Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

## **Classical String Theory**

Proseminar in Theoretical Physics

**David Reutter** 

### ETH Zürich April 15, 2013



## Outline

#### 1. Introduction

1.1. Historical Overview

#### 1.2. The Theory

#### 2. The Relativistic String

- 2.1. Set Up
- 2.2. The Relativistic Point Particle
- 2.3. The General p-Brane Action
- 2.4. The Nambu-Goto Action
- 2.5. Open and Closed Strings
- 2.6. The Polyakov Action
- 2.7. The Equations of Motion
- 2.8. Equivalence of P and NG action
- 2.9. Symmetries of the Action

#### 3. Wave Equations and Solutions

- 3.1. Conformal Gauge & Weyl Scaling
- 3.2. Equations of Motions & Boundary
- 3.3. Closed String Solution
- 3.4. Open String Solution
- 3.5. Virasoro Constraints
- 3.6. The Witt Algebra
- Summary

### 1.1. Historical Overview

#### 1969

Nambu, Nielsen and Susskind propose a model for the interaction of quarks - quarks connected by 'strings'.

### 1970's

Quantum Chromodynamics is recognized as the theory of strong interaction.

String theory needs 10 dimensions to work, a very unlikely assumption (at this time) for an unneeded theory.

 $\longrightarrow$  String theory went into the dustbin of history.



1.1. Historical Overview

- From all calculations (with closed strings) a massless particle with spin 2 appeares.
- This is exactly the property of the graviton → String theory always contains gravity.

#### 1980's

After the full discovery of the standard model, it was this fact which made string theory reappear as a promising candidate for a theory of quantum gravitation.

1.2. The Theory

- In a nutshell:
  - String theorists propose one dimensional fundamental objects ('strings') instead of zero dimensional elementary particles.
  - The different elementary particles appear as different oscillation modes of strings.
  - Effects become important for small scale and high energy physics.
    - $\rightarrow$  Planck length ( $\sim 10^{-35}m$ )
    - $\rightarrow$  Planck energy ( $\sim 10^{19} GeV$ )



1.2. The Theory

- Why String theory?
  - Promising (among other things due to the emergence of the graviton in a natural way) candidate for a theory of quantum gravitation or even a 'theory of everything'.
  - Brought many interesting and important mathematical theories to life.
  - Eludes the problem of renormalization in QFT.

## Outline

- 1. Introduction
  - 1.1. Historical Overview
  - 1.2. The Theory
- 2. The Relativistic String
  - 2.1. Set Up
  - 2.2. The Relativistic Point Particle
  - 2.3. The General p-Brane Action
  - 2.4. The Nambu-Goto Action
  - 2.5. Open and Closed Strings
  - 2.6. The Polyakov Action
  - 2.7. The Equations of Motion
  - 2.8. Equivalence of P and NG action
  - 2.9. Symmetries of the Action

#### 3. Wave Equations and Solutions

- 3.1. Conformal Gauge & Weyl Scaling
- 3.2. Equations of Motions & Boundary
- 3.3. Closed String Solution
- 3.4. Open String Solution
- 3.5. Virasoro Constraints
- 3.6. The Witt Algebra
- Summary

#### 2.1. Set Up

Start by considering 'strings' as **fundamental objects** moving in a **(D dimensional)** Lorentzian spacetime (with Lorentzian metric  $g_{\mu\nu}$ ) and obeying certain dynamical laws.

### Goal of this chapter:

Find an action principle of the free bosonic string and study its dynamics.

#### Idea

Strings behave classically as the one dimensional analogon to point particles.

 $\rightarrow$  Review point particle action.

#### 2.2. The Relativistic Point Particle

- Action should be a functional of the particle's path ('world line').
- Natural (and only) candidate: 'length' of the world line

$$S = -mc \int_{\gamma} \mathrm{d}s.$$

Proportionality factor -mc follows from classical limit ( $v \rightarrow 0$ ).

#### 2.2. The Relativistic Point Particle

- parametrization  $x^{\mu}(\tau)$ .
- induced (1x1) metric on the parametrization domain (pullback of ambient metric g<sub>μν</sub>)

$$\Gamma = \frac{\partial x^{\mu}}{\partial \tau} \frac{\partial x^{\nu}}{\partial \tau} g_{\mu\nu}$$

volume (or length) form

$$\mathrm{d} s = \sqrt{|\Gamma|} \mathrm{d} \tau = \sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} \mathrm{d} \tau$$



 $x^{\mu}: [\tau_i, \tau_f] \longrightarrow \mathbb{R}^D$ 

#### 2.2. The Relativistic Point Particle

• Therefore, the **point particle action** is (writing  $\dot{x}^{\mu} := \frac{dx^{\mu}}{d\tau}$ )

$$S_{ ext{point particle}} = -mc \int_{ au_i}^{ au_f} \sqrt{-\dot{x}^\mu \dot{x}_\mu} \ \mathsf{d} au$$

 Better known form: In eigentime parametrization

$$x^{\mu}(\tau) = (c \ \tau, \mathbf{x}(\tau))$$

the action reads

$$S = -mc^2 \int \sqrt{1 - \frac{\mathbf{v}^2}{c^2}} \, dt.$$

#### 2.2. The Relativistic Point Particle

$$S = -mc \int \sqrt{-\dot{x}^{\mu}\dot{x}_{\mu}} \, \mathrm{d} au \qquad \Rightarrow \qquad \frac{d}{d au} \left( \frac{m\dot{x}^{\mu}}{\sqrt{-\dot{x}^{\mu}\dot{x}_{\mu}}} 
ight) = 0.$$

- Disadvantages
  - The squareroot is not easy to quantize.
  - The massless case is not covered.
  - The action has primary constraints (constraints not following from the equation of motion).
     From the definition p<sub>μ</sub> = ∂L/∂x<sup>μ</sup>, it follows directly that p<sup>μ</sup>p<sub>μ</sub> = -m<sup>2</sup>c<sup>2</sup>.
     → More about primary constraints in report.

#### 2.2. The Relativistic Point Particle

 Trick The Einbein Action: Define the action

$$S = \frac{1}{2} \int_{\tau_0}^{\tau_1} \mathrm{d}\tau \ e(\tau) \left( e^{-2}(\tau) \left( \dot{x}^{\mu}(\tau) \right)^2 - m^2 \right)$$

where  $e(\tau)$  is an auxilliary function (which can be varied independently of  $x^{\mu}$ ).

Varying with respect to x<sup>µ</sup> and e gives

$$\frac{\delta S}{\delta e} = 0 \qquad \Rightarrow \dot{x}^2 + e^2 m^2 = 0$$
$$\frac{\delta S}{\delta x^{\mu}} = 0 \qquad \Rightarrow \frac{d}{d\tau} \left( e^{-1} \dot{x}^{\mu} \right) = 0.$$

#### 2.2. The Relativistic Point Particle

$$e = \frac{\sqrt{-\dot{x}^2}}{m} \& \frac{d}{d\tau} \left( e^{-1} \dot{x}^{\mu} \right) = 0 \quad \Rightarrow \quad \frac{d}{d\tau} \left( \frac{m \dot{x}^{\mu}}{\sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}}} \right) = 0.$$

- The resulting equations of motion are equivalent to the classical point particle equation of motion together with the primary constraint.
- Found new equivalent action with
  - no squareroot
  - no primary constraint (old primary constraints are turned into equation of motion)

#### 2.3. The General p-Brane Action

- Generalize: spatial 0-dim point → spatial (p-1)-dim objects in a *D* dimensional spacetime (called brane).
- represented by its p dimensional 'worldvolume' (p = 1 worldline, p = 2 worldsheet).



2.3. The General p-Brane Action

In analogy to the point particle the reparametrization invariant action of this world volume is

 $S \propto \text{Vol}(\text{world volume}).$ 

If  $X^{\mu}(\tau^{i})$   $(\mu \in \{1, ..., D\}, i \in \{1, ..., p\})$  is a parametrization of the worldvolume of the brane, then the induced metric on the parametrization domain  $\Gamma_{\alpha\beta}^{(p)}$  is the pullback of  $g_{\mu\nu}$  under  $X^{\mu}$ 

$$\Gamma^{(p)}_{\alpha\beta} = rac{\partial X^{\mu}}{\partial \tau^{lpha}} rac{\partial X^{
u}}{\partial \tau^{eta}} g_{\mu
u}.$$

#### 2.3. The General p-Brane Action

The general p-Brane action therefore reads

$$S_{\mathsf{Brane}} = -T_p \int \sqrt{-\mathsf{det}(rac{\partial X^{\mu}}{\partial au^{lpha}} rac{\partial X^{
u}}{\partial au^{eta}} g_{\mu
u})} \, \mathsf{d}^{p+1} au$$

where  $T_p$  is a proportionality factor.

We are now ready to think about 'strings', or 1-branes.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 2. The Relativistic String

- 2.4. The Nambu-Goto Action
- The Nambu Goto action is the action for a string or 1-brane: Parametrization

$$(\tau,\sigma)\mapsto X^{\mu}(\tau,\sigma),$$

then

$$S_{ ext{Nambu-Goto}} = -rac{T_0}{c}\int \sqrt{- ext{det}(\Gamma^{(1)}_{lphaeta})}d au d\sigma$$

where the proportionality factor  $T_0$  is called string tension.

Calculating the determinant of  $(X'^{\mu} := \frac{\partial X^{\mu}}{\partial \sigma}, \dot{X}^{\mu} := \frac{\partial X^{\mu}}{\partial \tau})$   $\Gamma^{(1)}_{\alpha\beta} = \frac{\partial X^{\mu}}{\partial \tau^{\alpha}} \frac{\partial X^{\nu}}{\partial \tau^{\beta}} g_{\mu\nu} = \begin{pmatrix} \dot{X} \cdot \dot{X} & \dot{X} \cdot X' \\ X' \cdot \dot{X} & X' \cdot X' \end{pmatrix} \text{ gives}$   $\overline{S_{NG}} = -\frac{T_0}{C} \int \int \sqrt{(\dot{X} \cdot X')^2 - \dot{X}^2 X'^2} d\tau d\sigma$ 

#### 2.5. Open and Closed Strings

- For later: Consider two kinds of string, open and closed.
- Parametrization domain:

$$-\infty < \tau < \infty$$
  $0 < \sigma < \overline{\sigma}$ 



- Closed Strings:
  - $\rightarrow$  Worldsheet diffeo. to  $\mathbb{R} \times S^1$ ,
  - $\rightarrow$  periodicity conditions.
  - $\rightarrow$  Convention  $\overline{\sigma} = 2\pi$

- Open Strings:
  - $\rightarrow$  Worldsheet diffeo. to  $\mathbb{R} \times [0, \overline{\sigma}]$ ,
  - $\rightarrow$  boundary conditions (later).
  - $\rightarrow$  Convention  $\overline{\sigma} = \pi$

#### 2.6. The Polyakov Action

- In principle this is all, we have postulated the dynamics of the string and could start solving the Nambu Goto action.
- Problem:
  - Nambu-Goto has a square root
  - There are primary constraints (the so called Virasoro constraints  $\rightarrow$  later)

### Trick:

Find an action, which has no squareroot, no primary constraint and is equivalent to the NG action

ightarrow same as einbein trick for the relativistic particle...

#### 2.6. The Polyakov Action

The Polyakov action is defined as

$$S_{\mathsf{P}} = -\frac{T}{2} \int d^2 \sigma \sqrt{-h} h^{lpha eta} \; \partial_{lpha} X^{\mu} \partial_{eta} X^{
u} g_{\mu
u} = -\frac{T}{2} \int d^2 \sigma \sqrt{-h} h^{lpha eta} \; \Gamma_{lpha eta}$$

- *h*<sub>αβ</sub> is a symmetric (2x2) tensor, which can be varied independently of X<sup>μ</sup>. It is taken as an intrinsic metric tensor on the parametrization domain with inverse h<sup>αβ</sup>.
- $h_{\alpha\beta}$  is the two dimensional **analogon** to the einbein function *e*.
- The Polyakov action has no primary constraints.

#### 2.7. The Equations of Motion

- To do: Find equations of motion and proof that they are equivalent to NG (+ primary constraints).
- Varying

$$\delta S = -T \int d^2 \sigma \left( \sqrt{-h} T_{\alpha\beta} \delta h^{\alpha\beta} + 2 \partial_\alpha \left( \sqrt{-h} h^{\alpha\beta} \partial_\beta X_\mu \right) \delta X^\mu \right) + \text{bnd term}$$

#### where

•  $T_{\alpha\beta}$  is the energy momentum tensor, the factor appearing when varying *S* with respect to  $h^{\alpha\beta}$  or as a functional derivative

$$\begin{split} T_{\alpha\beta} &= -\frac{1}{T} \frac{1}{\sqrt{-h}} \frac{\delta S}{\delta h^{\alpha\beta}} = \frac{1}{2} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu} - \frac{1}{4} h_{\alpha\beta} h^{\gamma\delta} \partial_{\gamma} X^{\mu} \partial_{\delta} X_{\mu} \\ &= \frac{1}{2} \Gamma_{\alpha\beta} - \frac{1}{4} h_{\alpha\beta} h^{\gamma\delta} \Gamma_{\gamma\delta}. \end{split}$$

2.8. Equivalence of Polyakov and Nambu-Goto Action

The equations of motion are

$$T_{lphaeta}=0$$
 $\partial_lpha\left(\sqrt{-h}h^{lphaeta}\partial_eta X^\mu
ight)=0$ 

- $\rightarrow$  see blackboard (equivalence of actions)
- Only for the two dimensional case the actions are equivalent.
- Remark:

Only for minimizing  $h^{\alpha\beta}$  fixed, we have  $S_{NG} = S_P$  (in general not the same expression).

#### 2.9. Symmetries of the Action

- Global Symmetries:
  - Poincare Invariance

$$\delta X^{\mu} = a^{\mu}_{\ \nu} X^{\nu} + b^{\mu} \quad \text{where } a^{\mu}_{\ \nu} = -a^{\ \mu}_{\nu}$$
  
$$\delta h_{\alpha\beta} = 0$$

a general infinitesimal Poincare transformation.

 $\rightarrow X^{\mu}$  transforms as expected as a vector,  $h_{\alpha\beta}$  as a scalar.

#### 2.9. Symmetries of the Action

#### Local Symmetries:

#### Reparametrization Invariance

Follows directly from the choice of action. Formally  $\phi: \sigma^{\alpha} \mapsto \sigma'^{\alpha}$  a reparametrization of the parametrization domain. With  $\xi^{\alpha} := \delta \phi^{\alpha}$ 

$$\delta X^{\mu} = \xi^{\alpha} \partial_{\alpha} X^{\mu}$$

and

$$\delta h_{\alpha\beta} = \xi^{\gamma} \partial_{\gamma} h_{\alpha\beta} + \partial_{\alpha} \xi^{\gamma} h_{\gamma\beta} + \partial_{\beta} \xi^{\gamma} h_{\alpha\gamma}.$$

#### Weyl Symmetry

a bit more concealed symmetrie, invariance of the action wrt. Weyl scaling of the worldsheet metric *h*.

$$\delta X^{\mu} = 0$$

$$\delta h_{\alpha\beta} = 2\Lambda h_{\alpha\beta}$$

where  $\Lambda$  is an arbitrary function.

April 15, 2013

## Outline

- 1. Introduction
  - 1.1. Historical Overview
  - 1.2. The Theory
- 2. The Relativistic String
  - 2.1. Set Up
  - 2.2. The Relativistic Point Particle
  - 2.3. The General p-Brane Action
  - 2.4. The Nambu-Goto Action
  - 2.5. Open and Closed Strings
  - 2.6. The Polyakov Action
  - 2.7. The Equations of Motion
  - 2.8. Equivalence of P and NG action
  - 2.9. Symmetries of the Action

#### 3. Wave Equations and Solutions

- 3.1. Conformal Gauge & Weyl Scaling
- 3.2. Equations of Motions & Boundary
- 3.3. Closed String Solution
- 3.4. Open String Solution
- 3.5. Virasoro Constraints
- 3.6. The Witt Algebra
- Summary

#### 3.1. Conformal Gauge and Weyl Scaling

### Goal of this chapter:

Simplify equations of motion using the symmetries of the action and find solutions.

• Using **reparametrization invariance** we can simplify  $h_{\alpha\beta}$ .

#### Claim:

For any two dimensional Lorentzian (meaning signature (-1,1)) metric  $h_{\alpha\beta}$  one can find coordinates  $\sigma^1, \sigma^2$ , such that

$$h_{\alpha\beta} = \Omega(\sigma^1, \sigma^2) \eta_{\alpha\beta}$$

where  $\eta_{\alpha\beta}$  is the Minkowski metric (and  $\Omega$  a scalar function).

3.1. Conformal Gauge and Weyl Scaling

- Using Weyl Scaling:
   → gauge away Ω (set Ω = 1).
- Having used all symmetries, we are in a gauge with

$$h_{\alpha\beta} = \eta_{\alpha\beta}$$

- Such a choice of coordinates is called a conformal gauge.
- We will from now on work in these coordinates (calling them τ and σ).

#### Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 3. Wave Equations and Solutions

#### **3.2. Equations of Motions and Boundary Conditions**

In conformal gauge, the Polyakov action takes a simple form

$$S_{\mathsf{P}} = -\frac{T}{2} \int_{0}^{\overline{\sigma}} d\sigma \int_{\tau_{i}}^{\tau_{f}} d\tau \ \eta^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu} = \frac{T}{2} \int_{0}^{\overline{\sigma}} d\sigma \int_{\tau_{i}}^{\tau_{f}} d\tau \left( \dot{X}^{2} - X^{'2} \right)$$

The variations fulfill

 $\delta X^{\mu}(\sigma = 0, \overline{\sigma})$  arbitrary for open strings  $\delta X^{\mu}(\sigma + 2\pi) = \delta X^{\mu}(\sigma)$  for closed strings  $\delta X^{\mu}(\tau_i) = \delta X^{\mu}(\tau_f) = 0$ 

Varying with respect to X<sup>µ</sup> (last term vanishes for closed string):

$$\delta S_{\mathsf{P}} = T \int_{0}^{\overline{\sigma}} d\sigma \int_{\tau_{i}}^{\tau_{f}} d\tau \, \delta X^{\mu} \left( \partial_{\sigma}^{2} - \partial_{\tau}^{2} \right) X_{\mu} - T \int_{\tau_{i}}^{\tau_{f}} d\tau \, \partial_{\sigma} X_{\mu} \, \delta X^{\mu} ]_{\sigma=0}^{\sigma=\overline{\sigma}}$$

#### Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 3. Wave Equations and Solutions

#### **3.2. Equations of Motions and Boundary Conditions**

This results in the (wave-) equation of motion and boundary conditions

$$\left(\partial_{\tau}^2 - \partial_{\sigma}^2\right) X^{\mu} = 0$$

$$\begin{aligned} X^{\mu}(\sigma+2\pi) &= X^{\mu}(\sigma) & \text{closed string} \\ X^{'\mu}(\sigma=0,\pi) &= 0 & \text{open string.} \end{aligned}$$

- Neumann condition for open string (=free ends). Dirichlet  $(\delta X^{\mu}(\sigma = 0, \sigma = \overline{\sigma}) = 0$  would have worked too (fixed ends)).
- Should not forget to impose the vanishing of the energy momentum tensor

$$T_{lphaeta}=0 \quad \Leftrightarrow \quad \left(\dot{X}\pm X'
ight)^2=0 \quad {\sf Virasoro\ constraint}$$

3.3. General Solution for the Closed String

Equations of motion and boundary conditions closed string:

wave equation:  $(\partial_{\tau}^2 - \partial_{\sigma}^2) X^{\mu} = 0$ periodicity condition:  $X^{\mu}(\sigma + 2\pi, \tau) = X^{\mu}(\sigma, \tau)$ Virasoro constraints:  $(\dot{X} \pm X')^2 = 0$ 

In light cone coordinates

$$\sigma^{\pm} = \tau \pm \sigma \qquad \qquad \partial_{\pm} = \frac{1}{2} \left( \partial_{\tau} \pm \partial_{\sigma} \right)$$

the wave equation reads :

$$\partial_+\partial_-X^\mu=0$$

3.3. General Solution for the Closed String

Solution to wave equation:

$$X^{\mu}(\sigma^-,\sigma^+) = X^{\mu}_R(\sigma^-) + X^{\mu}_L(\sigma^+)$$

- *X<sub>R</sub>* and *X<sub>L</sub>* are arbitrary functions only dependent on boundary conditions → left and right movers.
- Closed String  $\rightarrow$  Besides periodicity no boundary condition  $\rightarrow$   $X_R$  and  $X_L$  are **independent**.
- This is not the case for open strings → Neumann boundary condition connects them (open string = standing waves → reflected)

#### 3.3. General Solution for the Closed String

### Claim (proof in report): The 2π periodicity of X<sup>μ</sup> is equivalent to

 $\partial_- X^{\mu}_R(\sigma^-)$  and  $\partial_+ X^{\mu}_L(\sigma^+)$  are  $2\pi$  periodic with the same zero-mode.

• Expand in fourier series:

$$\partial_{-}X_{R}^{\mu}(\sigma^{-}) = \frac{1}{\sqrt{4\pi T}} \sum_{n=-\infty}^{\infty} \alpha_{n}^{\mu} e^{-in\sigma^{-}}$$
$$\partial_{+}X_{L}^{\mu}(\sigma^{+}) = \frac{1}{\sqrt{4\pi T}} \sum_{n=-\infty}^{\infty} \overline{\alpha}_{n}^{\mu} e^{-in\sigma^{+}},$$

- Constants are choosen for convenience.
- $\alpha_n^{\mu}$  and  $\overline{\alpha}_n^{\mu}$  are generally **independent** (exception:  $\alpha_0^{\mu} = \overline{\alpha}_0^{\mu}$ ).

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 3. Wave Equations and Solutions

#### 3.3. General Solution for the Closed String

Integrating these expressions  $\rightarrow$  oscillator expansion (setting  $p^{\mu} = \sqrt{4\pi T} \alpha_0^{\mu} = \sqrt{4\pi T} \overline{\alpha}_o^{\mu}$ ):

$$\begin{aligned} X_{R}^{\mu}(\sigma^{-}) &= \frac{1}{2}x^{\mu} + \frac{1}{4\pi T}p^{\mu}\sigma^{-} + \frac{i}{\sqrt{4\pi T}}\sum_{n\neq 0}\frac{1}{n}\alpha_{n}^{\mu}e^{-in\sigma^{-}}\\ X_{L}^{\mu}(\sigma^{+}) &= \frac{1}{2}x^{\mu} + \frac{1}{4\pi T}p^{\mu}\sigma^{+} + \frac{i}{\sqrt{4\pi T}}\sum_{n\neq 0}\frac{1}{n}\overline{\alpha}_{n}^{\mu}e^{-in\sigma^{+}} \end{aligned}$$

and together

$$X^{\mu}(\sigma,\tau) = \underbrace{x^{\mu} + \frac{1}{2\pi T} p^{\mu} \tau}_{\text{center of mass motion}} + \underbrace{\frac{i}{\sqrt{4\pi T}} \sum_{n \neq 0} \frac{1}{n} \left( \alpha^{\mu}_{n} e^{in\sigma} + \overline{\alpha}^{\mu}_{n} e^{-in\sigma} \right) e^{-in\tau}}_{\text{oscillation of the string}}$$

3.3. General Solution for the Closed String

- Properties:
  - X<sup>µ</sup> real implies

 $x^{\mu}, p^{\mu}$  are both real  $(\alpha_n^{\mu})^{\dagger} = \alpha_{-n}^{\mu}$   $(\overline{\alpha}_n^{\mu})^{\dagger} = \overline{\alpha}_{-n}^{\mu}$ .

•  $x^{\mu}$  is the **center of mass** of the string at  $\tau = 0$ :

$$\frac{1}{2\pi}\int_0^{2\pi}\mathrm{d}\sigma\,X^\mu(\sigma,0)=x^\mu$$

The canonical \(\tau\)-momentum is

$$P^{\mu}_{\tau} = \frac{\partial \mathcal{L}}{\partial \dot{X}_{\mu}} = \frac{\partial}{\partial \dot{X}_{\mu}} \left( \frac{T}{2} \left( \dot{X}^2 - X'^2 \right) \right) = T \dot{X}^{\mu}$$

therefore the total momentum of the string is

$$P^{\mu}_{c.o.m} = \int_0^{2\pi} \mathrm{d}\sigma \; P^{\mu}_\tau = p^{\mu}$$

- 3.4. General Solution for the Open String
- Equations of motion and boundary conditions open string:

wave equation: $\left(\partial_{\tau}^2 - \partial_{\sigma}^2\right) X^{\mu} = 0$ boundary condition: $\partial_{\sigma} X^{\mu}|_{\sigma=0,\pi} = 0$ Virasoro constraint: $\left(\dot{X} \pm X'\right)^2 = 0$ 

Similar analysis leads to oscillator expansion:



with  $x^{\mu}$ ,  $p^{\mu}$  real and  $(\alpha_n^{\mu})^{\dagger} = \alpha_{-n}^{\mu}$ .

 $\rightarrow$  Left and right movers are **not independent** anymore.

#### 3.5. Virasoro Constraints

- We have found the general solution for the wave equation under consideration of boundary conditions.
- We still have to impose the Virasoro constraints

$$\left(\dot{X}\pm X'
ight)^2=0$$
 or  $T_{lphaeta}=0.$ 

- Where did they come from again?  $\rightarrow$  primary constraints of NG action  $\rightarrow$  equation of motion for  $h^{\alpha\beta}$  in the P action  $\rightarrow$  expressed as vanishing of the energy momentum tensor  $T_{\alpha\beta} \rightarrow$  equivalent to  $(\dot{X} \pm X')^2 = 0$ .
- Can be seen as the string analogon to  $p^{\mu}p_{\mu} = -m^2c^2$ .

#### 3.5. Virasoro Constraints

- Adviseable to discuss Light cone coordinates a bit further:
- The conformal metric looked like  $h_{\alpha\beta} = \eta_{\alpha\beta}$ . Therefore the light cone metric is  $\eta_{++} = \eta_{--} = 0$  and  $\eta_{+-} = \eta_{-+} = -\frac{1}{2}$ .

#### The energy moment tensor

 $T_{\alpha\beta} = \frac{1}{2} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu} - \frac{1}{4} h_{\alpha\beta} h^{\gamma\delta} \partial_{\gamma} X^{\mu} \partial_{d} X_{\mu}$  becomes in this coordinates with  $h_{\alpha\beta} = \eta_{\pm}$ 

$$T_{++} = \frac{1}{2} (\partial_{+} X)^{2} \qquad T_{--} = \frac{1}{2} (\partial_{-} X)^{2}$$
$$T_{+-} = T_{-+} = 0$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 3. Wave Equations and Solutions

#### 3.5. Virasoro Constraints

• What restriction impose the Virasoro constraints on  $\alpha_n^{\mu}$ ,  $\overline{\alpha}_n^{\mu}$ ?

$$0 \stackrel{!}{=} T_{--} = \frac{1}{2} (\partial_{-}X)^{2} = \frac{1}{2} \left( \frac{1}{\sqrt{4\pi T}} \sum_{n=-\infty}^{\infty} \alpha_{n}^{\mu} e^{-in\sigma^{-}} \right)^{2}$$
$$= \frac{1}{8\pi T} \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \alpha_{n}^{\mu} \alpha_{k\mu} e^{-i(n+k)\sigma^{-}} \underset{m=n+k}{=} \frac{1}{8\pi T} \sum_{n} \sum_{m} \alpha_{n} \cdot \alpha_{m-n} e^{-im\sigma^{-}}$$
$$=: \frac{1}{4\pi T} \sum_{m} L_{m} e^{-im\sigma^{-}} \quad \text{where} \quad L_{m} := \frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_{n} \cdot \alpha_{m-n}$$
$$0 \stackrel{!}{=} T_{++} = \frac{1}{4\pi T} \sum_{m} \overline{L}_{m} e^{-im\sigma^{+}} \quad \text{where} \quad \overline{L_{m} := \frac{1}{2} \sum_{n=-\infty}^{\infty} \overline{\alpha}_{n} \cdot \overline{\alpha}_{m-n}}}$$

April 15, 2013

Classical String Theory

#### 3.5. Virasoro Constraints

- Because  $\sum_{m} L_m e^{-im\sigma^-} \stackrel{!}{=} 0$  for all  $\sigma^-$ , all so called Virasoro modes  $L_m$  must vanish.
- For the closed string one hast therefore to impose the additional constraints on the modes

$$L_m = \overline{L}_m \stackrel{!}{=} 0$$

We have found the most general solution for the classical relativistic closed string:

$$X^{\mu}(\sigma,\tau) = x^{\mu} + \frac{1}{2\pi T} p^{\mu} \tau + \frac{i}{\sqrt{4\pi T}} \sum_{n \neq 0} \frac{1}{n} \left( \alpha_n^{\mu} e^{in\sigma} + \overline{\alpha}_n^{\mu} e^{-in\sigma} \right) e^{-in\tau}$$

• with  $L_m := \frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_n \cdot \alpha_{m-n}$ ,  $\overline{L}_m = \frac{1}{2} \sum_{n=-\infty}^{\infty} \overline{\alpha}_n \cdot \overline{\alpha}_{m-n}$  fulfilling

$$L_m = \overline{L}_m = 0.$$

#### 3.5. Virasoro Constraints

For the open string the calculation is analog. Because X<sub>R</sub> and X<sub>L</sub> are not independent any more one has only one additional constraint

$$T_{++} = rac{1}{4\pi T} \sum_m L_m e^{-im\sigma^+} \quad T_{--} = rac{1}{4\pi T} \sum_m L_m e^{-im\sigma^-}$$

where

$$L_m = \frac{1}{2} \sum_n \alpha_n \cdot \alpha_{m-n} \stackrel{!}{=} 0$$

| April | 15, | 201 | 3 |
|-------|-----|-----|---|
|-------|-----|-----|---|

#### 3.6. The Witt Algebra

- For later quantization: Algebraic considerations of the classical problem.
- The Poisson bracket for coordinate fields X<sup>μ</sup>(σ), their conjugate momentum fields P<sub>μ</sub>(σ) and functionals f(X, P), g(X, P) is defined using the functional derivative

$$\{f,g\}_{P} = \int \mathsf{d}\sigma \ \frac{\delta f}{\delta X^{\mu}(\sigma)} \frac{\delta g}{\delta P_{\mu}(\sigma)} - \frac{\delta f}{\delta P_{\mu}(\sigma)} \frac{\delta g}{\delta X^{\mu}(\sigma)}$$

### 3.6. The Witt Algebra

Interested in  $\tau$ - propagation:

 ${\it X}^{\mu}(\sigma,\tau)$  is seen as a field in  $\sigma$ 

conjugate field momentum

$$\Pi^{\mu}(\sigma,\tau) = \frac{\partial \mathcal{L}}{\partial \dot{X}_{\mu}}(\sigma,\tau) = T \dot{X}^{\mu}(\sigma,\tau)$$

Then

$$\begin{split} \{X^{\mu}(\sigma,\tau), X^{\nu}(\sigma',\tau)\} &= 0 \ \{\Pi^{\mu}(\sigma,\tau), \Pi^{\nu}(\sigma',\tau)\} = 0 \\ \{X^{\mu}(\sigma,\tau), \Pi^{\nu}(\sigma',\tau)\} = g^{\mu\nu}\delta(\sigma-\sigma') \end{split}$$

 $\rightarrow$  Next step: Calculate Hamiltonian

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 3. Wave Equations and Solutions

#### 3.6. The Witt Algebra

The \(\tau\) Hamiltonian is

$$H = \int_0^{\overline{\sigma}} \mathrm{d}\sigma \ \dot{X}^{\mu} \Pi_{\mu} - \mathcal{L} = \frac{T}{2} \int_0^{\overline{\sigma}} \mathrm{d}\sigma \ \left( \dot{X}^2 + X'^2 \right)$$

With

$$\dot{X}^{2} = (\partial_{+}X + \partial_{-}X)^{2} = 2T_{++} + 2T_{--} + 2\partial_{+}X \cdot \partial_{-}X$$
$$X^{\prime 2} = (\partial_{+}X - \partial_{-}X)^{2} = 2T_{++} + 2T_{--} - 2\partial_{+}X \cdot \partial_{-}X.$$

Therefore the Hamiltonian (for τ propagation) is

$$H = 2T \int_0^{\overline{\sigma}} \mathrm{d}\sigma \ (T_{++} + T_{--})$$

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 3. Wave Equations and Solutions

#### 3.6. The Witt Algebra

Closed String



$$T_{--} = \frac{1}{4\pi T} \sum_{m} L_m e^{-im\sigma^-}$$

Hamiltonian

$$H = L_0 + \overline{L}_0$$

Open String

$$T_{++} = \frac{1}{4\pi T} \sum_{m} L_m e^{-im\sigma^+}$$

$$T_{--} = \frac{1}{4\pi T} \sum_{m} L_m e^{-im\sigma^-}$$

Hamiltonian

$$H = L_0$$

Goal: Calculate brackets of the Virasoro modes.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

## 3. Wave Equations and Solutions

### 3.6. The Witt Algebra

Closed String: From full solution

$$\begin{split} X^{\mu}(\sigma,\tau) &= x^{\mu} + \frac{1}{2\pi T} p^{\mu}\tau + \frac{i}{\sqrt{4\pi T}} \sum_{n \neq 0} \frac{1}{n} \left( \alpha_{n}^{\mu} e^{in\sigma} + \overline{\alpha}_{n}^{\mu} e^{-in\sigma} \right) e^{-in\tau} \\ \Pi^{\mu}(\sigma,\tau) &= T \dot{X}^{\mu} = \frac{1}{2\pi} p^{\mu} + \sqrt{\frac{T}{4\pi}} \sum_{n \neq 0} \left( \alpha_{n}^{\mu} e^{in\sigma} + \overline{\alpha}_{n}^{\mu} e^{-in\sigma} \right) e^{-in\tau} \\ \text{calculate } x^{\mu} &= \frac{1}{2\pi} \int_{0}^{2\pi} X^{\mu}(\sigma,0) \mathrm{d}\sigma, \quad p^{\mu} = \int_{0}^{2\pi} \Pi^{\mu}(\sigma,0) \mathrm{d}\sigma \text{ and} \\ &-i \frac{\sqrt{4\pi T}}{2\pi} \int_{0}^{2\pi} X^{\mu}(\sigma,0) e^{-in\sigma} \mathrm{d}\sigma = \frac{1}{n} \left( \alpha_{n}^{\mu} - \overline{\alpha}_{-n}^{\mu} \right) \\ &\quad \frac{1}{2\pi} \sqrt{\frac{4\pi}{T}} \int_{0}^{2\pi} \Pi^{\mu}(\sigma,0) e^{-in\sigma} \mathrm{d}\sigma = \alpha_{n}^{\mu} + \overline{\alpha}_{n}^{\mu} \end{split}$$

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

## 3. Wave Equations and Solutions

### 3.6. The Witt Algebra

With these formulas calculate (for example)

$$\begin{split} \{x^{\mu}, p^{\nu}\} &= \frac{1}{2\pi} \{ \int_{0}^{2\pi} X^{\mu}(\sigma, 0) \, \mathrm{d}\sigma, \int_{0}^{2\pi} \Pi^{\nu}(\sigma', 0) \, \mathrm{d}\sigma' \} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \mathrm{d}\sigma \int_{0}^{2\pi} \mathrm{d}\sigma' \{ X^{\mu}(\sigma, 0), \Pi^{\nu}(\sigma', 0) \} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \mathrm{d}\sigma \int_{0}^{2\pi} \mathrm{d}\sigma' g^{\mu\nu} \delta(\sigma - \sigma') = g^{\mu\nu} \end{split}$$

In this way one finds  $(\delta_{m+n} := \delta_{m+n,0})$ 

$$\begin{aligned} \{\alpha_m^{\mu}, \alpha_n^{\nu}\} &= \{\overline{\alpha}_m^{\mu}, \overline{\alpha}_n^{\nu}\} = -im\delta_{m+n}g^{\mu\nu} \\ \{\overline{\alpha}_m^{\mu}, \alpha_n^{\nu}\} &= 0 \\ \{x^{\mu}, p^{\nu}\} &= g^{\mu\nu} \end{aligned}$$

#### 3.6. The Witt Algebra

• Therefore using  $L_m = \frac{1}{2} \sum_n \alpha_n \cdot \alpha_{m-n}$ ,  $\overline{L}_m = \frac{1}{2} \sum_n \overline{\alpha}_n \cdot \overline{\alpha}_{m-n}$ :

$$\{L_m, L_n\} = -i(m-n)L_{m+n} \quad \{\overline{L}_m, \overline{L}_n\} = -i(m-n)\overline{L}_{m+n}$$
$$\{L_m, \overline{L}_n\} = 0$$

- ►  $\Rightarrow$  Witt algebra ( $\rightarrow$  quantize to get Virasoro algebra).
- The Virasoro modes  $L_m$ ,  $\overline{L}_m$  generate an infinite dimensional Lie algebra (Witt algebra) of conserved charges respecting the closed string boundary condition.

#### 3.6. The Witt Algebra

• For the open string the Virasoro modes  $L_m = \frac{1}{2} \sum_n \alpha_n \alpha_{m-n}$  fulfill the same commutation relation

$$\{L_m,L_n\}=-i(m-n)L_{m+n}$$

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### 3. Wave Equations and Solutions

#### 3.6. The Witt Algebra

- One question is left: Why did the infinite dimensional Witt algebra appear in this classical calculation?
- Consider the unit circle  $S^1$  and the group of diffeomorphisms on it. A diffeomorphism  $\theta \to \theta + a(\theta)$  is generated by the operator  $D_a = ia(\theta) \frac{d}{d\theta}$ .

A complete basis for such operators is given by  $D_n = ie^{in\theta} \frac{d}{d\theta}$  fulfilling the commutator relation

$$[D_n, D_m] = -i(m-n)D_{m+n}.$$

We see: The Witt algebra is simply the Lie algebra of the group of diffeomorphisms on the circle!

April 15, 2013

### Summary

We ...

- ... defined Nambu-Goto action in analogy to the point particle.
- ... found equivalent Polyakov action with 'nicer' properties.
- ... discussed symmetries and found equations of motion.
- ... used conformal gauge to simplify equations of motion.
- ... derived general solutions for open and closed strings.
- ... realized that the Virasoro modes generate the Witt algebra.

### **Questions?**

### Thank you for your attention!

April 15, 2013

**Classical String Theory** 

52/52