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Abstract

The following report is based on my talk about classical string theory given at April 15, 2013 in
the course of the proseminar ’conformal field theory and string theory’.
In this report a short historical and theoretical introduction to string theory is given. This is fol-
lowed by a discussion of the point particle action, leading to the postulation of the Nambu-Goto and
Polyakov action for the classical bosonic string. The equations of motion from these actions are
derived, simplified and generally solved. Subsequently the Virasoro modes appearing in the solution
are discussed and their algebra under the Poisson bracket is examined.
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1 Introduction

In 1969 the physicists Yoichiro Nambu, Holger Bech Nielsen and Leonard Susskind proposed a model
for the strong interaction between quarks, in which the quarks were connected by one-dimensional strings
holding them together. However, this model - known as string theory - did not really succeded in de-
scribing the interaction. In the 1970’s Quantum Chromodynamics was recognized as the theory of strong
interactions. String theory, whose quantum theory was discovered to need 10 dimensions to work - in
these times a very unlikely assumption -, went into the dustbin of histoy.

However, in this early stage there was one remarkable fact about the new theory:
From all calculations a massless particle with spin two appeared. These properties -mass zero and spin
two - were later recognized as the properties of the hypothetical graviton, the carrier of the gravitational
force.
In the 1980’s, after the full discovery of the standard model, it was this fact, which brought string theory
back into the minds of the physicists as a possible candidate for a theory of quantum gravitation.

By postulating one dimensional fundamental objects instead of zero dimensional particles, string the-
ory also elludes the problem of renormalization in quantum field theory. The particles of the standard
model follow in the large scale limit as the different quantized oscillation modes of the string. This is
often compared with the different oscillation modes of a violin leading to different sounds.
The two major drawbacks of the theory were its postulation of additional dimensions - which can be
elluded by compactification arguments - and its very small working scale.
Especially this scale - a string length is of order of the Planck length - makes string theory for many
practically minded physicists a not falsifiable theory.

Despite these problems string theory develops as a major candidate for a unifying theory and brought -
as a sideeffect - many interesting and important mathematical theories to life.

q q

qq
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(a) quarks connected by a string

q q

qq

g

1

(b) gluon exchange

Figure 1.1: String theory was introduced as a model for strong interaction.
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2 The Relativistic String

Classical string theory is built up of one dimensional, fundamental objects moving in spacetime due to
dynamical laws determined by an action principle. The goal of this chapter is to postulate this action and
to find the resulting equations of motion.

To quantify the stated ideas we will work in a D + 1- dimensional spacetime with one timelike and
D spacelike directions. This spacetime is equipped with a general metric tensor gµν(x) with signature
(−1, 1 . . . 1).

A string as a one dimensional spatial object traces out a two dimensional worldsheet in this spacetime,
the same way a relativistic point particle traces out a worldline.
In the derivation of the string action we will stick to this analogy between the worldsheet of a string and
the worldline of a particle.

To derive the Nambu Goto Action for string motion, we will start by deriving the action for a point par-
ticle.

2.1 The Action of a Classical Point Particle

2.1.1 The Classicle Point Particle Action

The action of a particle arises from the idea of finding a functional of the particle’s path, which is
reparametrization invariant (intrinsic). This leads directly to the action of the particle being proportional
to the ’length’ of the particle’s worldline (’length’ measured with the metric gµν) and to the well known
formula S = −mc

∫
γ ds. The proportionality factor is given by −mc with its interpretation as mass

obtained from the classical limit.
To state this action more clearly, let xµ(τ) be a parametrization of the worldline of the particle.

93 5.2 Reparameterization invariance!
H = !p · !v − L = mv2

√
1 − v2/c2

+ mc2
√

1 − v2/c2 = mc2
√

1 − v2/c2
, (5.11)

where the result was left as a function of the velocity of the particle, rather than as a
function of its momentum. As expected, the answer coincides with the relativistic energy
(2.68) of the point particle.

We have therefore recovered the familiar physics of a relativistic particle from the rather
remarkable action (5.5). This action is very elegant: it is briefly written in terms of the
geometrical quantity ds, it has a clear physical interpretation as total proper time, and it
manifestly guarantees the Lorentz invariance of the physics it describes.

5.2 Reparameterization invariance

In this section we explore an important property of the point particle action (5.5). This
property is called reparameterization invariance. To evaluate the integral in the action, an
observer may find it useful to parameterize the particle world-line. Reparameterization
invariance of the action means that the value of the action is independent of the parame-
terization chosen to calculate it. This should be so, since the action (5.5) is in fact defined
independently of any parameterization: the integration can be done by breaking P into
small pieces and adding the values of mc ds for each piece. No parameterization is needed
to do this. In practice, however, world-lines are described as parameterized lines, and the
parameterization is used to compute the action.

We parameterize the world-line P of a point particle using a parameter τ (Figure 5.2). This
parameter must be strictly increasing as the world-line goes from the initial point xµ

i to the
final point xµ

f , but is otherwise arbitrary. As τ ranges in the interval [τi , τ f ] it describes the
motion of the particle. To have a parameterization of the world-line means that we have
expressions for the coordinates xµ as functions of τ :

xµ = xµ(τ ). (5.12)

τf

τi

τ x 
0

x 
1 (x2,...)

x 
µ(τf )

x 
µ(τi)

!Fig. 5.2 A world-line fully parameterized by τ . All spacetime coordinates x µ are functions of τ .
Figure 2.1: parametrization of the world line xµ : [τi, τf ]→ RD [6]
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The (1× 1) metric on the chart domain Γ is simply the pullback of the ambient metric gµν , i.e.

Γ =
∂xµ

∂τ

∂xν

∂τ
gµν .

Therefore, one calculates the volume form as

ds =
√
|det(Γ)|dτ =

√
−Γdτ =

√
−ẋµẋµdτ.

Here it is used that Γ < 0, which is due to the signature of the metric (and its negative definiteness). In
the end one arrives at the point particle action

Spoint particle = −mc
∫ τf

τi

√
−ẋµẋµdτ.

(
ẋµ :=

∂xµ

∂τ

)
(2.1)

By choosing the eigentime parametrization

xµ(τ) = (cτ, x(τ))

this leads to the the well known formula

S = −mc2

∫ √
1− v2

c2
dt.

2.1.2 Disadvantages of the Classical Action

The derived action (2.1) has some major disadvantages.
Firstly

• the square root in the Lagrangian makes the quantization difficult and

• the massless case is not described by this action.

There is however one more subtle difficulty:
Define the conjugate momentum

pµ =
∂L

∂ẋµ
= mc

ẋµ√
−ẋµẋµ

where L = −mc
√
−ẋµẋµ is the point particle Lagrangian. Then the matrix

∂pµ
∂ẋν

=
∂2L

∂ẋµẋν

has vanishing eigenvalues. Explicitly, one calculates

∂pµ
∂ẋν

ẋν = 0.

By the inverse function theorem the function pµ(ẋν) is not (globally) invertible. However to calculate
the Hamiltonian H = ẋµ(p)pµ − L(xµ, ẋµ(p)) one has to invert ẋµ(p). This problem is solved by not
defining the Hamiltonian on the whole phasespace.
For every vanishing eigenvalue of the above matrix one finds a so called primary constraint. This is a
constraint not following from the equations of motion but from the formulation of the action itself. In
this case the primary constraint is

pµpµ = −m2c2.
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Hence, a suitable definition for the Hamiltonian is

H = Hcan +
∑
n

cnφn

where φn = 0 are the primary constraints and Hcan = ẋµpµ − L(xµ, ẋµ), i.e. we introduce the primary
constraints via Lagrange multipliers in the Hamilton formalism. In the case of the free particleHcan = 0,
the time evolution is therefore completely determined by the primary constraints represented by the
Hamiltonian H = 1

2m

(
p2 +m2

)
.

For our purpose it will be enough to recognize primary constraints and to avoid them if possible to have
all relevant equations included in the equations of motion.

2.1.3 The Einbein Action

A possibility to avoid these difficulties is to define an alternative action such that there is neither a
squareroot, nor primary constraints.
Therefore one introduces an auxiliary function e(τ), the so called einbein. This function can be seen as
an intrinsic (and not predetermined) metric on the worldline.
The new action is defined as

S =
1

2

∫ τ1

τ0

dτe(τ)
(
e−2(τ) (ẋµ(τ))2 −m2

)
. (2.2)

Varying the action with respect to the five quantities xµ and e leads to the equations of motion

δS

δe
= 0 ⇒ ẋ2 + e2m2 = 0

δS

δxµ
= 0 ⇒ d

dτ

(
e−1ẋµ

)
= 0.

Solving the first equation one finds that e = 1
m

√
−ẋ2. Substituting this expression into the einbein action

(2.2), one arrives back at the classical action, proofing the equivalence of the two actions (in the sense
that they lead to the same equations of motion).
However, the einbein action has no primary constraints.

By introducing an additional degree of freedom, the primary constraints are turned into equations of
motion. As a side effect one got rid of the squareroot.

2.2 The General p-Brane Action

One could derive this action in the much more general case of a spatial p-dimensional object, represented
by a (p+ 1)- dimensional submanifold (which is a ’line’ for p = 0 and a ’sheet’ for p = 1) in a (D + 1)
- dimensional spacetime with metric gµν . Such an object is in general called a p-brane. If we want this
object to be in any way ’fundamental’ the best candidate for a reparametrization invariant action is in
analogy to the point particle proportional to the volume of the object in spacetime.

Let Xµ(τ i) (µ = 0, . . . D, i = 0, . . . p) be a parametrization of the p-brane. The (p+ 1× p+ 1) metric
on the chartdomain (or parameterspace) Γ

(p)
ab (where (p) just denotes its dimension) is again the pullback

of the spacetime metric

Γ
(p)
ab =

∂Xµ

∂τa
∂Xν

∂τ b
gµν .
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Hence, the volume form reads

dV =

√
|det(Γ(p)

ab )|dτ0 . . . dτp.

The volume of the object is

Vol =

∫ √
|det(Γ(p)

a,b)|dp+1τ.

Because we are working with Lorentzian metrics, it holds that det(Γ(p)
αβ) < 0.

By defining the brane tension Tp as the proportionality factor between the brane action and its world-
volume in a very similar manner as the mass of the point particle one concludes

Sp-brane = −Tp
∫ √

−det(Γ(p)
ab )dp+1τ = −Tp

∫ √
−det(

∂Xµ

∂τa
∂Xµ

∂τ b
)dp+1τ.

Figure 2.2: worldlines, worldsheets and branes [Wikimedia Commons]

2.3 The Nambu Goto Action

In the above framework a string is a 1-brane, a fundamental one (spatial-) dimensional object moving
through spacetime. The Nambu-Goto action of the string is exactly the 1-brane action derived above.
Let

(τ, σ) 7→ Xµ(τ, σ)

be a parametrization of the string.
By introducing the proportionality factor string tension T0 (which will be discussed later) one concludes

SNambu-Goto = −T0

c

∫ √
−det(Γαβ)dτdσ.

From now on using the determinant notation Γ := det(Γαβ) and writing T = T0
c the most compact form

of the Nambu-Goto action reads
SNG = −T

∫ √
−Γ dτdσ. (2.3)

One can simplify this expression further. By writing Ẋµ := ∂Xµ

∂τ and X ′µ := ∂Xµ

∂σ and introducing the
Minkowski-product notation a · b := aµgµνb

ν and a2 := aµaνgµν one finds

Γαβ =

(
Ẋ · Ẋ Ẋ ·X ′
X ′ · Ẋ X ′ ·X ′

)
.
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Therefore
Γ = det(Γαβ) = Ẋ2X ′2 −

(
Ẋ ·X ′

)2

and the Nambu Goto action can be written as

SNG = −T0

c

∫ √(
Ẋ ·X ′

)2
− Ẋ2X ′2dτdσ.

2.3.1 Open and Closed Strings

At this point it is necessary to think about the form of the parametrization (and of the string itself), espe-
cially in foresight of the discussion of boundary conditions later on. A string worldsheet is conventionally
parametrized as Xµ(τ, σ) with

−∞ < τ <∞ 0 < σ < σ.

To specify the value of the endpoint of the σ parametrization one has to think about the form of strings.
There are two kind of strings:

• open strings, with loose ends and a worldsheet diffeomorphic to R× [0, σ = π] and

• closed strings, with connected ends (or better ’no ends’) and a worldsheet diffeomorphic to the
cylinder R× S1 (and σ = 2π).

The two choices for σ = π resp. 2π are purely conventional.
Closed strings have no boundary, hence there is no need for any boundary condition besides the period-
icity of the function Xµ(σ).
Open strings do need certain boundary conditions which are discussed in chapter 3.2.101 6.1 Area functional for spatial surfaces!

x 
0 = ct

x 
2(x3,...)

x 
1!Fig. 6.1 The world-sheets traced out by an open string (left) and by a closed string (right).

x 
3

x 
1

x 
2

!Fig. 6.2 A spatial surface stretching between two rings. If the surface were a soap film, it would be
a minimal area surface.

exists in its entirety at any instant of time. We will first study these familiar surfaces, and
then we will apply our experience to the case of surfaces in spacetime.

A line in space can be parameterized using only one parameter. A surface in space is
two-dimensional, so it requires two parameters ξ1 and ξ2. Given a parameterized surface,
we can draw on that surface the lines of constant ξ1 and the lines of constant ξ2. These lines
cover the surface with a grid. We call target space the world where the two-dimensional
surface lives. In the case of a soap bubble in three dimensions, the target space is the three-
dimensional space x1, x2, and x3. The parameterized surface is described by the collection
of functions

Figure 2.3: open and closed worldsheets [6]
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2.3.2 The String Tension

To see how one can interpret the string tension T0, one has to consider the (natural) eigenzeit parametriza-
tion

Xµ(τ, σ) = (cτ,x(τ, σ)).

The Lagrangian for time (= τ ) evolution is

L = −T0

c

∫
dσ

√(
Ẋ ·X ′

)2
− Ẋ2X ′2.

At a time τ for which ∂x
∂τ = 0 (the string is at rest) the Lagrangian becomes

L = −T0

∫
dσ|dx

dσ
| = −T0 (length of string).

With the interpretation of the Lagrangian as the difference of kinetic and potential energy and noting that
the kinetic energy vanishes for a string at rest this means

T0 =
Epot

length of string
.

From this point of view the factor T0 can be interpreted as a tension.

One also sees that the string’s energy is proportional to its length. This is not Hooke’s law for elas-
tic bands (where energy is proportional to length squared). Therefore, a string does not behave like a
stretched elastic band.

It is also interesting to note that with this energy dependence, a string tends to collapse to a point. This
problem is fixed in quantum mechanics where (roughly speaking) the Heisenberg uncertainty principle
yields the opposite impetus.

2.4 The Polyakov Action

2.4.1 Disadvantages of the Nambu Goto Action

As the free particle action the Nambu Goto action has (besides its squareroot) some disadvantages as
well.
With the canonical (τ -) momenta

Πτµ =
∂L
∂Ẋµ

= −T

(
Ẋ ·X ′

)
X ′µ − (X ′)2 Ẋµ[(

X ′ · Ẋ
)2
−
(
Ẋ
)2

(X ′)2

] 1
2

the matrix ∂Πτµ

∂Ẋν
has two zero eigenvalues corresponding to the primary constraints

ΠτµX ′µ = 0

Πτ2 + T 2
(
X ′
)2

= 0.
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These constraints are called Virasoro constraints.
As in the case of the free particle, the canonical Hamiltonian Hcan = ΠσµX ′µ + P τµẊµ − L vanishes;
i.e. the motion is completely determined by the constraints.

2.4.2 The Polyakov Action and its Equations of Motion

To avoid these difficulties one introduces an intrinsic metric tensor hαβ on the worldsheet (where α, β ∈
{0, 1}). This tensor can be seen as the generalization of the einbein formalism for the free particle and is
as a metric tensor a symmetric 2× 2 matrix.
The Polyakov action is defined via

SP = −T
2

∫
d2σ
√
−hhαβ ∂αXµ∂βX

νgµν = −T
2

∫
d2σ
√
−hhαβ Γαβ. (2.4)

As one could guess in analogy to the free particle the Polyakov action has no primary constraint, all
constraints are contained in the equations of motion of the symmetric 2× 2 tensor hαβ .

Then
δS = −T

2

∫
d2σ

(
δ
√
−hhαβΓαβ +

√
−hδhαβΓαβ +

√
−hhαβδΓαβ

)
.

For the variation of the determinant it holds that

δh = −h hαβδhαβ

and therefore
δ
√
−h = −1

2

√
−hhαβδhαβ.

For the metric Γαβ
δΓαβ = ∂αδX

µ∂βXµ + ∂αXµ∂βδX
µ.

Using the symmetry of hαβ and introducing the energy momentum tensor Tαβ the variation simplifies to

δS = −T
∫
d2σ

(√
−hTαβδhαβ + 2∂α

(√
−hhαβ∂βXµ

)
δXµ

)
+ boundary term (2.5)

where

Tαβ = − 1

T

1√
−h

δS

δhαβ
=

1

2
Γαβ −

1

4
hγδΓγδhαβ =

1

2
∂αX

µ∂βXµ −
1

4
hαβh

γδ∂γX
µ∂δXµ. (2.6)

The equations of motion can be read off the variation:

Tαβ = 0 (2.7)

∂α

(√
−hhαβ∂βXµ

)
= 0 (2.8)
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2.4.3 Equivalence to Nambu Goto Action

The equivalence of Polyakov and Nambu Goto follows from the vanishing energy momentum tensor.
From Tαβ = 0 it follows that

1

2
∂αX

µ∂βXµ =
1

4
hαβh

γδ∂γX
µ∂δXµ

and after taking the determinant of both sides

det (∂αX
µ∂βXµ) =

1

4
h
(
hγδ∂γX

µ∂δXµ

)2
.

Now substituting the square root of the left hand side into the Polyakov action (2.4) one finds

SP = −T
2

∫
d2σ
√
−hhαβ Γαβ = −T

∫
d2σ
√
−Γ = SNG.

Only for an hαβ fulfilling the equations of motion (one hαβ for which the Polyakov action is minimal)
the two actions are the same. This is clearly not true in general. From this consideration it is very clear
that the Nambu Goto action had primary constraints: They simply corresponded to the fact that the NG
action is only valid if we assume that hαβ fulfills its equations of motion.

2.5 Symmetries of the Action

Besides the reparametrization invariance mentioned above, the Polyakov action carries more symmetries.

• Global Symmetries:

– Poincare Invariance
Let

δXµ = aµνX
ν + bµ where aµν = −a µν

δhαβ = 0

be a general infinitesimal Poincare transformation.
One sees that Xµ transforms as expected as a Minkowski vector, hαβ as a scalar.
Proof
From above one finds that for δhαβ = 0

δSP = −T
2

∫
d2σ

(√
hhαβδΓαβ

)
where

δΓαβ = ∂αδX
µ∂βXµ + ∂αXµ∂βδX

µ = ∂αX
ν∂βXµ (aµν + a µν ) = 0.

• Local Symmetries:
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– Reparametrization Invariance
Reparametrization invariance follows directly from the choice of action. Let φ : σα 7→ σ′α

be a reparametrization of the parametrization domain. Then by defining the (infinitesimal)
function ξα := δφα one finds

δXµ = ξα∂αX
µ

and
δhαβ = ξγ∂γhαβ + ∂αξ

γhγβ + ∂βξ
γhαγ .

– Weyl Symmetry
Besides the two obvious symmetries there is a more concealed symmetry, namely the invari-
ance of the action with respect to Weyl scaling of the worldsheet metric h.

δXµ = 0

δhαβ = 2Λhαβ

where Λ is an arbitrary (infinitesimal) function.

The Poincare invariance is a symmetry on the target space, while the two local symmetries are symme-
tries on the parametrization domain. In this report the local symmetries will be more important, due to
the possibility of using them to fix a convenient gauge.
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3 Wave Equation and Solutions

In this section the string equations of motion are simplified using the symmetries of the Polyakov action.
Subsequently the simplified equations are solved.

3.1 Conformal Gauge

3.1.1 Using Reparametrization Invariance

The reparametrization invariance of the parametrization domain gives us the possibility to choose ’good’
coordinates and to work with them. Such a choice of ’good’ coordinates is given in the following claim:

Claim
For any two dimensional Lorentzian metric hαβ (i.e. a metric with signature (-1,1) ) one can find coor-
dinates such that in these coordinates

hαβ = Ω(σ1, σ2)ηαβ

where ηαβ is the Minkowski metric.

Proof
For any point in R2 choose two independent null vectors (i.e. vectors sucht that aαbβhαβ = 0). In this
way one obtains two (null- ) vector fields on R2. This construction can be made explicit. Given a metric

hαβ =

(
h11 h12

h12 h22

)
one can set

v+ =

(
h22

−h12 +
√
−det(hαβ))

)
v− =

(
h22

−h12 −
√
−det(hαβ)

)
.

These (null-)vector fields exist because det(hαβ) < 0, they are obviously linear independent and non-
vanishing. If one defines the integral curves of these vector fields as new coordinates σ±, the metric
tensor in these coordinates looks like h±± = v±hv±. With the above choice of v one finds

h++ = h−− = 0 h+− = −1

2
Ω

where the form of h+− is chosen for convenience.
Written in line element form

ds2 = −Ωdσ+dσ−.

Setting the new coordinates

σ =
1

2

(
σ+ − σ−

)
τ =

1

2

(
σ+ + σ−

)
yields the metric

hαβ = Ω ηαβ or ds2 = Ω
(
−dτ2 + dσ2

)
.

The coordinates σ± = τ ± σ introduced above are called light cone coordinates.
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3.1.2 Weyl Scaling

Having used the reparametrization freedom we arrived at the metric hαβ = Ωηαβ.Using Weyl invariance
and gauging away Ω (setting Ω = 1) leads to the metric

hαβ = ηαβ

where ηαβ is the Minkowski metric.

This choice of metric in accordance with our symmetries is called conformal gauge.
As always ’gauge’ simply means an arbitrary choice not affecting physics (but simplifying the problem).

That one was able to gauge fix hαβ completely can also be seen as a consequence of the following:
As a symmetric matrix hαβ has three independent components. Using reparametrization invariance on
the two dimensional chart domain (two degrees of freedom) and Weyl symmetry (one degree) one is able
to fix all those three independent components. After having done so there is no degree of freedom left.

3.2 Equations of Motion and Boundary Terms

In conformal gauge the Polyakov action simplifies to

SP = −T
2

∫ σ

0
dσ

∫ τf

τi

dτ ηαβ∂αX
µ∂βXµ =

T

2

∫ σ

0
dσ

∫ τf

τi

dτ
(
Ẋ2 −X ′2

)
. (3.1)

To solve the equations of motion a short discussion of the boundary terms is necessary. Varying the
action (3.1) with respect to Xµ under the conditions that δXµ(τi) = 0 = δXµ(τf ) and that

δXµ(σ = 0, σ) arbitrary for open strings

δXµ(σ + 2π) = δXµ(σ) for closed strings

leads to

δSP = T

∫ σ

0
dσ

∫ τf

τi

dτ δXµ
(
∂2
σ − ∂2

τ

)
Xµ − T

∫ τf

τi

dτ ∂σXµ δX
µ]σ=σ
σ=0 .

The boundary term is only present for the case of the open string.

This results in the equations of motion(
∂2
τ − ∂2

σ

)
Xµ = 0

Xµ(σ + 2π) = Xµ(σ) closed string

X
′µ(σ = 0, π) = 0 open string.

The equation of motion matches exactly the one derived earlier (2.7; 2.8) for the general case. This
second derivation for the conformal case was simply conducted to find the boundary conditions.

The boundary conditions for the open string are von Neumann conditions. This can be interpreted as an
open string with free ends in spacetime.
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The boundary term would have also vanished, if one had imposed the condition δXµ(σ = 0, σ) = 0,
corresponding to fixed string ends. This would then have been a Dirichlet condition. The object on
which a Dirichlet string is fixed is therefore called D-brane. Obviously one could have also imposed
mixed conditions, corresponding to one free and one fixed end. In the following a free, open string is
assumed.

One still has to impose the equation resulting from the variation of the action with respect to the metric,
which is (2.7)

Tαβ = 0,

the vanishing of the energy momentum tensor.

With (2.6)

T01 = T10 =
1

2
Ẋ ·X ′ = 0 T00 = T11 =

1

4

(
Ẋ2 +X ′2

)
= 0.

This condition is equivalent to
1

2

(
Ẋ ±X ′

)2
= 0.

3.3 Light Cone Coordinates

Before solving the equations of motion it is advisable to revisit light cone coordinates seen in the proof
of (3.1.1). These coordinates are especially useful when dealing with wave equations.

In our conformal coordinates σ, τ the worldsheet metric hαβ is equal to the two dimensional Minkowski
metric ηαβ .
When changing to light cone coordinates

σ+ = τ + σ σ− = τ − σ

The metric changes to the metric given by ds2 = −dσ+dσ− or better η++ = η−− = 0 and η+− =
η−+ = −1

2 . The inverse of the metric is η++ = η−− = 0 and η+− = η−+ = −2. For the derivatives it
holds that

∂± =
1

2
(∂τ ± ∂σ) .

Indices are lowered and raised according to

v+ = η+−v− + η++v+ = −2v− v− = −2v+.

The energy momentum tensor Tαβ = 1
2∂aX

µ∂bXµ − 1
4hαβh

γδ∂γX
µ∂δXµ takes the form

T++ =
1

2
∂+X · ∂+X =

1

8

(
Ẋ +X ′

)2

T−− =
1

2
∂−X · ∂−X =

1

8

(
Ẋ −X ′

)2

T+− = T−+ = 0

The fact that T+− = T−+ = 0 is not a constraint but corresponds directly to the choice of metric (i.e.
follows directly from the above formula for the energy momentum tensor).
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The vanishing of the energy momentum tensor, the so called Virasoro constraints are in light cone coor-
dinates

(∂+X)2 = (∂−X)2 = 0. (3.2)

The (wave-) equation of motion for X itself is

∂+∂−X
µ = 0.

3.4 General Solution and Oscillator Expansion

For the general solutions one has to distinguish between open and closed strings.

3.4.1 Closed String

The complete set of equations for the closed string is

wave equation:
(
∂2
τ − ∂2

σ

)
Xµ = 0

periodicity condition: Xµ(σ + 2π, τ) = Xµ(σ, τ)

Virasoro constraint:
(
Ẋ ±X ′

)2
= 0

In the following passage the unconstrained equation of motion is solved with the constraints imposed on
it afterwards.
The general solution to the two dimensional wave equation is

Xµ(σ, τ) = Xµ
R(τ − σ) +Xµ

L(τ + σ)

or in light cone coordinates
Xµ(σ+, σ−) = Xµ

R(σ−) +Xµ
L(σ+).

The functions XR and XL are completely arbitrary, subject only to periodicity or boundary conditions
and correspond to the left and right moving modes on the string. Note that for the closed string without
boundary conditions these functions are independent. This is not the case for the open string, where the
Neumann conditions can be interpreted as reflections of the modes at the end of the string. The left and
right moving modes must here add up to standing waves and are therefore not independent anymore.

To get an explicit expression for XR and XL one examines them in terms of periodicity .

Claim
The following two statements concerning periodicity of Xµ are equivalent:

Xµ(σ, τ) is 2π periodic in σ.

m
∂−X

µ
R(σ−) and ∂+X

µ
L(σ+) are 2π periodic and have the same zero mode .
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Proof
Differentiating the equation (which describes the periodicity of Xµ(σ, τ))

Xµ
R(σ− − 2π) +Xµ

L(σ+ + 2π) = Xµ
R(σ−) +Xµ

L(σ+) (3.3)

with respect to ∂−, respectively ∂+ yields the periodicity of ∂−X
µ
R and ∂+X

µ
L. The first Fourier coeffi-

cient of ∂−X
µ
R(σ−) is

1

2π

∫ 2π

0
dσ ∂Xµ

R(σ) =
1

2π

(
Xµ
R(2π)−Xµ

R(0)
)

=
1

2π

(
Xµ
L(2π)−Xµ

L(0)
)

=
1

2π

∫ 2π

0
dσ ∂Xµ

L(σ)

This equality follows from the above periodicity equation (3.3) with σ+ = 0, σ− = 2π.
The opposite direction follows by expanding ∂+X

µ
L and ∂−X

µ
R in its Fourier series and integrating. This

is done in detail in the following discussion.

As proven above, equivalent conditions to the periodicity of Xµ are the periodicity of ∂−X
µ
R and ∂+X

µ
L

with the same first fourier coefficient. Due to their periodicity, the functions can be expanded in Fourier
series

∂−X
µ
R(σ−) =

1√
4πT

∞∑
n=−∞

αµne
−inσ− ,

∂+X
µ
L(σ+) =

1√
4πT

∞∑
n=−∞

αµne
−inσ+

,

where the constants are chosen for convenience. The Fourier coefficients αµn and αµn are independent
(except for the zero modes αµ0 = αµ0 ).

Defining the constant pµ via αµ0 = αµ0 = 1√
4πT

pµ and integrating the above expressions yields

Xµ
R(σ−) =

1

2
xµ +

1

4πT
pµσ− +

i√
4πT

∑
n 6=0

1

n
αµne

−inσ−

Xµ
L(σ+) =

1

2
xµ +

1

4πT
pµσ+ +

i√
4πT

∑
n 6=0

1

n
αµne

−inσ+
.

Clearly, these functions are not periodic in σ+, resp. σ− themself. However, the additional terms that are
linear in σ± add up to a constant in Xµ, leaving Xµ periodic in σ. xµ, pµ, αµn and αµn are just (constant)
Fourier coefficients.

The complete function is then written as

Xµ(σ, τ) = xµ +
1

2πT
pµτ︸ ︷︷ ︸

center of mass motion

+
i√

4πT

∑
n6=0

1

n

(
αµne

inσ + αµne
−inσ) e−inτ︸ ︷︷ ︸

oscillation of the string

. (3.4)

Since Xµ is a real function

xµ, pµ are both real (αµn)† = αµ−n (αµn)† = αµ−n.
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Furthermore, written in the form (3.4) we see that we can interpret xµ as the center of mass of the string
at τ = 0. This argument can be made more formally. It holds that

center of mass at τ = 0
1

2π

∫ 2π

0
dσXµ(σ, 0) = xµ

center of mass at general τ
1

2π

∫ 2π

0
dσXµ(σ, τ) = xµ +

τ

2πT
pµ.

The canonical τ momentum corresponding to the position Xµ is

Πµ =
∂Lτ
∂Ẋµ

=
∂

∂Ẋµ

T

2

(
Ẋ2 −X ′2

)
= TẊµ.

With
Ẋµ = ∂−X

µ
R + ∂+X

µ
L

this leads to the total (τ -) momentum

Pµ =

∫ 2π

0
dσΠµ = pµ.

The constant pµ is therefore the preserved total momentum.

So far the equations of motion and the boundary conditions were imposed on the solution. The additional
constraint resulting from the vanishing of the energy momentum tensor will give rise to an infinite number
of conserved charges. Before discussing these charges in an algebraic fashion, the general solution for
the open string is examined.

3.4.2 Open String

For the open string the complete set of equations is:

wave equation:
(
∂2
τ − ∂2

σ

)
Xµ = 0

boundary condition: ∂σX
µ|σ=0,π = 0

Virasoro constraint:
(
Ẋ ±X ′

)2
= 0

A similar analysis as for the closed case leads to the open string expansion

Xµ(τ, σ) = xµ +
1

πT
pµτ︸ ︷︷ ︸

center of mass motion

+
i√
πT

∑
n6=0

1

n
αµne

−inτ cos(nσ)︸ ︷︷ ︸
oscillation of the string

. (3.5)

Note that in this case there is only one kind of αµn due to the non-independence of right and left movers
resulting from the van Neumann boundary condition. Physically this follows from the fact that only
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standing waves are allowed on the string.
Again from the fact that Xµ is real it follows that

xµ, pµ are both real (αµn)† = αµ−n.

For later use one can again define αµ0 = 1√
πT
pµ and find

∂−X
µ =

1

2
√
πT

∑
n

αµne
−inσ−

∂+X
µ =

1

2
√
πT

∑
n

αµne
−inσ+

.

3.5 The Virasoro Constraints

Having found the general solution of the equations of motion under consideration of boundary condi-
tions for both closed and open strings, one can now turn to the additional constraint: the vanishing of the
energy momentum tensor, the so called Virasoro constraint.
As a reminder: The vanishing of the enrgy momentum tensor resulted from the equation for hαβ and is
therefore equivalent to the primary constraints of the Nambu-Goto action. Hence the Virasoro constraints
can be seen as the string analogon of the point particle constraint pµpµ = −m2c2.
The constraints will lead to further restricitions on the expansion coefficients αµn and αµn.

The vanishing of the energy momentum tensor in light cone coordinates is equal to (3.2)

T++ =
1

2
(∂+X)2 = 0

T−− =
1

2
(∂−X)2 = 0.

To find the restriction this imposes on the expansion modes one has to plug in the expression for Xµ in
the constraint equation.

3.5.1 Closed String Virasoro Modes

For the closed string with (3.4)

∂−X
µ(σ+, σ−) = ∂−X

µ
R(σ−) =

1√
4πT

∞∑
n=−∞

αµne
−inσ−

∂+X
µ(σ+, σ−) = ∂+X

µ
L(σ+) =

1√
4πT

∞∑
n=−∞

αµne
−inσ+
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where αµ0 = αµ0 = 1√
4πT

pµ one finds

T−− =
1

2

(
1√
4πT

∞∑
n=−∞

αµne
−inσ−

)2

=
1

8πT

∞∑
k=−∞

∞∑
n=−∞

αµnαkµe
−i(n+k)σ−

=︸︷︷︸
m=n+k

1

8πT

∑
n

∑
m

αn · αm−ne−imσ
−

=:
1

4πT

∑
m

Lme
−imσ−

T++ =
1

8πT

∑
n

∑
m

αn · αm−ne−imσ
+

=:
1

4πT

∑
m

Lme
−imσ+

In the last equation the Virasoro modes

Lm =
1

2

∑
n

αn · αm−n (3.6)

Lm =
1

2

∑
n

αn · αm−n (3.7)

were defined. The vanishing of T−− and T++ implies the additional constraints on the modes given by

Lm = Lm = 0 ∀m ∈ Z.

This way one has found an infinite number of conserved quantities Lm, Lm and by imposing the vanish-
ing of these quantites on the modes of Xµ one has solved the classical bosonic string completely.

Especially with regard to later quantization the newfound conserved quantities shall be examined a bit
further.

The conserved L0 and L0 have a rather interesting interpretation.
The momentum of a particle is related to its rest mass via pµpµ = −M2. Using this equation for the
total string momentum pµ =

√
4πTαµ0 =

√
4πTαµ0 one can define the string mass as

M2 = −pµpµ = −4πTαµ0α0µ = −4πTαµ0α0µ.

From the constraint on L0 and L0

0 = L0 =
1

2

∑
n

αn · α−n =
1

2
α0 · α0 +

∑
n>0

αn · α−n

a connection between the string’s mass and its modes is given by

M2 = 8πT
∑
n>0

αnα−n = 8πT
∑
n>0

αnα−n.

Hence, the invariant mass has two expressions, one in terms of right moving and one in terms of left
moving waves.
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This idea that the zero Virasoro modes correspond to energy comes from a simple calculation:
The Lagrange density in conformal gauge is (3.1)

L =
T

2

(
Ẋ2 −X ′2

)
,

leading to the τ Hamiltonian governing the τ - evolution

Hτ =

∫ σ

0
dσ
(
ẊµΠµ − L

)
=
T

2

∫ 2π

0
dσ
(
Ẋ2 +X ′2

)
.

This can easily be calculated using the light cone energy momentum tensor

Ẋ2 = (∂+X + ∂−X)2 = 2T++ + 2T−− + 2∂+X · ∂−X
X ′2 = (∂+X − ∂−X)2 = 2T++ + 2T−− − 2∂+X · ∂−X.

Therefore,

Hτ = 2T

∫ 2π

0
dσ (T++ + T−−) .

The Hamiltonian is complete determined by the constraints. Using the Virasoro modes (3.7) and

T++ =
1

4πT

∑
m

Lme
−imσ+

T−− =
1

4πT

∑
m

Lme
−imσ−

leads to
Hτ =

(
L0 + L0

)
.

3.5.2 Open String Virasoro Modes

The same analysis can be done for the open string. Plugging the open string solution

∂±X
µ(σ+, σ−) =

1

2
√
πT

∞∑
n=−∞

αµne
−inσ±

where αµ0 = 1√
πT
pµ into the constraint equation gives

T++ =
1

2

(
1

2
√
πT

∞∑
n=−∞

αµne
−inσ+

)2

=
1

4πT

∞∑
m=−∞

Lme
−imσ+

T−− =
1

2

(
1

2
√
πT

∞∑
n=−∞

αµne
−inσ−

)2

=
1

4πT

∞∑
m=−∞

Lme
−imσ− .

In the last equation one defines the Virasoro modes

Lm =
1

2

∑
n

αn · αm−n
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again. The vanishing of T−− and T++ implies the additional constraints on the modes given by

Lm = 0 ∀m ∈ Z.

Imposing these constraints on the mode expansion leads to the complete classical open string solution.
For the open string the τ - Hamiltonian reads

Hτ = 2T

∫ π

0
dσ (T++ + T−−) =

1

π

∑
m

Lm

∫ π

0
dσ cos(mσ)e−imτ

and therefore
Hτ = L0.

3.6 The Witt Algebra in Classical String Theory

We have found the most general solutions and imposed the Virasoro constraints on them which means
that we are basically done with the classical string.
However in view of later quantization it is very adviseable to discuss the algebraic relations of the intro-
duced quantities under the Poisson bracket.

The Poisson bracket with respect to a coordinate field Xµ(σ) and its conjugate momentum field Πµ(σ)
of two functionals f and g is defined using the functional derivative as

{f, g} :=

∫
dσ

δf

δXµ(σ)

δg

δΠµ(σ)
− δf

δΠµ(σ)

δg

δXµ(σ)
.

This definition directly leads to the canonical ’commutation’ relations:

{Xµ(σ), Xν(σ′)} = 0 {Πµ(σ),Πν(σ′)} = 0

{Xµ(σ),Πν(σ′)} = gµνδ(σ − σ′).

3.6.1 The Closed String Witt Algebra

In the following, the algebra of the closed string is examined. We are interested in τ -propagation, there-
fore we are interpreting Xµ(σ, τ) for fixed τ as a field in σ (This is actually the way we imagine strings
at ’fixed times’). The canonical (τ -) momentum is Πµ = TẊµ.
In this framework the canonical commutation relations are

{Xµ(σ, τ), Xν(σ′, τ)} = 0 {Πµ(σ, τ),Πν(σ′, τ)} = 0

{Xµ(σ, τ),Πν(σ′, τ)} = gµνδ(σ − σ′).

To calculate the commutation relations of the constants αµn, αµn one has to express them in terms of Xµ

and Πµ. From the full solution
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Xµ(σ, τ) = xµ +
1

2πT
pµτ +

i√
4πT

∑
n6=0

1

n

(
αµne

inσ + αµne
−inσ) e−inτ

Πµ(σ, τ) = TẊµ =
1

2π
pµ +

√
T

4π

∑
n6=0

(
αµne

inσ + αµne
−inσ) e−inτ

one can easily verify the equations

1

2π

∫ 2π

0
Xµ(σ, 0)dσ = xµ∫ 2π

0
Πµ(σ, 0)dσ = pµ

−i
√

4πT

2π

∫ 2π

0
Xµ(σ, 0)e−inσdσ =

1

n

(
αµn − αµ−n

)
1

2π

√
4π

T

∫ 2π

0
Πµ(σ, 0)e−inσdσ = αµn + αµn.

Using these expressions and the linearity of the Poisson brackets the relations for the modes can be
derived. One calculates for example

{xµ, pν} =
1

2π
{
∫ 2π

0
Xµ(σ, 0) dσ,

∫ 2π

0
Πν(σ′, 0) dσ′}

=
1

2π

∫ 2π

0
dσ
∫ 2π

0
dσ′{Xµ(σ, 0),Πν(σ′, 0)}

=
1

2π

∫ 2π

0
dσ
∫ 2π

0
dσ′gµνδ(σ − σ′) = gµν .

In exactly this way the relations

{αµm, ανn} = {αµm, ανn} = −imδm+ng
µν

{αµm, ανn} = 0

{xµ, pν} = gµν

follow, where δm+n := δm+n,0.

With Lm = 1
2

∑
n αn ·αm−n, Lm = 1

2

∑
n αn ·αm−n and linearity, we finally arrive at the commutation

relations of the Virasoro modes

{Lm, Ln} = −i(m− n)Lm+n (3.8)

{Lm, Ln} = −i(m− n)Lm+n (3.9)

{Lm, Ln} = 0. (3.10)

Therefore, the Virasoro modes generate the infinite dimensional, so called Witt-Algebra (or better two
copies of the Witt algebra).
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3.6.2 The Open String Witt Algebra

For the open string the calculation is completely analog and will not be discussed here in detail.
The Virasoro modes of the open string Lm = 1

2

∑
n αnαm−n generate only one copy of the Witt algebra:

{Lm, Ln} = −i(m− n)Lm+n

3.6.3 Why did the Witt Algebra appear?

Finally one is left with one question: Why did the (on first sight not trivial) Witt algebra appear in a
completely classical calculation. To shed some light on a possible answer to this question, consider the
circle S1 and the group of diffeomorphisms on it.
The generator of an (infinitesimal) diffeomorphism θ → θ + a(θ) looks like ia(θ) ddθ . Because a(θ) is a
function on the circle we can expand it into a Fourier series. This leads to the fact that the Lie algebra is
generated by the operators

Dn = ieinθ
d

dθ
.

Using the usual commutator one finds

[Dn, Dm] = −i(m− n)Dm+n.

Hence, the Witt algebra is simply the Lie algebra of the group of diffeomorphisms on the circle.
Due to Noether’s theorem it is therefore natural that the Witt algebra appears in a theory invariant under
reparametrization of a domain (at least partially) diffeomorphic to the circle.
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