at
level rs, we can conclude that both the energy and the spin primary �elds have singular vectors at level
N = 2 while the vacuum �eld has one at level N = 1. The singular vectors at level N = 2 are exactly
the ones that we calculated in section 4.1: We can certify this statement by plugging the central charge
c = 1

2 into equation (82) which results in h = 1
2 and h = 1

16 .

What are the fusion rules of the primary �elds? We want to apply the Verlinde formula and for this
reason have to �nd the modular S-matrix in the basis of the characters. The characters of the three
di�erent representations are given by:

χ0(τ) =
1

2

(√
Θ3(τ)

η(τ)
+

√
Θ4(τ)

η(τ)

)
(119)

χ 1
2
(τ) =

1

2

(√
Θ3(τ)

η(τ)
−

√
Θ4(τ)

η(τ)

)
(120)

χ 1
16

(τ) =
1√
2

√
Θ2(τ)

η(τ)
(121)

(122)

where the Theta-functions and the η-function are de�ned as (τ ∈ H; q = e2πiτ ):

Θ2(τ) = 2q
1
8

∞∏
n=1

(1− qn)(1 + qn)2 (123)

Θ3(τ) =

∞∏
n=1

(1− qn)(1 + qn−
1
2 )2 (124)

Θ4(τ) =

∞∏
n=1

(1− qn)(1− qn− 1
2 )2 (125)

η(τ) = q
1
24

∞∏
n=1

(1− qn) (126)

For a derivation of the characters have a look at [5] (chapter 6).

Knowing the following modular properties of the Theta- and η-functions

Θ2(−1

τ
) =
√
−iτΘ4(τ) (127)

Θ3(−1

τ
) =
√
−iτΘ3(τ) (128)

Θ4(−1

τ
) =
√
−iτΘ2(τ) (129)

η(−1

τ
) =
√
−iτη(τ) (130)
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it is easy to calculate the action of the modular transformation S : τ → − 1
τ on the characters of the

primary �elds:

χ0(−1

τ
) =

1

2

(√
Θ3(τ)

η(τ)
+

√
Θ2(τ)

η(τ)

)
(131)

=
1

2

(√
Θ2(τ)

η(τ)
+

1

2

(√
Θ3(τ)

η(τ)
+

√
Θ4(τ)

η(τ)

)
+

1

2

(√
Θ3(τ)

η(τ)
−

√
Θ4(τ)

η(τ)

))
(132)

=
1

2
(χ0(τ) + χ 1

2
(τ) +

√
2χ 1

16
(τ)) (133)

(134)

χ 1
2
(−1

τ
) =

1

2
(χ0(τ) + χ 1

2
(τ)−

√
2χ 1

16
(τ)) (135)

(136)

χ 1
16

(−1

τ
) =

1√
2

(χ0(τ)− χ 1
2
(τ)) (137)

So from equations (135) -(137) we can conclude, that in the basis of the characters, the S-matrix is given
by:

S =


1
2

1
2

1√
2

1
2

1
2 − 1√

2
1√
2
− 1√

2
0

 (138)

Note that this matrix is real, unitary and symmetric, hence S−1 = S. In the next step, we calculate the
fusion matrices N0 (corresponding to the vacuum �eld 1), N1 (→ ε) and N2 (→ σ). To do so, we make
use of the Verlinde formula:

N k
ij =

2∑
l=0

SjlSil(S
−1)lk

S0l
(139)

For example, we get:

(N0)11 = N 1
01 (140)

=
S10S00(S−1)01

S00
+
S11S01(S−1)11

S01
+
S12S02(S−1)21

S02
(141)

=
1

4
+

1

4
+

1

2
(142)

= 1 (143)
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Magically, all the entries of the three fusion matrices are either 1 or 0! It is left up to the reader to check
that these matrices are in deed given by

N0 = N1 =

1 0 0
0 1 0
0 0 1

 (144)

(145)

N1 = Nε =

0 1 0
1 0 0
0 0 1

 (146)

(147)

N2 = Nσ =

0 0 1
0 0 1
1 1 0

 (148)

and that the S-matrix actually diagonalizes them.

Finally we can read o� the fusion rules for the Ising model from the fusion matrices using the fusion
algebra [Φi]× [Φj ] =

∑
k

N k
ij [Φk]:

ε× σ = σ (149)

σ × σ = 1+ ε (150)

ε× ε = 1 (151)

From this simple example we can conclude that the Verlinde formula is an important tool for the calcu-
lation of fusion rules!
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