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1. Introduction

1.1. Historical Overview

" 1969
Nambu, Nielsen and Susskind propose a model
for the interaction of quarks - quarks connected by
'strings’.

" 1970’s
Quantum Chromodynamics is recognized as the
theory of strong interaction.
String theory needs 10 dimensions to work, a very
unlikely assumption (at this time) for an unneeded
theory.

— String theory went into the dustbin of history.

=



1. Introduction

1.1. Historical Overview

® From all calculations (with closed strings) a massless particle
with spin 2 appeares.

® This is exactly the property of the graviton
— String theory always contains gravity.

" 1980’s
After the full discovery of the standard model, it was this fact
which made string theory reappear as a promising candidate
for a theory of quantum gravitation.
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1. Introduction
1.2. The Theory

" |n a nutshell:

= String theorists propose one dimensional fundamental objects
('strings’) instead of zero dimensional elementary particles.

= The different elementary particles appear as different oscillation
modes of strings.

= Effects become important for small scale and high energy
physics.
— Planck length (~ 107%°m)
— Planck energy (~ 10"GeV)
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1. Introduction
1.2. The Theory

® Why String theory?

=  Promising (among other things due to the emergence of the
graviton in a natural way) candidate for a theory of quantum
gravitation or even a 'theory of everything'.

= Brought many interesting and important mathematical theories
to life.

= Eludes the problem of renormalization in QFT.
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2. The Relativistic String
2.1. Set Up

® Start by considering 'strings’ as fundamental objects moving
in a (D dimensional) Lorentzian spacetime (with Lorentzian
metric g,,,) and obeying certain dynamical laws.

® Goal of this chapter:
Find an action principle of the free bosonic string and study its
dynamics.

" Idea
Strings behave classically as the one dimensional analogon to
point particles.
— Review point particle action.



2. The Relativistic String

2.2. The Relativistic Point Particle

Action should be a functional of the particle’s path ('world line’).

Natural (and only) candidate: ’length’ of the world line

S = —mc/ds.
¥

Proportionality factor —mc follows from classical limit (v — 0).



2. The Relativistic String
2.2. The Relativistic Point Particle

" parametrization x* (7).

® induced (1x1) metric on the
parametrization domain
(pullback of ambient metric

g;w)

_ow o
- or afg“”

* volume (or length) form

ds = /|I'|d7 = \/—&*x,dT




2. The Relativistic String

2.2. The Relativistic Point Particle

Therefore, the point particle action is (writing ¥ := %)

Tf
Spoint particle = —mC/ \/Tﬂxu dr
Ti

Better known form:
In eigentime parametrization

() = (e 7,x(7))

/ 2
S:—mcz/ l—V—zdt.
c

the action reads
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2. The Relativistic String
2.2. The Relativistic Point Particle

d o
S = —mc/\/—)'c#)'cu dr = - <mx) = 0.
T

® Disadvantages

=  The squareroot is not easy to quantize.
®" The massless case is not covered.

®= The action has primary constraints (constraints not following
from the equation of motion).
From the definition p,, = 2%, it follows directly that pp, = —m?*c?.
— More about primary constraints in report.



2 The Relatlwstlc String
2.2. The Relativistic Point Particle

" Trick The Einbein Action:
Define the action

=2 /T " dr e(r) (e72(7) () - )

where e(7) is an aukxilliary function (which can be varied
independently of x*).

Varying with respect to x* and e gives

6—S:O = P+efm? =0
de

oS d ..

— = — =0.
OxH 0 ~ dr (e x)



2. The Relativistic String
2.2. The Relativistic Point Particle

_ iy _ a (_m
e = - &dT(e x)—O = dT<\/Tux.H>—O.

The resulting equations of motion are equivalent to the
classical point particle equation of motion together with the
primary constraint.

Found new equivalent action with

" no squareroot

® no primary constraint (old primary constraints are turned into
equation of motion)



2. The Relativistic String

2.3. The General p-Brane Action

" Generalize: spatial 0-dim worldsheet  world volume
point — spatial (p-1)-dim worldline
objects in a D dimensional ‘
spacetime (called brane).

" represented by its p
dimensional 'worldvolume’
(p = 1 worldline, p =2
worldsheet).




2 The Relativistic String
2.3. The General p-Brane Action

In analogy to the point particle the reparametrization
invariant action of this world volume is

S o Vol(world volume).
" If X#(7) (u € {1,..D},i € {1,...,p}) is a parametrization of the
worldvolume of the brane, then the induced metric on the
parametrization domain Fg’g is the pullback of g, under X*

() _ OXHOX"
FO‘B ore orh orB S



2 The Relativistic String
2.3. The General p-Brane Action

® The general p-Brane action therefore reads

X+ 0Xv
SBrane = —1 /\/ det(-— 8 a9y 53#1/) &

where T, is a proportionality factor.

We are now ready to think about ’strings’, or 1-branes.




2 The Relativistic String
2.4. The Nambu-Goto Action

® The Nambu Goto action is the action for a string or 1-brane:

Parametrization
(1,0) — XH(1,0),

To / 1
SNambu-Goto = _C/ _det(rgg))deU

where the proportionality factor 7 is called string tension.

then

* Calculating the determinant of (X' = 9K Xn = 9K
: v XX XX .
Fgg =X, = ( Y% ¥.x ) gives

SNG——//\/X X’ — X2X2drdo




2. The Relativistic String
2.5. Open and Closed Strings

® For later: Consider two kinds of
string, open and closed.

® Parametrization domain:

—00 < T <00 O<o<o %

® Closed Strings: ® Open Strings:
— Worldsheet diffeo. to R x S',  — Worldsheet diffeo. to R x [0, 7],
— periodicity conditions. — boundary conditions (later).
— Convention o = 27 — Conventions =«



2. The R

elativistic String

2.6. The Polyakov Action

In principle this is all, we have postulated the dynamics of the
string and could start solving the Nambu Goto action.
Problem:

=  Nambu-Goto has a square root

= There are primary constraints (the so called Virasoro constraints
— later)

Trick:

Find an action, which has no squareroot, no primary constraint
and is equivalent to the NG action
— same as einbein trick for the relativistic particle...



2 The Relativistic String
2.6. The Polyakov Action

The Polyakov action is defined as

T
Sp=-3 / o/ —hh®P 9, X 95X gy = — = / o/ —hh*P T o5

" hqp is @a symmetric (2x2) tensor, which can be varied
independently of X*. It is taken as an intrinsic metric tensor
on the parametrization domain with inverse h5.

hqp is the two dimensional analogon to the einbein function e.

® The Polyakov action has no primary constraints.



2 The Relativistic String
2.7. The Equations of Motion

® To do: Find equations of motion and proof that they are
equivalent to NG (+ primary constraints).
® Varying

5§ =-T / @0 (V=ITap8h*? + 20, (V=RH"95X,,) 6X" ) +bnd term

where

T,z is the energy momentum tensor, the factor appearing
when varying S with respect to 1% or as a functional derivative

1 1 48
Top = TR = a X'9pX,, — Zh(w}ﬂ 0, X" 05X,
1 1 5
— Efa/g - Zhaﬁh,Y F’Yé




2. The Relativistic String

2.8. Equivalence of Polyakov and Nambu-Goto Action

The equations of motion are

Top =0
00 (VTH0,10) = o

® — see blackboard (equivalence of actions)

® Only for the two dimensional case the actions are equivalent.

" Remark:
Only for minimizing 1 fixed, we have Syg = Sp (in general not
the same expression).
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2. The Relativistic String

2.9. Symmetries of the Action

® Global Symmetries:
= Poincare Invariance
0X" =al X" +b" whered', = —al
Ohap =0

a general infinitesimal Poincare transformation.
— X* transforms as expected as a vector, i, as a scalar.
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2. The Relativistic String

2.9. Symmetries of the Action

® Local Symmetries:
= Reparametrization Invariance
Follows directly from the choice of action. Formally ¢ : 0® — ¢/* a
reparametrization of the parametrization domain. With £~ := §¢“

XM = £, X"
and
5ha5 = 5767ha5 + 804571175 + 6@67/1017.

= Weyl Symmetry
a bit more concealed symmetrie, invariance of the action wrt.
Weyl scaling of the worldsheet metric h.

oXt =0
Ohap = 2Mhap
where A is an arbitrary function.
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3. Wave Equations and Solutions
3.1. Conformal Gauge and Weyl Scaling

Goal of this chapter:

Simplify equations of motion using the symmetries of the action
and find solutions.

Using reparametrization invariance we can simplify 4,3.
Claim:

For any two dimensional Lorentzian (meaning signature (-1,1))
metric h,5 one can find coordinates ¢!, o2, such that

haﬁ = Q(Ul ) Jz)naﬁ

where 7,3 is the Minkowski metric (and €2 a scalar function).



deral Institute of Technology Zurich

3. Wave Equations and Solutions
3.1. Conformal Gauge and Weyl Scaling

® Using Weyl Scaling:
— gauge away ¢ (set Q = 1).

® Having used all symmetries, we are in a gauge with

® Such a choice of coordinates is called a conformal gauge.

®  We will from now on work in these coordinates (calling them +
and o).
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3. Wave Equations and Solutions

3.2. Equations of Motions and Boundary Conditions

In conformal gauge, the Polyakov action takes a simple form

T Yol Tr T o Tr . ’
Sp = —2/ da/ dr naﬁaaX"agX = 2/ da/ dt <X2 - X 2)
0 Ti 0 Ti

® The variations fulfill
0X"(o = 0,7) arbitrary for open strings
0X"(o + 2m) = 6X" (o) for closed strings
OXH (1) = 6XH (1) =0
Varying with respect to X* (last term vanishes for closed string):

T T Tf .
6Sp=T / do / dr 6X" (0% — 02) X, —T / dr 05X, 6X"17=5
0 Ti

Ti
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3. Wave Equations and Solutions

3.2. Equations of Motions and Boundary Conditions

® This results in the (wave-) equation of motion and boundary
conditions

(62— 02) x* =0

Xt(o+2m) =X"(o0) closed string
XH*o=0,1) =0 open string.
® Neumann condition for open string (=free ends). Dirichlet
(0X* (o = 0,0 =) = 0 would have worked too (fixed ends)).

Should not forget to impose the vanishing of the energy
momentum tensor

T.s=0 <& (X&+ X’)2 =0 Virasoro constraint
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

Equations of motion and boundary conditions closed string:

wave equation: (02 - 02) X" =0

periodicity condition: X*(o + 27w, 7) = X*(0, 7)

Virasoro constraints: (x+x)°=0

® In light cone coordinates

ot =140 8i:%(87:|:80)

the wave equation reads :
0+0-X* =0
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

® Solution to wave equation:
XMoo, 0") =Xg(07) + X/ (0T)
Xr and X, are arbitrary functions only dependent on boundary

conditions — left - and right movers.

® Closed String — Besides periodicity no boundary condition —
Xr and X; are independent.

® This is not the case for open strings — Neumann boundary
condition connects them (open string = standing waves —
reflected)



3 Wave Equations and Solutions
3.3. General Solution for the Closed String

® Claim (proof in report):
The 27 periodicity of X* is equivalent to

O_Xk(oc™) and 0,X}' (™) are 2 periodic with the same zero-mode.

® Expand in fourier series:

O_XK(0™) = \/7 Z alle”
5+Xf( —inot

® Constants are choosen for convenience.
" o) and @ are generally independent (exception: o

ox
1
]
ot
Y



3. Wave Equations and Solutions
3.3. General Solution for the Closed String

(setting p = V4nT aff = V4rT aly):

Integrating these expressions — oscillator expansion

1 1
K gl Po—™ u —ino™
Xp(o7) = X+ Pt %E
1 1 +
w b —u —ino
X (oh) = 5% +4 \ﬁE

® and together

1
XH(o,1) = xt 4+ ——piT

center of mass motion

i
+
2nT VarT mrtl

1 o
§ :7(a#emo+aﬁe mo)e intT

oscillation of the string
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3. Wave Equations and Solutions
3.3. General Solution for the Closed String

® Properties:
= X* real implies

x*, p* are both real (' =aot @) =a",
= x* is the center of mass of the string at = = 0:
27

— do X*(o,0) = x
2T 0

®  The canonical -momentum is

T ,. .
Pt = 9L _ 0 ( (Xx* —X’2)> = TX"
0X, 00X, \2
therefore the total momentum of the string is
27
Plom= [ doPp=p"



3. Wave Equations and Solutions
3.4. General Solution for the Open String

Equations of motion and boundary conditions open string:

wave equation: (02— 07) X" =0
boundary condition: 0o X" 6=0,x =0
Virasoro constraint: (Xx+x)°=0

Similar analysis leads to oscillator expansion:

i

1 1 ,
XH(r,0) = XM+ ﬁp”T + — % ;afje*”” cos(no)
n

center of mass motion

oscillation of the string

with x#, p# real and (o)’ = o,
— Left and right movers are not independent anymore.
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

We have found the general solution for the wave equation
under consideration of boundary conditions.

® We still have to impose the Virasoro constraints
(x+x)* =0 or Top = 0.

® Where did they come from again?
— primary constraints of NG action — equation of motion for
18 in the P action — expressed as vanishing of the energy
momentum tensor 7,3 — equivalent to (X + X')* = 0.

" Can be seen as the string analogon to p#p,, = —m?c?.
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

® Adviseable to discuss Light cone coordinates a bit further:

* The conformal metric looked like .3 = 1,5. Therefore the
light cone metricis n,, =n——=0and ny_ =n_4 = —3.

® The energy moment tensor
Top = 30aX" 05X, — 1haph?°0,X"9,X,, becomes in this
coordinates with h,5 = 1+

1
Ty =5 (04X)? T =5 (0-X)



3. Wave Equations and Solutions
3.5. Virasoro Constraints

" What restriction impose the Virasoro constraints on «;, a?

2
O;T__f (8 X)? = ( Z ale )

n—oo

1
n —i(nt+k)o™  _ .
ST S PRI o 8T 2 2 O
k=—00 n=—00 m=n-+k n o m
1 I

= T L,e " where |L,, := 3 Z Qp * Q—n

m n=-—00

0=T ! > Lye ™" where |L Ly~ g

=144y = me€ m = 5 Qp - Qp—p

anT m 2n*—oo
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3. Wave Equations and Solutions
3.5. Virasoro Constraints

. — .
* Because ), Ln,e " =0forall o™, all so called Virasoro
modes L,, must vanish.

For the closed string one hast therefore to impose the
additional constraints on the modes

!

L,=L,=0

We have found the most general solution for the classical
relativistic closed string:

n i ) N EN7) i 1 W ino — ,—inc\ ,—inT
Xt (o,T) = x" + 55p T+—mzn¢0n(ane +ake ™) e
" With Ly := 3300 - Qeny L = 3 Do Ty - Gy fulfilling

Lm = Lmm = 0.



3. Wave Equations and Solutions
3.5. Virasoro Constraints

For the open string the calculation is analog. Because X and

X, are not independent any more one has only one additional
constraint

1 o+
T — L —iumo T_ = L —imo ™~
T 4T Zm: me 47TT Z

where

1 !
:izan'amfnzo
n
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3. Wave Equations and Solutions
3.6. The Witt Algebra

® For later quantization: Algebraic considerations of the classical
problem.

® The Poisson bracket for coordinate fields X* (o), their
conjugate momentum fields P, (o) and functionals
f(X,P),g(X,P) is defined using the functional derivative

B f g of  dg
o sr = / 7 5X0() 5P (o) 3Pu(0) 6Xn(0)
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3. Wave Equations and Solutions
3.6. The Witt Algebra

Interested in T- propagation:
XH(o,7) is seen as afieldin o
® conjugate field momentum

" (o, 7) = aa)f(a, 7) = TX"(0,7)
m

®" Then

{X*(o,7),X" (o', 7)} =0 {ITI*(o,7), 11" (', 7)} =0
{Xt(o,7),I1" (¢, 7)} = g"'6(0 — o)
— Next step: Calculate Hamiltonian
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3. Wave Equations and Solutions
3.6. The Witt Algebra

The 7 Hamiltonian is
H:/ do XM, — L = / do (X* +X7)
0 2 Jo
" With
X? = (04X +0_X)? =2T4y +2T__ +20,X-0_X

X? = (0;X —0_X)? =2T4 +2T__ —20,X-9_X.

® Therefore the Hamiltonian (for = propagation) is

HZZT/ dO’ (T+++T__)
0



3 Wave Equations and Solutions

3.6. The Witt Algebra

* Closed String

1 7 _—imo™t
T++ = 47_[_77‘ ZLme
m
ftma'
47TT Z me

® Hamiltonian

H=1Ly+ L

Open String

1 imot
T — L —Iimo
T T Zm me

4 - Z Lmefzmo
T

Hamiltonian

® Goal: Calculate brackets of the Virasoro modes.



3 Wave Equations and Solutions
3.6. The Witt Algebra

® Closed String: From full solution

1 . ) )
Xt (o, 1) =x* + p T+ e Z Oz“ema + @ﬁfe_"w) e "
IM¥(o, 1) = TXH = —p“ + \/ Z a“em” + oz“e_m”) —inT
n#O
calculate x* = L [*" X#(5,0)do, pt = [Z7I1#(0,0)do and

21
\/47‘(‘ / Xt (o

Je " do l(oz“ oz”)

1 J4x [ . _
7 T/o I1"(0,0)e "do = off +alf



3 Wave Equatlons and Solutions
3.6. The Witt Algebra

With these formulas calculate (for example)

2 2
(= g / X*(,0) do, / (¢, 0) do’}
27'[' 0 0

1 2 27

/ i HV /
=5 do ; do’{X"(0,0),1I"(c",0)}

1 27r 27

do do'g" (o — o') = g
27T 0

In this way one finds ( mtn = Omtn,0)

{amv n} - {am7 n} - _lm5m+ng
{amv Z _O
{xﬂ7 V} — gMV



deral Institute of Technology Zurich

3. Wave Equations and Solutions
3.6. The Witt Algebra

" Therefore using Ly, = 1 >, - Qmeny Ln = %> On * Conen :

{Ln, Ly} = —i(m —n)Lyyn  {Lm, Ly} = —i(m — n) Ly
{Ln, Ly} =0

® =Witt algebra (— quantize to get Virasoro algebra).

* The Virasoro modes L,,, L,, generate an infinite dimensional Lie
algebra (Witt algebra) of conserved charges respecting the
closed string boundary condition.



3 Wave Equations and Solutions
3.6. The Witt Algebra

® For the open string the Virasoro modes L,,
the same commutation relation

| {Lis Ln} = —i(m — n) Ly

=5 Z Q0m—n fUlfill
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3. Wave Equations and Solutions
3.6. The Witt Algebra

® One question is left:
Why did the infinite dimensional Witt algebra appear in this
classical calculation?

Consider the unit circle S' and the group of diffeomorphisms on
it. A diffeomorphism 6 — 6 + a(0) is generated by the operator

D, = ia(0)%.
A complete basis for such operators is given by D,, = ie”"ed%
fulfilling the commutator relation

[Dy, D) = —i(m — n)Dyypn.

We see: The Witt algebra is simply the Lie algebra of the
group of diffeomorphisms on the circle!
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Summary

We ...
® ... defined Nambu-Goto action in analogy to the point particle.

® ... found equivalent Polyakov action with 'nicer’ properties.
® ... discussed symmetries and found equations of motion.
® ... used conformal gauge to simplify equations of motion.
® ... derived general solutions for open and closed strings.

® ... realized that the Virasoro modes generate the Witt algebra.
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