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1. Introduction
1.1. Historical Overview

� 1969
Nambu, Nielsen and Susskind propose a model
for the interaction of quarks - quarks connected by
’strings’.

� 1970’s
Quantum Chromodynamics is recognized as the
theory of strong interaction.
String theory needs 10 dimensions to work, a very
unlikely assumption (at this time) for an unneeded
theory.
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−→ String theory went into the dustbin of history.
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1. Introduction
1.1. Historical Overview

� From all calculations (with closed strings) a massless particle
with spin 2 appeares.

� This is exactly the property of the graviton
→ String theory always contains gravity.

� 1980’s
After the full discovery of the standard model, it was this fact
which made string theory reappear as a promising candidate
for a theory of quantum gravitation.

April 15, 2013 Classical String Theory 4/52



1. Introduction
1.2. The Theory

� In a nutshell:
� String theorists propose one dimensional fundamental objects

(’strings’) instead of zero dimensional elementary particles.
� The different elementary particles appear as different oscillation

modes of strings.
� Effects become important for small scale and high energy

physics.
→ Planck length (∼ 10−35m)
→ Planck energy (∼ 1019GeV)
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1. Introduction
1.2. The Theory

� Why String theory?
� Promising (among other things due to the emergence of the

graviton in a natural way) candidate for a theory of quantum
gravitation or even a ’theory of everything’.

� Brought many interesting and important mathematical theories
to life.

� Eludes the problem of renormalization in QFT.
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2. The Relativistic String
2.1. Set Up

� Start by considering ’strings’ as fundamental objects moving
in a (D dimensional) Lorentzian spacetime (with Lorentzian
metric gµν) and obeying certain dynamical laws.

� Goal of this chapter:
Find an action principle of the free bosonic string and study its
dynamics.

� Idea
Strings behave classically as the one dimensional analogon to
point particles.
→ Review point particle action.
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2. The Relativistic String
2.2. The Relativistic Point Particle

� Action should be a functional of the particle’s path (’world line’).

� Natural (and only) candidate: ’length’ of the world line

S = −mc
∫
γ

ds.

� Proportionality factor −mc follows from classical limit (v→ 0).
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2. The Relativistic String
2.2. The Relativistic Point Particle

� parametrization xµ(τ).
� induced (1x1) metric on the

parametrization domain
(pullback of ambient metric
gµν)

Γ =
∂xµ

∂τ

∂xν

∂τ
gµν

� volume (or length) form

ds =
√
|Γ|dτ =

√
−ẋµẋµdτ

93 5.2 Reparameterization invariance!
H = !p · !v − L = mv2

√
1 − v2/c2

+ mc2
√

1 − v2/c2 = mc2
√

1 − v2/c2
, (5.11)

where the result was left as a function of the velocity of the particle, rather than as a
function of its momentum. As expected, the answer coincides with the relativistic energy
(2.68) of the point particle.

We have therefore recovered the familiar physics of a relativistic particle from the rather
remarkable action (5.5). This action is very elegant: it is briefly written in terms of the
geometrical quantity ds, it has a clear physical interpretation as total proper time, and it
manifestly guarantees the Lorentz invariance of the physics it describes.

5.2 Reparameterization invariance

In this section we explore an important property of the point particle action (5.5). This
property is called reparameterization invariance. To evaluate the integral in the action, an
observer may find it useful to parameterize the particle world-line. Reparameterization
invariance of the action means that the value of the action is independent of the parame-
terization chosen to calculate it. This should be so, since the action (5.5) is in fact defined
independently of any parameterization: the integration can be done by breaking P into
small pieces and adding the values of mc ds for each piece. No parameterization is needed
to do this. In practice, however, world-lines are described as parameterized lines, and the
parameterization is used to compute the action.

We parameterize the world-line P of a point particle using a parameter τ (Figure 5.2). This
parameter must be strictly increasing as the world-line goes from the initial point xµ

i to the
final point xµ

f , but is otherwise arbitrary. As τ ranges in the interval [τi , τ f ] it describes the
motion of the particle. To have a parameterization of the world-line means that we have
expressions for the coordinates xµ as functions of τ :

xµ = xµ(τ ). (5.12)

τf

τi

τ x 
0

x 
1 (x2,...)

x 
µ(τf )

x 
µ(τi)

!Fig. 5.2 A world-line fully parameterized by τ . All spacetime coordinates x µ are functions of τ .xµ : [τi, τf ] −→ RD
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2. The Relativistic String
2.2. The Relativistic Point Particle

� Therefore, the point particle action is (writing ẋµ := dxµ
dτ )

Spoint particle = −mc
∫ τf

τi

√
−ẋµẋµ dτ

� Better known form:
In eigentime parametrization

xµ(τ) = (c τ, x(τ))

the action reads

S = −mc2
∫ √

1− v2

c2 dt.
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2. The Relativistic String
2.2. The Relativistic Point Particle

S = −mc
∫ √

−ẋµẋµ dτ ⇒ d
dτ

(
mẋµ√
−ẋµẋµ

)
= 0.

� Disadvantages
� The squareroot is not easy to quantize.
� The massless case is not covered.
� The action has primary constraints (constraints not following

from the equation of motion).
From the definition pµ = ∂L

∂ẋµ , it follows directly that pµpµ = −m2c2.
−→ More about primary constraints in report.
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2. The Relativistic String
2.2. The Relativistic Point Particle

� Trick The Einbein Action:
Define the action

S =
1
2

∫ τ1

τ0

dτ e(τ)
(

e−2(τ) (ẋµ(τ))2 − m2
)

where e(τ) is an auxilliary function (which can be varied
independently of xµ).

� Varying with respect to xµ and e gives

δS
δe

= 0 ⇒ ẋ2 + e2m2 = 0

δS
δxµ

= 0 ⇒ d
dτ

(
e−1ẋµ

)
= 0.
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2. The Relativistic String
2.2. The Relativistic Point Particle

e =

√
−ẋ2

m
&

d
dτ

(
e−1ẋµ

)
= 0 ⇒ d

dτ

(
mẋµ√
−ẋµẋµ

)
= 0.

� The resulting equations of motion are equivalent to the
classical point particle equation of motion together with the
primary constraint.

� Found new equivalent action with
� no squareroot
� no primary constraint (old primary constraints are turned into

equation of motion)
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2. The Relativistic String
2.3. The General p-Brane Action

� Generalize: spatial 0-dim
point→ spatial (p-1)-dim
objects in a D dimensional
spacetime (called brane).

� represented by its p
dimensional ’worldvolume’
(p = 1 worldline, p = 2
worldsheet).

Xµ : U −→ RD
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2. The Relativistic String
2.3. The General p-Brane Action

� In analogy to the point particle the reparametrization
invariant action of this world volume is

S ∝ Vol(world volume).

� If Xµ(τ i) (µ ∈ {1, ...D}, i ∈ {1, ..., p}) is a parametrization of the
worldvolume of the brane, then the induced metric on the
parametrization domain Γ

(p)
αβ is the pullback of gµν under Xµ

Γ
(p)
αβ =

∂Xµ

∂τα
∂Xν

∂τβ
gµν .
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2. The Relativistic String
2.3. The General p-Brane Action

� The general p-Brane action therefore reads

SBrane = −Tp

∫ √
−det(

∂Xµ

∂τα
∂Xν

∂τβ
gµν) dp+1τ

where Tp is a proportionality factor.
� We are now ready to think about ’strings’, or 1-branes.

April 15, 2013 Classical String Theory 17/52



2. The Relativistic String
2.4. The Nambu-Goto Action

� The Nambu Goto action is the action for a string or 1-brane:
Parametrization

(τ, σ) 7→ Xµ(τ, σ),

then
SNambu-Goto = −T0

c

∫ √
−det(Γ(1)

αβ)dτdσ

where the proportionality factor T0 is called string tension.
� Calculating the determinant of (X′µ := ∂Xµ

∂σ , Ẋµ := ∂Xµ

∂τ )

Γ
(1)
αβ = ∂Xµ

∂τα
∂Xν

∂τβ
gµν =

(
Ẋ · Ẋ Ẋ · X′
X′ · Ẋ X′ · X′

)
gives

SNG = −T0

c

∫ ∫ √(
Ẋ · X′

)2 − Ẋ2X′2dτdσ
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2. The Relativistic String
2.5. Open and Closed Strings

� For later: Consider two kinds of
string, open and closed.

� Parametrization domain:

−∞ < τ <∞ 0 < σ < σ

101 6.1 Area functional for spatial surfaces!
x 

0 = ct

x 
2(x3,...)

x 
1!Fig. 6.1 The world-sheets traced out by an open string (left) and by a closed string (right).

x 
3

x 
1

x 
2

!Fig. 6.2 A spatial surface stretching between two rings. If the surface were a soap film, it would be
a minimal area surface.

exists in its entirety at any instant of time. We will first study these familiar surfaces, and
then we will apply our experience to the case of surfaces in spacetime.

A line in space can be parameterized using only one parameter. A surface in space is
two-dimensional, so it requires two parameters ξ1 and ξ2. Given a parameterized surface,
we can draw on that surface the lines of constant ξ1 and the lines of constant ξ2. These lines
cover the surface with a grid. We call target space the world where the two-dimensional
surface lives. In the case of a soap bubble in three dimensions, the target space is the three-
dimensional space x1, x2, and x3. The parameterized surface is described by the collection
of functions

� Closed Strings:
→Worldsheet diffeo. to R× S1,
→ periodicity conditions.
→ Convention σ = 2π

� Open Strings:
→Worldsheet diffeo. to R× [0, σ],
→ boundary conditions (later).
→ Convention σ = π
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2. The Relativistic String
2.6. The Polyakov Action

� In principle this is all, we have postulated the dynamics of the
string and could start solving the Nambu Goto action.

� Problem:
� Nambu-Goto has a square root
� There are primary constraints (the so called Virasoro constraints
→ later)

� Trick:
Find an action, which has no squareroot, no primary constraint
and is equivalent to the NG action
→ same as einbein trick for the relativistic particle...
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2. The Relativistic String
2.6. The Polyakov Action

� The Polyakov action is defined as

SP = −T
2

∫
d2σ
√
−hhαβ ∂αXµ∂βXνgµν = −T

2

∫
d2σ
√
−hhαβ Γαβ

� hαβ is a symmetric (2x2) tensor, which can be varied
independently of Xµ. It is taken as an intrinsic metric tensor
on the parametrization domain with inverse hαβ.

� hαβ is the two dimensional analogon to the einbein function e.
� The Polyakov action has no primary constraints.
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2. The Relativistic String
2.7. The Equations of Motion

� To do: Find equations of motion and proof that they are
equivalent to NG (+ primary constraints).

� Varying

δS = −T
∫

d2σ
(√
−hTαβδhαβ + 2∂α

(√
−hhαβ∂βXµ

)
δXµ

)
+ bnd term

where
� Tαβ is the energy momentum tensor, the factor appearing

when varying S with respect to hαβ or as a functional derivative

Tαβ = − 1
T

1√
−h

δS
δhαβ

=
1
2
∂αXµ∂βXµ −

1
4

hαβhγδ∂γXµ∂δXµ

=
1
2

Γαβ −
1
4

hαβhγδΓγδ.
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2. The Relativistic String
2.8. Equivalence of Polyakov and Nambu-Goto Action

� The equations of motion are

Tαβ = 0

∂α

(√
−hhαβ∂βXµ

)
= 0

� → see blackboard (equivalence of actions)
� Only for the two dimensional case the actions are equivalent.
� Remark:

Only for minimizing hαβ fixed, we have SNG = SP (in general not
the same expression).
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2. The Relativistic String
2.9. Symmetries of the Action

� Global Symmetries:
� Poincare Invariance

δXµ = aµνXν + bµ where aµν = −a µ
ν

δhαβ = 0

a general infinitesimal Poincare transformation.
→ Xµ transforms as expected as a vector, hαβ as a scalar.
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2. The Relativistic String
2.9. Symmetries of the Action

� Local Symmetries:
� Reparametrization Invariance

Follows directly from the choice of action. Formally φ : σα 7→ σ′α a
reparametrization of the parametrization domain. With ξα := δφα

δXµ = ξα∂αXµ

and
δhαβ = ξγ∂γhαβ + ∂αξ

γhγβ + ∂βξ
γhαγ .

� Weyl Symmetry
a bit more concealed symmetrie, invariance of the action wrt.
Weyl scaling of the worldsheet metric h.

δXµ = 0

δhαβ = 2Λhαβ
where Λ is an arbitrary function.
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3. Wave Equations and Solutions
3.1. Conformal Gauge and Weyl Scaling

� Goal of this chapter:
Simplify equations of motion using the symmetries of the action
and find solutions.

� Using reparametrization invariance we can simplify hαβ.
� Claim:

For any two dimensional Lorentzian (meaning signature (-1,1))
metric hαβ one can find coordinates σ1, σ2, such that

hαβ = Ω(σ1, σ2)ηαβ

where ηαβ is the Minkowski metric (and Ω a scalar function).
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3. Wave Equations and Solutions
3.1. Conformal Gauge and Weyl Scaling

� Using Weyl Scaling:
→ gauge away Ω (set Ω = 1).

� Having used all symmetries, we are in a gauge with

hαβ = ηαβ

� Such a choice of coordinates is called a conformal gauge.
� We will from now on work in these coordinates (calling them τ

and σ).
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3. Wave Equations and Solutions
3.2. Equations of Motions and Boundary Conditions

� In conformal gauge, the Polyakov action takes a simple form

SP = −T
2

∫ σ

0
dσ
∫ τf

τi

dτ ηαβ∂αXµ∂βXµ =
T
2

∫ σ

0
dσ
∫ τf

τi

dτ
(

Ẋ2 − X
′2
)

� The variations fulfill

δXµ(σ = 0, σ) arbitrary for open strings

δXµ(σ + 2π) = δXµ(σ) for closed strings

δXµ(τi) = δXµ(τf ) = 0
� Varying with respect to Xµ (last term vanishes for closed string):

δSP = T
∫ σ

0
dσ
∫ τf

τi

dτ δXµ
(
∂2
σ − ∂2

τ

)
Xµ−T

∫ τf

τi

dτ ∂σXµ δXµ]σ=σσ=0
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3. Wave Equations and Solutions
3.2. Equations of Motions and Boundary Conditions

� This results in the (wave-) equation of motion and boundary
conditions(

∂2
τ − ∂2

σ

)
Xµ = 0

Xµ(σ + 2π) = Xµ(σ) closed string

X
′µ(σ = 0, π) = 0 open string.

� Neumann condition for open string (=free ends). Dirichlet
(δXµ(σ = 0, σ = σ) = 0 would have worked too (fixed ends)).

� Should not forget to impose the vanishing of the energy
momentum tensor

Tαβ = 0 ⇔
(
Ẋ ± X′

)2
= 0 Virasoro constraint
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

� Equations of motion and boundary conditions closed string:

wave equation:
(
∂2
τ − ∂2

σ

)
Xµ = 0

periodicity condition: Xµ(σ + 2π, τ) = Xµ(σ, τ)

Virasoro constraints:
(
Ẋ ± X′

)2
= 0

� In light cone coordinates

σ± = τ ± σ ∂± =
1
2

(∂τ ± ∂σ)

the wave equation reads :

∂+∂−Xµ = 0
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

� Solution to wave equation:

Xµ(σ−, σ+) = XµR(σ−) + XµL (σ+)

� XR and XL are arbitrary functions only dependent on boundary
conditions→ left - and right movers.

� Closed String→ Besides periodicity no boundary condition→
XR and XL are independent.

� This is not the case for open strings→ Neumann boundary
condition connects them (open string = standing waves→
reflected)
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

� Claim (proof in report):
The 2π periodicity of Xµ is equivalent to

∂−XµR(σ−) and ∂+XµL (σ+) are 2π periodic with the same zero-mode.

� Expand in fourier series:

∂−XµR(σ−) =
1√
4πT

∞∑
n=−∞

αµn e−inσ−

∂+XµL (σ+) =
1√
4πT

∞∑
n=−∞

αµn e−inσ+
,

� Constants are choosen for convenience.
� αµn and αµn are generally independent (exception: αµ0 = αµ0 ).
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

� Integrating these expressions→ oscillator expansion
(setting pµ =

√
4πT αµ0 =

√
4πT αµo ):

XµR(σ−) =
1
2

xµ +
1

4πT
pµσ− +

i√
4πT

∑
n6=0

1
n
αµn e−inσ−

XµL (σ+) =
1
2

xµ +
1

4πT
pµσ+ +

i√
4πT

∑
n6=0

1
n
αµn e−inσ+

� and together

Xµ(σ, τ) = xµ +
1

2πT
pµτ︸ ︷︷ ︸

center of mass motion

+
i√

4πT

∑
n6=0

1
n

(
αµn einσ + αµn e−inσ) e−inτ

︸ ︷︷ ︸
oscillation of the string
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

� Properties:
� Xµ real implies

xµ, pµ are both real (αµn )
†

= αµ−n (αµn )
†

= αµ−n.

� xµ is the center of mass of the string at τ = 0:

1
2π

∫ 2π

0
dσ Xµ(σ, 0) = xµ

� The canonical τ -momentum is

Pµτ =
∂L
∂Ẋµ

=
∂

∂Ẋµ

(
T
2
(
Ẋ2 − X′2

))
= TẊµ

therefore the total momentum of the string is

Pµc.o.m =

∫ 2π

0
dσ Pµτ = pµ
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3. Wave Equations and Solutions
3.4. General Solution for the Open String

� Equations of motion and boundary conditions open string:

wave equation:
(
∂2
τ − ∂2

σ

)
Xµ = 0

boundary condition: ∂σXµ|σ=0,π = 0

Virasoro constraint:
(
Ẋ ± X′

)2
= 0

� Similar analysis leads to oscillator expansion:

Xµ(τ, σ) = xµ +
1
πT

pµτ︸ ︷︷ ︸
center of mass motion

+
i√
πT

∑
n6=0

1
n
αµn e−inτ cos(nσ)︸ ︷︷ ︸

oscillation of the string

with xµ, pµ real and (αµn )
†

= αµ−n.
� → Left and right movers are not independent anymore.
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

� We have found the general solution for the wave equation
under consideration of boundary conditions.

� We still have to impose the Virasoro constraints(
Ẋ ± X′

)2
= 0 or Tαβ = 0.

� Where did they come from again?
→ primary constraints of NG action→ equation of motion for
hαβ in the P action→ expressed as vanishing of the energy
momentum tensor Tαβ → equivalent to

(
Ẋ ± X′

)2
= 0.

� Can be seen as the string analogon to pµpµ = −m2c2.
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

� Adviseable to discuss Light cone coordinates a bit further:
� The conformal metric looked like hαβ = ηαβ. Therefore the

light cone metric is η++ = η−− = 0 and η+− = η−+ = −1
2 .

� The energy moment tensor
Tαβ = 1

2∂αXµ∂βXµ − 1
4 hαβhγδ∂γXµ∂dXµ becomes in this

coordinates with hαβ = η±

T++ =
1
2

(∂+X)2 T−− =
1
2

(∂−X)2

T+− = T−+ = 0
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

� What restriction impose the Virasoro constraints on αµn , αµn ?

0 !
= T−− =

1
2

(∂−X)2 =
1
2

(
1√
4πT

∞∑
n=−∞

αµn e−inσ−
)2

=
1

8πT

∞∑
k=−∞

∞∑
n=−∞

αµnαkµe−i(n+k)σ− =︸︷︷︸
m=n+k

1
8πT

∑
n

∑
m

αn · αm−ne−imσ−

=:
1

4πT

∑
m

Lme−imσ− where Lm :=
1
2

∞∑
n=−∞

αn · αm−n

0 !
= T++ =

1
4πT

∑
m

Lme−imσ+
where Lm :=

1
2

∞∑
n=−∞

αn · αm−n
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

� Because
∑

m Lme−imσ− !
= 0 for all σ−, all so called Virasoro

modes Lm must vanish.
� For the closed string one hast therefore to impose the

additional constraints on the modes

Lm = Lm
!

= 0

� We have found the most general solution for the classical
relativistic closed string:
� Xµ(σ, τ) = xµ + 1

2πT pµτ + i√
4πT

∑
n6=0

1
n

(
αµn einσ + αµn e−inσ

)
e−inτ

� with Lm := 1
2

∑∞
n=−∞ αn · αm−n, Lm = 1

2

∑∞
n=−∞ αn · αm−n fulfilling

Lm = Lm = 0.
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

� For the open string the calculation is analog. Because XR and
XL are not independent any more one has only one additional
constraint

T++ =
1

4πT

∑
m

Lme−imσ+
T−− =

1
4πT

∑
m

Lme−imσ−

where

Lm =
1
2

∑
n

αn · αm−n
!

= 0
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� For later quantization: Algebraic considerations of the classical
problem.

� The Poisson bracket for coordinate fields Xµ(σ), their
conjugate momentum fields Pµ(σ) and functionals
f (X,P), g(X,P) is defined using the functional derivative

{f , g}P =

∫
dσ

δf
δXµ(σ)

δg
δPµ(σ)

− δf
δPµ(σ)

δg
δXµ(σ)
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� Interested in τ - propagation:

Xµ(σ, τ) is seen as a field in σ

� conjugate field momentum

Πµ(σ, τ) =
∂L
∂Ẋµ

(σ, τ) = TẊµ(σ, τ)

� Then

{Xµ(σ, τ),Xν(σ′, τ)} = 0 {Πµ(σ, τ),Πν(σ′, τ)} = 0

{Xµ(σ, τ),Πν(σ′, τ)} = gµνδ(σ − σ′)
→ Next step: Calculate Hamiltonian
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� The τ Hamiltonian is

H =

∫ σ

0
dσ ẊµΠµ − L =

T
2

∫ σ

0
dσ

(
Ẋ2 + X′2

)
� With

Ẋ2 = (∂+X + ∂−X)2 = 2T++ + 2T−− + 2∂+X · ∂−X

X′2 = (∂+X − ∂−X)2 = 2T++ + 2T−− − 2∂+X · ∂−X.

� Therefore the Hamiltonian (for τ propagation) is

H = 2T
∫ σ

0
dσ (T++ + T−−)
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� Closed String

T++ =
1

4πT

∑
m

Lme−imσ+

T−− =
1

4πT

∑
m

Lme−imσ−

� Hamiltonian

H = L0 + L0

� Open String

T++ =
1

4πT

∑
m

Lme−imσ+

T−− =
1

4πT

∑
m

Lme−imσ−

� Hamiltonian

H = L0

� Goal: Calculate brackets of the Virasoro modes.
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� Closed String: From full solution

Xµ(σ, τ) = xµ +
1

2πT
pµτ +

i√
4πT

∑
n6=0

1
n

(
αµn einσ + αµn e−inσ) e−inτ

Πµ(σ, τ) = TẊµ =
1

2π
pµ +

√
T
4π

∑
n6=0

(
αµn einσ + αµn e−inσ) e−inτ

calculate xµ = 1
2π

∫ 2π
0 Xµ(σ, 0)dσ, pµ =

∫ 2π
0 Πµ(σ, 0)dσ and

−i

√
4πT
2π

∫ 2π

0
Xµ(σ, 0)e−inσdσ =

1
n

(
αµn − αµ−n

)
1

2π

√
4π
T

∫ 2π

0
Πµ(σ, 0)e−inσdσ = αµn + αµn
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� With these formulas calculate (for example)

{xµ, pν} =
1

2π
{
∫ 2π

0
Xµ(σ, 0) dσ,

∫ 2π

0
Πν(σ′, 0) dσ′}

=
1

2π

∫ 2π

0
dσ
∫ 2π

0
dσ′{Xµ(σ, 0),Πν(σ′, 0)}

=
1

2π

∫ 2π

0
dσ
∫ 2π

0
dσ′gµνδ(σ − σ′) = gµν

� In this way one finds (δm+n := δm+n,0)

{αµm, ανn} = {αµm, ανn} = −imδm+ngµν

{αµm, ανn} = 0

{xµ, pν} = gµν
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� Therefore using Lm = 1
2
∑

n αn · αm−n, Lm = 1
2
∑

n αn · αm−n :

{Lm,Ln} = −i(m− n)Lm+n {Lm,Ln} = −i(m− n)Lm+n

{Lm,Ln} = 0

� ⇒Witt algebra (→ quantize to get Virasoro algebra).
� The Virasoro modes Lm,Lm generate an infinite dimensional Lie

algebra (Witt algebra) of conserved charges respecting the
closed string boundary condition.
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� For the open string the Virasoro modes Lm = 1
2
∑

n αnαm−n fulfill
the same commutation relation

{Lm,Ln} = −i(m− n)Lm+n
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3. Wave Equations and Solutions
3.6. The Witt Algebra

� One question is left:
Why did the infinite dimensional Witt algebra appear in this
classical calculation?

� Consider the unit circle S1 and the group of diffeomorphisms on
it. A diffeomorphism θ → θ + a(θ) is generated by the operator
Da = ia(θ) d

dθ .
A complete basis for such operators is given by Dn = ieinθ d

dθ
fulfilling the commutator relation

[Dn,Dm] = −i(m− n)Dm+n.

� We see: The Witt algebra is simply the Lie algebra of the
group of diffeomorphisms on the circle!
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Summary

We ...
� ... defined Nambu-Goto action in analogy to the point particle.
� ... found equivalent Polyakov action with ’nicer’ properties.
� ... discussed symmetries and found equations of motion.
� ... used conformal gauge to simplify equations of motion.
� ... derived general solutions for open and closed strings.
� ... realized that the Virasoro modes generate the Witt algebra.
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Questions?

Thank you for your attention!

April 15, 2013 Classical String Theory 52/52


	1. Introduction
	1.1. Historical Overview
	1.2. The Theory

	2. The Relativistic String
	2.1. Set Up
	2.2. The Relativistic Point Particle
	2.3. The General p-Brane Action
	2.4. The Nambu-Goto Action
	2.5. Open and Closed Strings
	2.6. The Polyakov Action
	2.7. The Equations of Motion
	2.8. Equivalence of P and NG action
	2.9. Symmetries of the Action

	3. Wave Equations and Solutions
	3.1. Conformal Gauge & Weyl Scaling
	3.2. Equations of Motions & Boundary
	3.3. Closed String Solution
	3.4. Open String Solution
	3.5. Virasoro Constraints
	3.6. The Witt Algebra
	Summary


