Classical String Theory

Proseminar in Theoretical Physics

David Reutter

ETH Zürich
April 15, 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outline

1. Introduction
1.1. Historical Overview
1.2. The Theory
2. The Relativistic String
2.1. Set Up
2.2. The Relativistic Point Particle
2.3. The General p-Brane Action
2.4. The Nambu-Goto Action
2.5. Open and Closed Strings
2.6. The Polyakov Action
2.7. The Equations of Motion
2.8. Equivalence of P and NG action
2.9. Symmetries of the Action
3. Wave Equations and Solutions
3.1. Conformal Gauge \& Weyl Scaling
3.2. Equations of Motions \& Boundary
3.3. Closed String Solution
3.4. Open String Solution
3.5. Virasoro Constraints
3.6. The Witt Algebra

Summary

1. Introduction

1.1. Historical Overview

- 1969

Nambu, Nielsen and Susskind propose a model for the interaction of quarks - quarks connected by 'strings'.

- 1970's

Quantum Chromodynamics is recognized as the theory of strong interaction.
String theory needs 10 dimensions to work, a very unlikely assumption (at this time) for an unneeded theory.
\longrightarrow String theory went into the dustbin of history.

1. Introduction

1.1. Historical Overview

- From all calculations (with closed strings) a massless particle with spin 2 appeares.
- This is exactly the property of the graviton
\rightarrow String theory always contains gravity.
- 1980's

After the full discovery of the standard model, it was this fact which made string theory reappear as a promising candidate for a theory of quantum gravitation.

1. Introduction

1.2. The Theory

- In a nutshell:
- String theorists propose one dimensional fundamental objects ('strings') instead of zero dimensional elementary particles.
- The different elementary particles appear as different oscillation modes of strings.
- Effects become important for small scale and high energy physics.
\rightarrow Planck length ($\sim 10^{-35} \mathrm{~m}$)
\rightarrow Planck energy $\left(\sim 10^{19} \mathrm{GeV}\right)$

1. Introduction

1.2. The Theory

- Why String theory?
- Promising (among other things due to the emergence of the graviton in a natural way) candidate for a theory of quantum gravitation or even a 'theory of everything'.
- Brought many interesting and important mathematical theories to life.
- Eludes the problem of renormalization in QFT.

Outline

1. Introduction
1.1. Historical Overview
1.2. The Theory
2. The Relativistic String
2.1. Set Up
2.2. The Relativistic Point Particle
2.3. The General p-Brane Action
2.4. The Nambu-Goto Action
2.5. Open and Closed Strings
2.6. The Polyakov Action
2.7. The Equations of Motion
2.8. Equivalence of P and $N G$ action
2.9. Symmetries of the Action
3. Wave Equations and Solutions
3.1. Conformal Gauge \& Weyl Scaling
3.2. Equations of Motions \& Boundary
3.3. Closed String Solution
3.4. Open String Solution
3.5. Virasoro Constraints
3.6. The Witt Algebra

Summary

2. The Relativistic String

2.1. Set Up

- Start by considering 'strings' as fundamental objects moving in a (D dimensional) Lorentzian spacetime (with Lorentzian metric $g_{\mu \nu}$) and obeying certain dynamical laws.
- Goal of this chapter:

Find an action principle of the free bosonic string and study its dynamics.

- Idea

Strings behave classically as the one dimensional analogon to point particles.
\rightarrow Review point particle action.

2. The Relativistic String

2.2. The Relativistic Point Particle

- Action should be a functional of the particle's path ('world line').
- Natural (and only) candidate: 'length' of the world line

$$
S=-m c \int_{\gamma} \mathrm{d} s
$$

- Proportionality factor $-m c$ follows from classical limit $(v \rightarrow 0)$.

2. The Relativistic String

2.2. The Relativistic Point Particle

- parametrization $x^{\mu}(\tau)$.
- induced (1x1) metric on the parametrization domain (pullback of ambient metric $g_{\mu \nu}$)

$$
\Gamma=\frac{\partial x^{\mu}}{\partial \tau} \frac{\partial x^{\nu}}{\partial \tau} g_{\mu \nu}
$$

$$
x^{\mu}:\left[\tau_{i}, \tau_{f}\right] \longrightarrow \mathbb{R}^{D}
$$

volume (or length) form

$$
\mathrm{d} s=\sqrt{|\Gamma|} \mathrm{d} \tau=\sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} \mathrm{d} \tau
$$

2. The Relativistic String

2.2. The Relativistic Point Particle

- Therefore, the point particle action is (writing $\dot{x}^{\mu}:=\frac{d x^{\mu}}{d \tau}$)

$$
S_{\text {point particle }}=-m c \int_{\tau_{i}}^{\tau_{f}} \sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} \mathrm{d} \tau
$$

- Better known form:

In eigentime parametrization

$$
x^{\mu}(\tau)=(c \tau, \mathbf{x}(\tau))
$$

the action reads

$$
S=-m c^{2} \int \sqrt{1-\frac{\mathbf{v}^{2}}{c^{2}}} d t
$$

2. The Relativistic String

2.2. The Relativistic Point Particle

$$
S=-m c \int \sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} \mathrm{d} \tau \quad \Rightarrow \quad \frac{d}{d \tau}\left(\frac{m \dot{x}^{\mu}}{\sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}}}\right)=0 .
$$

- Disadvantages
- The squareroot is not easy to quantize.
- The massless case is not covered.
- The action has primary constraints (constraints not following from the equation of motion).
From the definition $p_{\mu}=\frac{\partial L}{\partial \dot{x}^{\mu}}$, it follows directly that $p^{\mu} p_{\mu}=-m^{2} c^{2}$.
\longrightarrow More about primary constraints in report.

2. The Relativistic String

2.2. The Relativistic Point Particle

- Trick The Einbein Action:

Define the action

$$
S=\frac{1}{2} \int_{\tau_{0}}^{\tau_{1}} \mathrm{~d} \tau e(\tau)\left(e^{-2}(\tau)\left(\dot{x}^{\mu}(\tau)\right)^{2}-m^{2}\right)
$$

where $e(\tau)$ is an auxilliary function (which can be varied independently of x^{μ}).

- Varying with respect to x^{μ} and e gives

$$
\begin{aligned}
\frac{\delta S}{\delta e} & =0 & & \Rightarrow \\
\frac{\delta S}{\delta x^{\mu}} & =0 & & \dot{x}^{2}+e^{2} m^{2}
\end{aligned}=0
$$

2. The Relativistic String

2.2. The Relativistic Point Particle

$$
e=\frac{\sqrt{-\dot{x}^{2}}}{m} \& \frac{d}{d \tau}\left(e^{-1} \dot{x}^{\mu}\right)=0 \quad \Rightarrow \quad \frac{d}{d \tau}\left(\frac{m \dot{x}^{\mu}}{\sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}}}\right)=0 .
$$

- The resulting equations of motion are equivalent to the classical point particle equation of motion together with the primary constraint.
- Found new equivalent action with
- no squareroot
- no primary constraint (old primary constraints are turned into equation of motion)

2. The Relativistic String

2.3. The General p-Brane Action

- Generalize: spatial 0-dim point \rightarrow spatial ($p-1$)-dim objects in a D dimensional spacetime (called brane).
- represented by its p dimensional 'worldvolume' ($p=1$ worldline, $p=2$ worldsheet).

$$
X^{\mu}: U \longrightarrow \mathbb{R}^{D}
$$

2. The Relativistic String

2.3. The General p-Brane Action

- In analogy to the point particle the reparametrization invariant action of this world volume is

$$
S \propto \operatorname{Vol}(\text { world volume })
$$

- If $X^{\mu}\left(\tau^{i}\right)(\mu \in\{1, \ldots D\}, i \in\{1, \ldots, p\})$ is a parametrization of the worldvolume of the brane, then the induced metric on the parametrization domain $\Gamma_{\alpha \beta}^{(p)}$ is the pullback of $g_{\mu \nu}$ under X^{μ}

$$
\Gamma_{\alpha \beta}^{(p)}=\frac{\partial X^{\mu}}{\partial \tau^{\alpha}} \frac{\partial X^{\nu}}{\partial \tau^{\beta}} g_{\mu \nu}
$$

2. The Relativistic String

2.3. The General p-Brane Action

- The general p-Brane action therefore reads

$$
S_{\mathrm{Brane}}=-T_{p} \int \sqrt{-\operatorname{det}\left(\frac{\partial X^{\mu}}{\partial \tau^{\alpha}} \frac{\partial X^{\nu}}{\partial \tau^{\beta}} g_{\mu \nu}\right)} \mathrm{d}^{p+1} \tau
$$

where T_{p} is a proportionality factor.

- We are now ready to think about 'strings', or 1-branes.

2. The Relativistic String

2.4. The Nambu-Goto Action

- The Nambu Goto action is the action for a string or 1-brane: Parametrization

$$
(\tau, \sigma) \mapsto X^{\mu}(\tau, \sigma)
$$

then

$$
S_{\text {Nambu-Goto }}=-\frac{T_{0}}{c} \int \sqrt{-\operatorname{det}\left(\Gamma_{\alpha \beta}^{(1)}\right)} d \tau d \sigma
$$

where the proportionality factor T_{0} is called string tension.

- Calculating the determinant of

$$
\left(X^{\prime \mu}:=\frac{\partial X^{\mu}}{\partial \sigma}, \dot{X}^{\mu}:=\frac{\partial X^{\mu}}{\partial \tau}\right)
$$

$$
\Gamma_{\alpha \beta}^{(1)}=\frac{\partial X^{\mu}}{\partial \tau^{\alpha}} \frac{\partial X^{\nu}}{\partial \tau^{\beta}} g_{\mu \nu}=\left(\begin{array}{cc}
\dot{X} \cdot \dot{X} & \dot{X} \cdot X^{\prime} \\
X^{\prime} \cdot \dot{X} & X^{\prime} \cdot X^{\prime}
\end{array}\right) \text { gives }
$$

$$
S_{\mathrm{NG}}=-\frac{T_{0}}{c} \iint \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-\dot{X}^{2} X^{\prime 2}} d \tau d \sigma
$$

2. The Relativistic String

2.5. Open and Closed Strings

For later: Consider two kinds of string, open and closed.
Parametrization domain:

$$
-\infty<\tau<\infty \quad 0<\sigma<\bar{\sigma}
$$

Closed Strings:
\rightarrow Worldsheet diffeo. to $\mathbb{R} \times S^{1}$,
\rightarrow periodicity conditions.
\rightarrow Convention $\bar{\sigma}=2 \pi$

- Open Strings:
\rightarrow Worldsheet diffeo. to $\mathbb{R} \times[0, \bar{\sigma}]$,
\rightarrow boundary conditions (later).
\rightarrow Convention $\bar{\sigma}=\pi$

2. The Relativistic String

2.6. The Polyakov Action

- In principle this is all, we have postulated the dynamics of the string and could start solving the Nambu Goto action.
- Problem:
- Nambu-Goto has a square root
- There are primary constraints (the so called Virasoro constraints \rightarrow later)
- Trick:

Find an action, which has no squareroot, no primary constraint and is equivalent to the NG action
\rightarrow same as einbein trick for the relativistic particle...

2. The Relativistic String

2.6. The Polyakov Action

- The Polyakov action is defined as

$$
S_{\mathrm{P}}=-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} g_{\mu \nu}=-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \Gamma_{\alpha \beta}
$$

- $h_{\alpha \beta}$ is a symmetric (2×2) tensor, which can be varied independently of X^{μ}. It is taken as an intrinsic metric tensor on the parametrization domain with inverse $h^{\alpha \beta}$.
- $h_{\alpha \beta}$ is the two dimensional analogon to the einbein function e.
- The Polyakov action has no primary constraints.

wiss Federal Institute of Technology Zurich

2. The Relativistic String

2.7. The Equations of Motion

- To do: Find equations of motion and proof that they are equivalent to NG (+ primary constraints).
- Varying

$$
\delta S=-T \int d^{2} \sigma\left(\sqrt{-h} T_{\alpha \beta} \delta h^{\alpha \beta}+2 \partial_{\alpha}\left(\sqrt{-h} h^{\alpha \beta} \partial_{\beta} X_{\mu}\right) \delta X^{\mu}\right)+\text { bnd term }
$$

where

- $T_{\alpha \beta}$ is the energy momentum tensor, the factor appearing when varying S with respect to $h^{\alpha \beta}$ or as a functional derivative

$$
\begin{gathered}
T_{\alpha \beta}=-\frac{1}{T} \frac{1}{\sqrt{-h}} \frac{\delta S}{\delta h^{\alpha \beta}}=\frac{1}{2} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}-\frac{1}{4} h_{\alpha \beta} h^{\gamma \delta} \partial_{\gamma} X^{\mu} \partial_{\delta} X_{\mu} \\
=\frac{1}{2} \Gamma_{\alpha \beta}-\frac{1}{4} h_{\alpha \beta} h^{\gamma \delta} \Gamma_{\gamma \delta} .
\end{gathered}
$$

2. The Relativistic String

2.8. Equivalence of Polyakov and Nambu-Goto Action

- The equations of motion are

$$
\begin{aligned}
T_{\alpha \beta} & =0 \\
\partial_{\alpha}\left(\sqrt{-h} h^{\alpha \beta} \partial_{\beta} X^{\mu}\right) & =0
\end{aligned}
$$

- \rightarrow see blackboard (equivalence of actions)
- Only for the two dimensional case the actions are equivalent.
- Remark:

Only for minimizing $h^{\alpha \beta}$ fixed, we have $S_{\mathrm{NG}}=S_{\mathrm{P}}$ (in general not the same expression).

2. The Relativistic String

2.9. Symmetries of the Action

- Global Symmetries:
- Poincare Invariance

$$
\begin{gathered}
\delta X^{\mu}=a_{\nu}^{\mu} X^{\nu}+b^{\mu} \quad \text { where } a_{\nu}^{\mu}=-a_{\nu}{ }^{\mu} \\
\delta h_{\alpha \beta}=0
\end{gathered}
$$

a general infinitesimal Poincare transformation.
$\rightarrow X^{\mu}$ transforms as expected as a vector, $h_{\alpha \beta}$ as a scalar.

2. The Relativistic String

2.9. Symmetries of the Action

- Local Symmetries:
- Reparametrization Invariance

Follows directly from the choice of action. Formally $\phi: \sigma^{\alpha} \mapsto \sigma^{\prime \alpha}$ a reparametrization of the parametrization domain. With $\xi^{\alpha}:=\delta \phi^{\alpha}$

$$
\delta X^{\mu}=\xi^{\alpha} \partial_{\alpha} X^{\mu}
$$

and

$$
\delta h_{\alpha \beta}=\xi^{\gamma} \partial_{\gamma} h_{\alpha \beta}+\partial_{\alpha} \xi^{\gamma} h_{\gamma \beta}+\partial_{\beta} \xi^{\gamma} h_{\alpha \gamma} .
$$

- Weyl Symmetry
a bit more concealed symmetrie, invariance of the action wrt. Weyl scaling of the worldsheet metric h.

$$
\begin{gathered}
\delta X^{\mu}=0 \\
\delta h_{\alpha \beta}=2 \Lambda h_{\alpha \beta}
\end{gathered}
$$

where Λ is an arbitrary function.

Outline

```
1. Introduction
    1.1. Historical Overview
    1.2. The Theory
2. The Relativistic String
    2.1. Set Up
    2.2. The Relativistic Point Particle
    2.3. The General p-Brane Action
2.4. The Nambu-Goto Action
2.5. Open and Closed Strings
2.6. The Polyakov Action
2.7. The Equations of Motion
2.8. Equivalence of P and NG action
2.9. Symmetries of the Action
```

1. Introduction
1.1. Historical Overview
1.2. The Theory
2.1. Set Up
2.2. The Relativistic Point Particle
2.3. The General p-Brane Action
2.4. The Nambu-Goto Action
2.5. Open and Closed Strings
2.6. The Polyakov Action
2.7. The Equations of Motion
2.8. Equivalence of P and $N G$ action
2.9. Symmetries of the Action
2. Wave Equations and Solutions
3.1. Conformal Gauge \& Weyl Scaling
3.2. Equations of Motions \& Boundary
3.3. Closed String Solution
3.4. Open String Solution
3.5. Virasoro Constraints
3.6. The Witt Algebra

Summary

3. Wave Equations and Solutions

3.1. Conformal Gauge and Weyl Scaling

- Goal of this chapter:

Simplify equations of motion using the symmetries of the action and find solutions.

- Using reparametrization invariance we can simplify $h_{\alpha \beta}$.
- Claim:

For any two dimensional Lorentzian (meaning signature (-1,1)) metric $h_{\alpha \beta}$ one can find coordinates σ^{1}, σ^{2}, such that

$$
h_{\alpha \beta}=\Omega\left(\sigma^{1}, \sigma^{2}\right) \eta_{\alpha \beta}
$$

where $\eta_{\alpha \beta}$ is the Minkowski metric (and Ω a scalar function).

3. Wave Equations and Solutions

3.1. Conformal Gauge and Weyl Scaling

- Using Weyl Scaling:
\rightarrow gauge away Ω (set $\Omega=1$).
- Having used all symmetries, we are in a gauge with

$$
h_{\alpha \beta}=\eta_{\alpha \beta}
$$

- Such a choice of coordinates is called a conformal gauge.
- We will from now on work in these coordinates (calling them τ and σ).

wiss Federal Institute of Technology Zurich

3. Wave Equations and Solutions

3.2. Equations of Motions and Boundary Conditions

- In conformal gauge, the Polyakov action takes a simple form

$$
S_{\mathrm{P}}=-\frac{T}{2} \int_{0}^{\bar{\sigma}} d \sigma \int_{\tau_{i}}^{\tau_{f}} d \tau \eta^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}=\frac{T}{2} \int_{0}^{\bar{\sigma}} d \sigma \int_{\tau_{i}}^{\tau_{f}} d \tau\left(\dot{X}^{2}-X^{\prime 2}\right)
$$

- The variations fulfill

$$
\begin{gathered}
\delta X^{\mu}(\sigma=0, \bar{\sigma}) \text { arbitrary for open strings } \\
\delta X^{\mu}(\sigma+2 \pi)=\delta X^{\mu}(\sigma) \text { for closed strings } \\
\delta X^{\mu}\left(\tau_{i}\right)=\delta X^{\mu}\left(\tau_{f}\right)=0
\end{gathered}
$$

- Varying with respect to X^{μ} (last term vanishes for closed string):

$$
\left.\delta S_{\mathrm{P}}=T \int_{0}^{\bar{\sigma}} d \sigma \int_{\tau_{i}}^{\tau_{f}} d \tau \delta X^{\mu}\left(\partial_{\sigma}^{2}-\partial_{\tau}^{2}\right) X_{\mu}-T \int_{\tau_{i}}^{\tau_{f}} d \tau \partial_{\sigma} X_{\mu} \delta X^{\mu}\right]_{\sigma=0}^{\sigma=\bar{\sigma}}
$$

3. Wave Equations and Solutions

3.2. Equations of Motions and Boundary Conditions

- This results in the (wave-) equation of motion and boundary conditions

$$
\begin{array}{llr}
\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X^{\mu}=0 & \\
X^{\mu}(\sigma+2 \pi) & =X^{\mu}(\sigma) & \text { closed string } \\
X^{\prime \mu}(\sigma=0, \pi) & =0 & \text { open string. }
\end{array}
$$

- Neumann condition for open string (=free ends). Dirichlet $\left(\delta X^{\mu}(\sigma=0, \sigma=\bar{\sigma})=0\right.$ would have worked too (fixed ends)).
- Should not forget to impose the vanishing of the energy momentum tensor

$$
T_{\alpha \beta}=0 \quad \Leftrightarrow \quad\left(\dot{X} \pm X^{\prime}\right)^{2}=0 \quad \text { Virasoro constraint }
$$

3. Wave Equations and Solutions

3.3. General Solution for the Closed String

- Equations of motion and boundary conditions closed string:

$$
\text { wave equation: } \quad\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X^{\mu}=0
$$

periodicity condition: $\quad X^{\mu}(\sigma+2 \pi, \tau)=X^{\mu}(\sigma, \tau)$
Virasoro constraints:

$$
\left(\dot{X} \pm X^{\prime}\right)^{2}=0
$$

- In light cone coordinates

$$
\sigma^{ \pm}=\tau \pm \sigma \quad \partial_{ \pm}=\frac{1}{2}\left(\partial_{\tau} \pm \partial_{\sigma}\right)
$$

the wave equation reads :

$$
\partial_{+} \partial_{-} X^{\mu}=0
$$

3. Wave Equations and Solutions

3.3. General Solution for the Closed String

- Solution to wave equation:

$$
X^{\mu}\left(\sigma^{-}, \sigma^{+}\right)=X_{R}^{\mu}\left(\sigma^{-}\right)+X_{L}^{\mu}\left(\sigma^{+}\right)
$$

- X_{R} and X_{L} are arbitrary functions only dependent on boundary conditions \rightarrow left - and right movers.
- Closed String \rightarrow Besides periodicity no boundary condition \rightarrow X_{R} and X_{L} are independent.
- This is not the case for open strings \rightarrow Neumann boundary condition connects them (open string $=$ standing waves \rightarrow reflected)

3. Wave Equations and Solutions

3.3. General Solution for the Closed String

- Claim (proof in report):

The 2π periodicity of X^{μ} is equivalent to
$\partial_{-} X_{R}^{\mu}\left(\sigma^{-}\right)$and $\partial_{+} X_{L}^{\mu}\left(\sigma^{+}\right)$are 2π periodic with the same zero-mode.

- Expand in fourier series:

$$
\begin{aligned}
& \partial_{-} X_{R}^{\mu}\left(\sigma^{-}\right)=\frac{1}{\sqrt{4 \pi T}} \sum_{n=-\infty}^{\infty} \alpha_{n}^{\mu} e^{-i n \sigma^{-}} \\
& \partial_{+} X_{L}^{\mu}\left(\sigma^{+}\right)=\frac{1}{\sqrt{4 \pi T}} \sum_{n=-\infty}^{\infty} \bar{\alpha}_{n}^{\mu} e^{-i n \sigma^{+}}
\end{aligned}
$$

- Constants are choosen for convenience.
- α_{n}^{μ} and $\bar{\alpha}_{n}^{\mu}$ are generally independent (exception: $\alpha_{0}^{\mu}=\bar{\alpha}_{0}^{\mu}$).

ETH

3. Wave Equations and Solutions

3.3. General Solution for the Closed String

- Integrating these expressions \rightarrow oscillator expansion (setting $p^{\mu}=\sqrt{4 \pi T} \alpha_{0}^{\mu}=\sqrt{4 \pi T} \bar{\alpha}_{o}^{\mu}$):

$$
\begin{aligned}
& X_{R}^{\mu}\left(\sigma^{-}\right)=\frac{1}{2} x^{\mu}+\frac{1}{4 \pi T} p^{\mu} \sigma^{-}+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{-}} \\
& X_{L}^{\mu}\left(\sigma^{+}\right)=\frac{1}{2} x^{\mu}+\frac{1}{4 \pi T} p^{\mu} \sigma^{+}+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n} \bar{\alpha}_{n}^{\mu} e^{-i n \sigma^{+}}
\end{aligned}
$$

- and together

$$
X^{\mu}(\sigma, \tau)=\underbrace{x^{\mu}+\frac{1}{2 \pi T} p^{\mu} \tau}_{\text {center of mass motion }}+\underbrace{\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n}\left(\alpha_{n}^{\mu} e^{i n \sigma}+\bar{\alpha}_{n}^{\mu} e^{-i n \sigma}\right) e^{-i n \tau}}_{\text {oscillation of the string }}
$$

3. Wave Equations and Solutions

3.3. General Solution for the Closed String

- Properties:
- X^{μ} real implies

$$
x^{\mu}, p^{\mu} \text { are both real } \quad\left(\alpha_{n}^{\mu}\right)^{\dagger}=\alpha_{-n}^{\mu} \quad\left(\bar{\alpha}_{n}^{\mu}\right)^{\dagger}=\bar{\alpha}_{-n}^{\mu} .
$$

- x^{μ} is the center of mass of the string at $\tau=0$:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \sigma X^{\mu}(\sigma, 0)=x^{\mu}
$$

- The canonical τ-momentum is

$$
P_{\tau}^{\mu}=\frac{\partial \mathcal{L}}{\partial \dot{X}_{\mu}}=\frac{\partial}{\partial \dot{X}_{\mu}}\left(\frac{T}{2}\left(\dot{X}^{2}-X^{\prime 2}\right)\right)=T \dot{X}^{\mu}
$$

therefore the total momentum of the string is

$$
P_{c .0 . m}^{\mu}=\int_{0}^{2 \pi} \mathrm{~d} \sigma P_{\tau}^{\mu}=p^{\mu}
$$

3. Wave Equations and Solutions

3.4. General Solution for the Open String

- Equations of motion and boundary conditions open string:
wave equation:
boundary condition:
Virasoro constraint:

$$
\begin{aligned}
\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X^{\mu} & =0 \\
\left.\partial_{\sigma} X^{\mu}\right|_{\sigma=0, \pi} & =0 \\
\left(\dot{X} \pm X^{\prime}\right)^{2} & =0
\end{aligned}
$$

- Similar analysis leads to oscillator expansion:

$$
X^{\mu}(\tau, \sigma)=\underbrace{x^{\mu}+\frac{1}{\pi T} p^{\mu} \tau}_{\text {center of mass motion }}+\underbrace{\frac{i}{\sqrt{\pi T}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \tau} \cos (n \sigma)}_{\text {oscillation of the string }}
$$

with x^{μ}, p^{μ} real and $\left(\alpha_{n}^{\mu}\right)^{\dagger}=\alpha_{-n}^{\mu}$.

- \rightarrow Left and right movers are not independent anymore.

3. Wave Equations and Solutions

3.5. Virasoro Constraints

- We have found the general solution for the wave equation under consideration of boundary conditions.
- We still have to impose the Virasoro constraints

$$
\left(\dot{X} \pm X^{\prime}\right)^{2}=0 \quad \text { or } \quad T_{\alpha \beta}=0 .
$$

- Where did they come from again?
\rightarrow primary constraints of NG action \rightarrow equation of motion for $h^{\alpha \beta}$ in the P action \rightarrow expressed as vanishing of the energy momentum tensor $T_{\alpha \beta} \rightarrow$ equivalent to $\left(\dot{X} \pm X^{\prime}\right)^{2}=0$.
- Can be seen as the string analogon to $p^{\mu} p_{\mu}=-m^{2} c^{2}$.

3. Wave Equations and Solutions

3.5. Virasoro Constraints

- Adviseable to discuss Light cone coordinates a bit further:
- The conformal metric looked like $h_{\alpha \beta}=\eta_{\alpha \beta}$. Therefore the light cone metric is $\eta_{++}=\eta--=0$ and $\eta_{+-}=\eta_{-+}=-\frac{1}{2}$.
- The energy moment tensor
$T_{\alpha \beta}=\frac{1}{2} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}-\frac{1}{4} h_{\alpha \beta} h^{\gamma \delta} \partial_{\gamma} X^{\mu} \partial_{d} X_{\mu}$ becomes in this coordinates with $h_{\alpha \beta}=\eta_{ \pm}$

$$
\begin{gathered}
T_{++}=\frac{1}{2}\left(\partial_{+} X\right)^{2} \quad T_{--}=\frac{1}{2}\left(\partial_{-} X\right)^{2} \\
T_{+-}=T_{-+}=0
\end{gathered}
$$

3. Wave Equations and Solutions

3.5. Virasoro Constraints

- What restriction impose the Virasoro constraints on $\alpha_{n}^{\mu}, \bar{\alpha}_{n}^{\mu}$?

$$
\begin{aligned}
& 0 \stackrel{!}{=} T_{--}=\frac{1}{2}\left(\partial_{-} X\right)^{2}=\frac{1}{2}\left(\frac{1}{\sqrt{4 \pi T}} \sum_{n=-\infty}^{\infty} \alpha_{n}^{\mu} e^{-i n \sigma^{-}}\right)^{2} \\
& =\frac{1}{8 \pi T} \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \alpha_{n}^{\mu} \alpha_{k \mu} e^{-i(n+k) \sigma^{-}} \underbrace{=}_{m=n+k} \frac{1}{8 \pi T} \sum_{n} \sum_{m} \alpha_{n} \cdot \alpha_{m-n} e^{-i m \sigma^{-}} \\
& =: \frac{1}{4 \pi T} \sum_{m} L_{m} e^{-i m \sigma^{-}} \quad \text { where } \quad L_{m}:=\frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_{n} \cdot \alpha_{m-n} \\
& 0 \stackrel{!}{=} T_{++}=\frac{1}{4 \pi T} \sum_{m} \bar{L}_{m} e^{-i m \sigma^{+}} \text {where } \quad \bar{L}_{m}:=\frac{1}{2} \sum_{n=-\infty}^{\infty} \bar{\alpha}_{n} \cdot \bar{\alpha}_{m-n}
\end{aligned}
$$

3. Wave Equations and Solutions

3.5. Virasoro Constraints

- Because $\sum_{m} L_{m} e^{-i m \sigma^{-}} \stackrel{!}{=} 0$ for all σ^{-}, all so called Virasoro modes L_{m} must vanish.
- For the closed string one hast therefore to impose the additional constraints on the modes

$$
L_{m}=\bar{L}_{m} \stackrel{!}{=} 0
$$

- We have found the most general solution for the classical relativistic closed string:
- $X^{\mu}(\sigma, \tau)=x^{\mu}+\frac{1}{2 \pi T} p^{\mu} \tau+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n}\left(\alpha_{n}^{\mu} e^{i n \sigma}+\bar{\alpha}_{n}^{\mu} e^{-i n \sigma}\right) e^{-i n \tau}$
- with $L_{m}:=\frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_{n} \cdot \alpha_{m-n}, \bar{L}_{m}=\frac{1}{2} \sum_{n=-\infty}^{\infty} \bar{\alpha}_{n} \cdot \bar{\alpha}_{m-n}$ fulfilling

$$
L_{m}=\bar{L}_{m}=0 .
$$

3. Wave Equations and Solutions

3.5. Virasoro Constraints

- For the open string the calculation is analog. Because X_{R} and X_{L} are not independent any more one has only one additional constraint

$$
T_{++}=\frac{1}{4 \pi T} \sum_{m} L_{m} e^{-i m \sigma^{+}} \quad T_{--}=\frac{1}{4 \pi T} \sum_{m} L_{m} e^{-i m \sigma^{-}}
$$

where

$$
L_{m}=\frac{1}{2} \sum_{n} \alpha_{n} \cdot \alpha_{m-n} \stackrel{!}{=} 0
$$

3. Wave Equations and Solutions

3.6. The Witt Algebra

- For later quantization: Algebraic considerations of the classical problem.
- The Poisson bracket for coordinate fields $X^{\mu}(\sigma)$, their conjugate momentum fields $P_{\mu}(\sigma)$ and functionals $f(X, P), g(X, P)$ is defined using the functional derivative

$$
\{f, g\}_{P}=\int \mathrm{d} \sigma \frac{\delta f}{\delta X^{\mu}(\sigma)} \frac{\delta g}{\delta P_{\mu}(\sigma)}-\frac{\delta f}{\delta P_{\mu}(\sigma)} \frac{\delta g}{\delta X^{\mu}(\sigma)}
$$

3. Wave Equations and Solutions

3.6. The Witt Algebra

- Interested in τ - propagation:

$$
X^{\mu}(\sigma, \tau) \text { is seen as a field in } \sigma
$$

- conjugate field momentum

$$
\Pi^{\mu}(\sigma, \tau)=\frac{\partial \mathcal{L}}{\partial \dot{X}_{\mu}}(\sigma, \tau)=T \dot{X}^{\mu}(\sigma, \tau)
$$

- Then

$$
\begin{gathered}
\left\{X^{\mu}(\sigma, \tau), X^{\nu}\left(\sigma^{\prime}, \tau\right)\right\}=0\left\{\Pi^{\mu}(\sigma, \tau), \Pi^{\nu}\left(\sigma^{\prime}, \tau\right)\right\}=0 \\
\left\{X^{\mu}(\sigma, \tau), \Pi^{\nu}\left(\sigma^{\prime}, \tau\right)\right\}=g^{\mu \nu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{gathered}
$$

\rightarrow Next step: Calculate Hamiltonian

3. Wave Equations and Solutions

3.6. The Witt Algebra

- The τ Hamiltonian is

$$
H=\int_{0}^{\bar{\sigma}} \mathrm{d} \sigma \dot{X}^{\mu} \Pi_{\mu}-\mathcal{L}=\frac{T}{2} \int_{0}^{\bar{\sigma}} \mathrm{d} \sigma\left(\dot{X}^{2}+X^{\prime 2}\right)
$$

- With

$$
\begin{aligned}
\dot{X}^{2} & =\left(\partial_{+} X+\partial_{-} X\right)^{2}=2 T_{++}+2 T_{--}+2 \partial_{+} X \cdot \partial_{-} X \\
X^{\prime 2} & =\left(\partial_{+} X-\partial_{-} X\right)^{2}=2 T_{++}+2 T_{--}-2 \partial_{+} X \cdot \partial_{-} X
\end{aligned}
$$

- Therefore the Hamiltonian (for τ propagation) is

$$
H=2 T \int_{0}^{\bar{\sigma}} \mathrm{d} \sigma\left(T_{++}+T_{--}\right)
$$

3. Wave Equations and Solutions

3.6. The Witt Algebra

- Closed String

$$
\begin{aligned}
& T_{++}=\frac{1}{4 \pi T} \sum_{m} \bar{L}_{m} e^{-i m \sigma^{+}} \\
& T_{--}=\frac{1}{4 \pi T} \sum_{m} L_{m} e^{-i m \sigma^{-}}
\end{aligned}
$$

- Hamiltonian

$$
H=L_{0}+\bar{L}_{0}
$$

- Open String

$$
\begin{aligned}
& T_{++}=\frac{1}{4 \pi T} \sum_{m} L_{m} e^{-i m \sigma^{+}} \\
& T_{--}=\frac{1}{4 \pi T} \sum_{m} L_{m} e^{-i m \sigma^{-}}
\end{aligned}
$$

- Hamiltonian

$$
H=L_{0}
$$

- Goal: Calculate brackets of the Virasoro modes.

3. Wave Equations and Solutions

3.6. The Witt Algebra

- Closed String: From full solution

$$
\begin{aligned}
& X^{\mu}(\sigma, \tau)=x^{\mu}+\frac{1}{2 \pi T} p^{\mu} \tau+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n}\left(\alpha_{n}^{\mu} e^{i n \sigma}+\bar{\alpha}_{n}^{\mu} e^{-i n \sigma}\right) e^{-i n \tau} \\
& \Pi^{\mu}(\sigma, \tau)=T \dot{X}^{\mu}=\frac{1}{2 \pi} p^{\mu}+\sqrt{\frac{T}{4 \pi}} \sum_{n \neq 0}\left(\alpha_{n}^{\mu} e^{i n \sigma}+\bar{\alpha}_{n}^{\mu} e^{-i n \sigma}\right) e^{-i n \tau}
\end{aligned}
$$

calculate $x^{\mu}=\frac{1}{2 \pi} \int_{0}^{2 \pi} X^{\mu}(\sigma, 0) \mathrm{d} \sigma, \quad p^{\mu}=\int_{0}^{2 \pi} \Pi^{\mu}(\sigma, 0) \mathrm{d} \sigma$ and

$$
\begin{gathered}
-i \frac{\sqrt{4 \pi T}}{2 \pi} \int_{0}^{2 \pi} X^{\mu}(\sigma, 0) e^{-i n \sigma} \mathrm{~d} \sigma=\frac{1}{n}\left(\alpha_{n}^{\mu}-\bar{\alpha}_{-n}^{\mu}\right) \\
\frac{1}{2 \pi} \sqrt{\frac{4 \pi}{T}} \int_{0}^{2 \pi} \Pi^{\mu}(\sigma, 0) e^{-i n \sigma} \mathrm{~d} \sigma=\alpha_{n}^{\mu}+\bar{\alpha}_{n}^{\mu}
\end{gathered}
$$

3. Wave Equations and Solutions

3.6. The Witt Algebra

- With these formulas calculate (for example)

$$
\begin{aligned}
\left\{x^{\mu}, p^{\nu}\right\} & =\frac{1}{2 \pi}\left\{\int_{0}^{2 \pi} X^{\mu}(\sigma, 0) \mathrm{d} \sigma, \int_{0}^{2 \pi} \Pi^{\nu}\left(\sigma^{\prime}, 0\right) \mathrm{d} \sigma^{\prime}\right\} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \sigma \int_{0}^{2 \pi} \mathrm{~d} \sigma^{\prime}\left\{X^{\mu}(\sigma, 0), \Pi^{\nu}\left(\sigma^{\prime}, 0\right)\right\} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \sigma \int_{0}^{2 \pi} \mathrm{~d} \sigma^{\prime} g^{\mu \nu} \delta\left(\sigma-\sigma^{\prime}\right)=g^{\mu \nu}
\end{aligned}
$$

- In this way one finds $\left(\delta_{m+n}:=\delta_{m+n, 0}\right)$

$$
\begin{aligned}
\left\{\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right\} & =\left\{\bar{\alpha}_{m}^{\mu}, \bar{\alpha}_{n}^{\nu}\right\}=-i m \delta_{m+n} g^{\mu \nu} \\
\left\{\bar{\alpha}_{m}^{\mu}, \alpha_{n}^{\nu}\right\} & =0 \\
\left\{x^{\mu}, p^{\nu}\right\} & =g^{\mu \nu}
\end{aligned}
$$

3. Wave Equations and Solutions

3.6. The Witt Algebra

- Therefore using $L_{m}=\frac{1}{2} \sum_{n} \alpha_{n} \cdot \alpha_{m-n}, \quad \bar{L}_{m}=\frac{1}{2} \sum_{n} \bar{\alpha}_{n} \cdot \bar{\alpha}_{m-n}$:

$$
\begin{gathered}
\left\{L_{m}, L_{n}\right\}=-i(m-n) L_{m+n} \quad\left\{\bar{L}_{m}, \bar{L}_{n}\right\}=-i(m-n) \bar{L}_{m+n} \\
\left\{L_{m}, \bar{L}_{n}\right\}=0
\end{gathered}
$$

- \Rightarrow Witt algebra (\rightarrow quantize to get Virasoro algebra).
- The Virasoro modes L_{m}, \bar{L}_{m} generate an infinite dimensional Lie algebra (Witt algebra) of conserved charges respecting the closed string boundary condition.

3. Wave Equations and Solutions

3.6. The Witt Algebra

- For the open string the Virasoro modes $L_{m}=\frac{1}{2} \sum_{n} \alpha_{n} \alpha_{m-n}$ fulfill the same commutation relation

$$
\left\{L_{m}, L_{n}\right\}=-i(m-n) L_{m+n}
$$

3. Wave Equations and Solutions

3.6. The Witt Algebra

- One question is left:

Why did the infinite dimensional Witt algebra appear in this classical calculation?

- Consider the unit circle S^{1} and the group of diffeomorphisms on it. A diffeomorphism $\theta \rightarrow \theta+a(\theta)$ is generated by the operator $D_{a}=i a(\theta) \frac{d}{d \theta}$.
A complete basis for such operators is given by $D_{n}=i e^{i n \theta} \frac{d}{d \theta}$ fulfilling the commutator relation

$$
\left[D_{n}, D_{m}\right]=-i(m-n) D_{m+n} .
$$

- We see: The Witt algebra is simply the Lie algebra of the group of diffeomorphisms on the circle!

Summary

We ...

- ... defined Nambu-Goto action in analogy to the point particle.
- ... found equivalent Polyakov action with 'nicer' properties.
- ... discussed symmetries and found equations of motion.
- ... used conformal gauge to simplify equations of motion.
- ... derived general solutions for open and closed strings.
- ... realized that the Virasoro modes generate the Witt algebra.

Questions?

Thank you for your attention!

