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Abstract

The concept of quantum mechanical entropy as a measure of entanglement of mixed
states is introduced in order to investigate its behaviour in a conformal field theory con-
sidering a very simple model. The final result is nice in the sense, that it agrees with
intuitive demands towards the outcome. Upon reading this report one can get an insight
into the topic on a relatively basic level. The reader can use this as a short introduction
to entanglement entropy and an exemplary calculation of one.
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1 Preliminaries

This report requires the reader to have basic knowledge about quantum mechanics. Especially
the bra-ket notation will be made use of and understanding of it will be seen as a prerequisite.
Chapter one serves to introduce a more general notion of physical systems, as well as to un-
derstand some mathematical tools. Only finite dimensional Hilbert spaces will be considered
in this section.

1.1 Density operator formalism

Let us first introduce a special kind of operator, along with some fundamental properties.

Definition 1 (density operator)

Let ρ be an operator on a Hilbert space H.
If ρ is positive and tr(ρ) = 1, then ρ is a density operator.

Definition 2 (pure density operator)

Let ρ be a density operator on a Hilbert space H.
ρ is pure :⇔ ∃ |φ〉 ∈ H, such that ρ = |φ〉 〈φ|.
Otherwise ρ is mixed.

Definition 3 (fully mixed density operator)

Let ρ be a density operator on a Hilbert space H.
ρ is fully mixed :⇔ ρ = 1

dimH · 1H

We will come to understand that “mixed” and “fully mixed” are related in the intuitive
way, that is, “fully mixed” corresponds to not being pure in a maximal way. Also we want to
make a lot of use of the following

Theorem 1 (Spectral Theorem)

Let H be a Hilbert space and O ∈ End(H) normal.
⇒ ∃ an orthonormal basis {|i〉}i, such that O =

∑
i λi |i〉 〈i| where λi ∈ C is the i-th

eigenvalue, and {|i〉}i is an orthonormal basis of eigenvectors of O.

Since positive operators are hermitian, and hermitian operators are normal, we find that
Theorem 1 holds for density operators.

We found, that any state |φ〉 ∈ H corresponds to a pure density operator |φ〉 〈φ| ∈ End(H).
Hence density operators represent objects, for which states (represented by kets) are merely
a special case. Let us also already note, that while states were only defined up to a phase fac-
tor, which does not change any physically relevant quantity, density operators cancel out this
ambiguity by construction, as one can easily read off the definition of a pure state. Once we
know how physically relevant quantities translate into density operator formalism we might
be inclined to state quantum physics in terms of density operators and ask the question, if
they add to the theory. That is, if there are physical systems, which can not be described by
states, but rather by density operators.
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In this spirit, let us introduce calculation rules.

Definition 4 (expectation value for a density operator)

Let A, ρ ∈ End(H), where H is a Hilbert space and ρ is a density operator.
We define the expectation value 〈A〉ρ := tr(ρA)

Let us check, if we recover the definition of the expectation value for a ket in the pure
limit.

tr(ρA)
pure
=
limit

tr(|φ〉 〈φ|A)

≡
∑
i

〈i |φ〉 〈φ|A|i〉

lin.
= 〈φ|A

∑
i

|i〉 〈i|φ〉

id.
= 〈φ|A|φ〉.
≡ 〈A〉φ

(1)

To get a feeling for the correspondence between kets and density operators let us consider
the following

Example 1 (superposition in a 2-d Hilbert-space)

Let B = {|0〉 , |1〉} be an orthonormal basis. Consider:

|ψ±〉 :=
|0〉 ± |1〉√

2
⇒ ρψ ≡ |ψ〉 〈ψ| ∼=

B

(
1
2 ±1

2
±1

2
1
2

)
. (2)

1.2 Mixed states

This section is about states that are not pure, that is, states that can not be written as a ket.

By combining Theorem 1 with the Definition 1 of a density operator ρ, we find that

ρ =
∑
i

λi |i〉 〈i| , (3)

where λi ≥ 0, because ρ is positive, and
∑

i λi = 1, since tr(ρ) = 1. In other words ρ is a
convex combination of {|i〉}i. It is obvious by the definition, that a pure state corresponds to
a convex combination where one λi = 1 and the rest is zero. In other words a density operator
is pure if and only if it is of rank one. Now we can understand why the Definition 3 of a fully
mixed density operator makes sense. If we compare density operators in their diagonal form,
then being of the form 1

dimH1H is like being the furthest away from having rank one.
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Let us now answer the question whether non-pure states are of any interest with a very
prominent

Example 2 (time independent Hamiltonian in thermal equilibrium)

Here we have to consider a probability distribution (⇒ convex combination) of energy

eigenstates. The probabilistic weights are given by pn = e−βEn
Z , where H is the cor-

responding Hamiltonian, β is the inverse temperature and Z =
∑

n pn is the partition
function. Hence

ρthermal =
∑
n

e−βEn

Z
|n〉 〈n| ,

and in general this sum will not consist of one term only.

Before we end this section let us quickly consider another deceiving

Example 3 (fully mixed density operator in 2-d)

For an orthonormal basis {|i〉}i=0,1 of a two dimensional Hilbert space H consider

ρ :=
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| ∼=

B

(
1
2 0
0 1

2

)
.

Now one is tempted to instantly read off a simple superposition and be wrong. We have
seen a superposition in Example 1 and found a very different result. The meaning of the
weights of the decomposition of a mixed state can differ, but the most common one is
the one we witnessed in Example 2 as probabilistic weights. Hence the density operator
considered here rather corresponds to probabilities 1

2 of encountering either one or the
other state.

1.3 Tensor products

As we will have great interest in compositions of systems, let us quickly understand the
mathematical terms in which these are stated. In classical mechanics the composition of two
systems is given by the

Definition 5 (Cartesian product)

Let HA & HB be Hilbert spaces.
Let dim(HA) = m & dim(HB) = n.

Then
HA ×HB := {(x, y) | x ∈ HA, y ∈ HB}, (4)

which is the set of all ordered pairs, is called the cartesian product of HA & HB.

It is straight forward to write down a basis BA×B of HA × HB. Suppose BA is a basis
of HA, and BB is a basis of HB, then BA×B := (BA, 0) ∪ (0,BB) is a basis of HA×B. Hence
dim(HA ×HB) = m+ n.

4



This marks a major difference between classical mechanics and quantum mechanics, be-
cause in the latter a composition of systems is given by the

Definition 6 (Tensor product)

Let HA & HB be Hilbert spaces.
Let dim(HA) = m & dim(HB) = n.
Let BA := {a1, a2, ..., am} be a basis of HA.
Let BB := {b1, b2, ..., bn} be a basis of HB.

Then

HA ⊗HB := the Hilbert space, whose basis is {(ai, bj) | ai ∈ BA, bj ∈ BB} (5)

Since the number of basis elements defines the dimension of a vector space, the dimension
of a tensor product space is the number of possible combinations of basis elements from the
original vector spaces. Hence here we find dim(HA ⊗HB) = m · n.

We see, that while in classical mechanics the composition of two systems seems to be
describable by the sum of information, quantum mechanics postulates a multiplicative growth
of necessary information for a complete description of a system. Even more surprising will
be the upcoming finding, that possession of all information about a tensor product space can
imply the absence of information about parts of the system.

1.4 Partial trace

Definition 7 (Partial trace)

Let H be a Hilbert space, such that H = HA ⊗HB for Hilbert spaces HA & HB.
The partial trace trB is the unique map, that for any F ∈ End(H) given by F = FA⊗FB,
where FA ∈ End(HA) & FB ∈ End(HB) maps

trB : End(H)→ End(HA)

F = FA ⊗ FB 7→ tr(FB) · FA.

The following properties are easy to proof and provide a better understanding of this
mapping.

Let HA, HB, HC be Hilbert spaces, SAB ∈ HA ⊗ HB, SABC ∈ HA ⊗ HB ⊗ HC and
TA ∈ End(HA). Then:

• The partial trace is linear.

• trAB(SABC) = trA(trB(SABC)) = trB(trA(SABC))

• trB(SAB(TA ⊗ 1B)) = trB(SAB)TA

• trB((TA ⊗ 1B)SAB) = TAtrB(SAB)
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A feature of the partial trace and tensor products in general already looks through. It is,
that tensor products stay tensor products, be it under mappings or taking traces. To put in
symbols and make clear what was stated in words, consider the following

Example 4

Let ρABC , ρA, ρB, ρC be density operators such that ρABC = ρA ⊗ ρB ⊗ ρC .
Let T ⊗ V ⊗ 1 be an exemplary mapping.
Then:

1. trB(ρABC) = trB(ρA ⊗ ρB ⊗ ρC) = ρA ⊗ ρC

2. (T ⊗ V ⊗ 1)(ρABC) = (T ⊗ V ⊗ 1)(ρA ⊗ ρB ⊗ ρC) = TρA ⊗ V ρB ⊗ ρC

Let us also find out how nice an element of a tensor product space can look in an educated
choice of basis.

Theorem 2 (Schmidt decomposition)

Let HA & HB be Hilbert spaces of dimensions n and m respectively.
Then:
∀ |ψ〉 ∈ HA ⊗HB ∃ orthonormal sets {|i〉A}i ⊂ HA & {|k〉B}k ⊂ HB, such that

|ψ〉 =

min{n,m}∑
i=1

γi |i〉A ⊗ |i〉B ,

where the γi are non-negative and, as a set, uniquely determined by |ψ〉.
|i〉A & |k〉B are eigenstates of ρA := trB(|ψ〉 〈ψ|) & ρB := trA(|ψ〉 〈ψ|) respectively and γ2

i

are the corresponding eigenvalues.

Let us quickly reproduce the latter part of the theorem and emphasize the statement, that
ρA & ρB have the same eigenvalues:
Let

|ψ〉 =

min{n,m}∑
i=1

γi |i〉A ⊗ |i〉B

like in the theorem,

⇒ ρAB := |ψ〉 〈ψ| =
min{n,m}∑

i=1

min{n,m}∑
k=1

γiγ
†
k |i〉A 〈k|A ⊗ |i〉B 〈k|B
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⇒ ρA := trB(ρAB)

≡
m∑
j=1

〈j|B ρAB |j〉B

=
m∑
j=1

〈j|B

(∑
i

∑
k

γiγ
†
k |i〉A 〈k|A ⊗ |i〉B 〈k|B

)
|j〉B

=

m∑
j=1

∑
i

∑
k

γiγ
†
k |i〉A 〈k|A · 〈j|B |i〉B 〈k|B |j〉B

=
m∑
j=1

∑
i

∑
k

γiγ
†
k |i〉A 〈k|A · δjiδkj

=

min{m,n}∑
j=1

γjγ
†
j |j〉A 〈j|A

γi∈R
=

min{m,n}∑
j=1

γ2
j |j〉A 〈j|A

(6)

Remembering (3) and identifying γ2
i = λi, as well as λi as the ith eigenvalue we just have

to follow through almost the same calculation and find

ρB := trA(ρAB) = ... =

min{m,n}∑
j=1

γ2
j |j〉B 〈j|B , (7)

which proves the claim, that ρA & ρB share the same set of eigenvalues.
A density matrix produced by tracing out one of the spaces defining the product space we call
reduced density matrix. Hence we just found, that for any tensor product Hilbert space, the
reduced density operators share the same set of eigenvalues. So suppose someone is interested
in these eigenvalues, as we will be considering entanglement, then it does not matter the
eigenvalues of which of the reduced density operators one determines.

This ends section one and hopefully set up the reader to comprehend section two and
subsequently, under the supply of knowledge about conformal field theory, as well as some
quantum field theory, which are seen as a premise in the context of the seminar, and can be
learned about by considering previous talks of the seminar, section three.
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2 Entanglement

This section is about the concept, or phenomenon of entanglement. Let us first understand
the idea by considering an example, and then introduce the full formality.

Example 5 (Totally anti-correlated state in a bipartite system)

Let HA & HB be 2-dimensional Hilbert spaces.
Let {|0〉A , |1〉A} & {|0〉B , |1〉B} be orthonormal bases.
Suppose HA is located in Alice laboratory in Adelaide, and HB is located at Bobs labo-
ratory in Berlin.
Consider a state

HA ⊗HB 3 |ψ〉 =
1√
2

(|1〉A ⊗ |0〉B + |0〉A ⊗ |1〉B) .

If the state is left alone, neither Alice nor Bob can tell what she or he would measure in
the given basis. But suppose Alice undertakes a measurement in the given basis. If she
measures a “1”, then the state collapses to |1〉A ⊗ |0〉B and Bob is bound to measure “0”,
and vice versa in the other case! This is a prime example for what is called entanglement.
Alice only has access to a reduced density operator corresponding to a mixed state. So
the state Alice has access to is called entangled with the state Bob has access to.

2.1 Definitions and properties

Now knowing which phenomenon we want to give a name motivates the following

Definition 8 (Separable / entangled)

Let H, HA & HB be Hilbert spaces, such that H = HA ⊗HB.
Let ρ be a density operator on H.
ρ is separable :⇔ ∃ sets of density operators {ρiA}i ⊂ End(HA) & {ρiB}i ⊂ End(HB), such
that ρ is the convex combination

ρ =
∑
i

piρ
i
A ⊗ ρiB.

Otherwise ρ is entangled.

The definition provides exactly what we want. If a state is separable by the definition just
stated, then any subsystem can project its reduced density operator on any state it wishes,
without influencing the other reduced density operator. Once one can not separate the den-
sity operator like in the definition any more, this behaviour is lost and the density operator
becomes “entangled”.

For the special case of a pure density operator ρ = |ψ〉 〈ψ| ∈ End(HA⊗HB) the definition
reduces to the statement, that |ψ〉 is separable ⇔ ∃ |ψ〉A ∈ HA & |ψ〉B ∈ HB, such that
|ψ〉 = |ψ〉A ⊗ |ψ〉B. Otherwise, as before, |ψ〉 is entangled.
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This allows us to understand, that for the pure density operator ρAB := |ψAB〉 〈ψAB| the
following statements are equivalent:

1. |ψAB〉 〈ψAB| is separable

2. ∃ |ψA〉 , |ψB〉 such that |ψAB〉 = |ψA〉 ⊗ |ψB〉

3. rank (trB(ρAB)) = 1

4. rank (trA(ρAB)) = 1

5. ∃ only one non-vanishing Schmidt-coefficient of either trA(ρAB) or trB(ρAB)

2.2 Entropy

We now learned, that the amount of entanglement goes with the mixedness of either reduced
density operator. But already then it turned out to be a rather hazy business telling how
mixed a state actually is. Hence our interest lies in finding a measure of entanglement. To do
so we will first introduce and then investigate the

Definition 9 (Von Neumann entropy)

Let ρ be a density operator.
Then

S(ρ) := −tr(ρ · ln(ρ))

is called the von Neumann entropy of ρ.

If one writes such a ρ in terms of its eigenvectors |i〉 and eigenvalues ηi according to
Theorem 1 (Spectral theorem) like

ρ =
∑
i

ηi |i〉 〈i| ,

then the entropy turns out to be

S(ρ) = −
∑
i

ηi · ln(ηi). (8)

To see how the usefulness of the entropy as a measure of entanglement turns out to be,
let us come back to the previously considered Example 5, of a totally anti-correlated state in
a bipartite system.

Example 6

Reconsider

HA ⊗HB 3 |ψ〉 =
1√
2

(|1〉A ⊗ |0〉B + |0〉A ⊗ |1〉B) .

⇒ ρAB : = |ψ〉 〈ψ|

=
1

2
(|0〉 〈0| ⊗ |1〉 〈1|+ |0〉 〈1| ⊗ |1〉 〈0|+ |1〉 〈0| ⊗ |0〉 〈1|+ |1〉 〈1| ⊗ |0〉 〈0|)
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where indices were dropped for visibility.

⇒ ρA := trB(ρAB) =
1

2
(|0〉 〈0|+ |1〉 〈1|),

which is fully mixed.
Now if the entropy is to measure entanglement, it better be big, because this is a totally
anti-correlated state.

S(ρA) ≡ −tr(1

2
(|0〉 〈0|+ |1〉 〈1|) · ln(

1

2
(|0〉 〈0|+ |1〉 〈1|))) = −2 · 1

2
ln

(
1

2

)
= ln(2)

it turns out, that for an n-dimensional Hilbert space H and a density operator ρ on it,
the maximal value the entropy can actually become, is ln(n).
Before moving on, lets get some exemplary insight in the other extreme.

Example 7 (Pure product-state)

Consider a state

|ψAB〉 = |ψA〉 ⊗ |ψB〉 .
⇒ρAB := |ψAB〉 〈ψAB| = |ψA〉 〈ψA| ⊗ |ψB〉 〈ψB| .
⇒ρA := trB(ρAB) = |ψA〉 〈ψA| ,which is pure.

⇒S(ρA) = ln(1) = 0

To sum up our findings:

1. Pure states ⇒ S(ρ) = 0

2. Mixed states ⇒ S(ρ) > 0

3. Fully mixed states ⇒ S(ρ) = ln(dim(H))

Most commonly the entropy of a quantum mechanical state is interpreted as the amount
of missing information. If one undertakes a measurement of a pure state in the right basis,
one can beforehand know what is the outcome with one hundred percent certainty. However,
for mixed states one can never choose a basis, such that the outcome is pre-decided. In other
words, there is information missing about that state, meaning one can not tell how it will
interact with the rest of the universe. In this context it is evident why for example a fully
mixed state has to correspond to a maximum in a measure of entanglement. In a fully mixed
state there is not even a tendency as to what will be the outcome of a measurement. As a
consequence one could not know less about such a state, or, equivalently, there could not be
more information missing.

The von Neumann entropy will be what we are interested in. Nevertheless there is a more
general definition for an entropy, which together with a trick can ease calculations of entropies
a lot.
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Definition 10 (Rényi entropy)

Let ρ be a density operator.
Let α ≥ 0.
Then

Sα(ρ) :=
1

1− α
ln (tr (ρα))

is called the Rényi entropy of ρ.

For the connection between the von Neumann entropy and the Rényi entropy consider

Claim 1

Let ρ be a density operator.
Then

lim
α→1

Sα(ρ) = S(ρ).

Proof.

lim
α→1

Sα(ρ) ≡ lim
α→1

1

1− α
log(tr(ρα))

= lim
α→1

1

1− α
log

(∑
i

ηαi

)

= lim
α→1

log (
∑

i η
α
i ) (1 + α)

(1− α)(1 + α)

l′H
= lim

α→1

log(
∑

i η
α
i ) + (1 + α)

∑
i log(ηi)η

α
i∑

i η
α
i

−2α

=
2
∑

i log(ηi)ηi
−2

= −
∑
i

log(ηi)ηi

≡ S(ρ) �

(9)

Also there is

Claim 2

Let ρ be a density operator.
Then

− lim
α→1

∂

∂α
tr (ρα) = S(ρ). (10)

Proof.

− lim
α→1

∂

∂α
tr (ρα) = − lim

α→1

∂

∂α

(∑
i

ηαi

)
= − lim

α→1

∑
i

log(ηi)η
α
i

= −
∑
i

log(ηi)ηi

≡ S(ρ) �

(11)
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3 Entanglement entropy in Conformal Field Theory

In this section we want to conduct a seemingly easy task, to calculate an entanglement en-
tropy in a CFT for a very simple model.

The task:

• Assume the universe U is in the ground state and consists of one time dimension, and
one space dimension.

• Consider an observer with limited access to the universe, that is, in general to a non-
trivial density operator.

• The aim is to measure the correlation of the accessible subsystem to the rest of the
universe.

• This will be done by measuring the entropy of the accessible region R1 relative to the
rest of the universe R2.

The model:

• The space dimension is an interval U = [0,Λ) with periodic boundary conditions iden-
tifying 0 = Λ.

• Λ is the infra red cut off.

• The accessible region for the observer in question is given by [0,Σ).

• A sharp distinction between being inside or outside the accessible region is impossible
and leads to infinities in the correlation. Hence we introduce a regulating parameter ε
producing intervals around the edges of the system which we will not consider for the
calculation. Later we will see what happens when we make ε small.

• Introduce a complex variable ζ = σ + iτ , where σ is the space coordinate, and τ is the
time coordinate.

Now introduce a complete set of commuting observables ξin & ξout. These are supposed
to be a choice, such that the ξin are localized inside R1, and the ξout are localized inside R2.
As a consequence the density operator of the universe ρU can be expressed in terms of their
eigenvalues.

ρU = ρU (ξ1
in, ξ

1
out; ξ

2
in, ξ

2
out). (12)

Hence the reduced density operator for the accessible region ρin is given by

ρin(ξ1
in; ξ2

in) =
∑
ξout

ρU (ξ1
in, ξout; ξ

2
in, ξout). (13)

The question one asks now may be if such a choice of observables exists in the first place. The
answer is yes, and it is also the obvious answer to give. One just chooses the field operators
Φ(σ) provided by the field theory, as these are local functions only depending on position.
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Next we introduce two conformal coordinate transformations. These have unitary repre-
sentations and hence leave traces alone. As a consequence they will not influence the result,
as we will consider a trace in the end.

ω := −
sin
(
π
Λ(ζ − Σ)

)
sin
(
π
Λζ
) (14)

z :=
1

κ
ln(ω) (15)

To learn how the domains transform under these mappings just consider Figure 1. Also
L := 2

κ ln
(

Σ
ε

)
. κ is an auxiliary parameter. We also impose periodic boundary conditions in

the L-direction, making the universe a cylinder.
Now that we consider the domain of the z-coordinate as in the bottom of Figure 1, let us call
the field at Ri X, and the field at R2 Y . As the ground state is in thermal equilibrium, an
entry of the density operator of the accessible part of the universe takes the following form:

ΨXY ∝ 〈Y | e−βH |X〉 (16)

Path integral formalism in imaginary times provides

ΨXY ∝
∫
Dφe−S(φ) (17)

The density matrix describing the subsystem on R1 after tracing out variables on R2 is

ρXX′ ∝
∫
DYΨXY ΨY X′ (18)

But in the light of the path integrals of the ΨAB, this is just integrating over all paths going
from X to Y , all paths going from Y to X ′, while making sure they meet at Y by integrating
it out. In other words this is like gluing two of the strips like in the bottom of Figure 1
together and making it one strip of twice the length π

κ →
2π
κ . Let us introduce normalization.

ρXX′ =
1

Z(1)

∫
2π
κ
Strip

Dφe−S(φ) (19)

⇒ ρaXX′ =
1

Z(1)a

∫
2πa
κ
Strip

Dφe−S(φ) (20)

Taking the trace now corresponds to identifying X ′ = X, that is, gluing the ends of the
cylinder together and making it a torus. To calculate the entropy we want to use Claim 2.
We will call tr(ρaXX′) =

∫
2πa
κ
StripDXρ

a
XX =: Z(a). That also explains why the normalizer is

Z(1). Then

S =

(
− d

da

Z(a)

Z(1)a

)
a=1

=

(
1− a d

da

)
a=1

ln(Z(a)). (21)

How to calculate partition functions on a torus in a CFT has been explained in this seminar
before. In analogy to Stefan Hubers talk we now introduce q := e2πiτ , where τ = i2πa

κL . We
then perform a modular transformation τ 7→ − 1

τ , which leaves the partition function invariant.
This then implies q = e−κL = q†. Applying these transformations to (19) we find

S =

(
1 + lnq

∂

∂lnq
+ lnq†

∂

∂lnq†

)
ln(Z(1)) (22)
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For a CFT with central extensions c & c† on a torus we know

Z(τ, τ †) = −c+ c†

24
lnq + ln(tr(qL0+L†0)) (23)

The argument of the logarithm of the second term can be expanded in powers of q around 1,
but if we plug in for L we find that q will be small, when ε is small. On the other hand the
first term grows, as ε becomes small. Hence we will neglect the second term to end up with
a rather beautiful result:

S =
c+ c†

6
ln

(
Σ

ε

)
(24)

The equation tells us, that as the “walls”, embodied by ε, get thinner, and the system,
embodied by Σ, gets bigger, the accessible region of the universe gets correlated to the rest
of the universe stronger.
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Figure 1: From the top the the bottom: The universe in the original complex coordinates and
after each of the coordinate transformations.
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