The conformal group in various dimensions

04 March 2013

- Repetition: Symmetries and Noethers theorem
- The structure of infinitesimal conformal transformations
- Global conformal transformations
- The Virasoro algebra in 2 dimensions

Repetition - Symmetries and Noethers theorem

- The action is defined to be

$$
S=\int d^{d} \times \mathcal{L}\left(\Phi, \partial_{\mu} \Phi\right)
$$

- A general continuous transformation affects in general both the position and the fields

$$
\begin{gathered}
x \rightarrow x^{\prime} \\
\Phi(x) \rightarrow \Phi^{\prime}\left(x^{\prime}\right)=: \mathcal{F}(\Phi(x))
\end{gathered}
$$

Figure: Active transformation

Repetition - Symmetries and Noethers theorem

- It changes according to

$$
S^{\prime}=\int d^{d} \times\left|\frac{\partial x^{\prime}}{\partial x}\right| \mathcal{L}\left(\mathcal{F}(\Phi(x)),\left(\frac{\partial x^{\nu}}{\partial x^{\prime \mu}}\right) \partial_{\nu} \mathcal{F}(\Phi(x))\right)
$$

- Example 1 - Translation:

$$
\begin{gathered}
x^{\prime}=x+a \\
\Phi^{\prime}(x+a)=\Phi(x) \\
\rightarrow \mathcal{F}=I d \\
\rightarrow \frac{\partial x^{\nu}}{\partial x^{\prime} \mu}=\delta_{\mu}^{\nu} \\
\rightarrow S^{\prime}=S
\end{gathered}
$$

$$
S^{\prime}=\int d^{d} x\left|\frac{\partial x^{\prime}}{\partial x}\right| \mathcal{L}\left(\mathcal{F}(\Phi(x)),\left(\frac{\partial x^{\nu}}{\partial x^{\prime \mu}}\right) \partial_{\nu} \mathcal{F}(\Phi(x))\right)
$$

- Example 2 - Lorentz transformation:

$$
\begin{gathered}
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} \\
\Phi^{\prime}(\Lambda x)=L_{\Lambda} \Phi(x) \\
\rightarrow \mathcal{F}=L_{\Lambda} \cdot I d \\
\rightarrow \frac{\partial x^{\nu}}{\partial x^{\prime} \mu}=\left(\Lambda^{-1}\right)_{\mu}^{\nu} \\
\rightarrow S^{\prime}=\int d^{d} \times \mathcal{L}\left(L_{\Lambda} \Phi, \Lambda^{-1} \partial\left(L_{\Lambda} \Phi(x)\right)\right)
\end{gathered}
$$

Repetition - Symmetries and Noethers theorem

$$
S^{\prime}=\int d^{d} \times\left|\frac{\partial x^{\prime}}{\partial x}\right| \mathcal{L}\left(\mathcal{F}(\Phi(x)),\left(\frac{\partial x^{\nu}}{\partial x^{\prime \mu}}\right) \partial_{\nu} \mathcal{F}(\Phi(x))\right)
$$

- Example 3 - Scale transformation:

$$
\begin{gathered}
x^{\prime}=\lambda x \\
\Phi^{\prime}(\lambda x)=\lambda^{-\Delta} \Phi(x) \\
\rightarrow \mathcal{F}=\lambda^{-\Delta} \cdot I d \\
\rightarrow \frac{\partial x^{\nu}}{\partial x^{\prime} \mu}=\lambda^{-1} \\
\rightarrow S^{\prime}=\lambda^{d} \int d^{d} \times \mathcal{L}\left(\lambda^{-\Delta} \Phi, \lambda^{-1-\Delta} \partial_{\mu} \Phi\right)
\end{gathered}
$$

Repetition - Symmetries and Noethers theorem

- Let us now consider the effect of infinitesimal transformations on the action

$$
\begin{aligned}
x^{\prime \mu} & =x^{\mu}+\omega_{a} \frac{\partial x^{\mu}}{\partial \omega_{a}} \\
\Phi^{\prime}\left(x^{\prime}\right) & =\Phi(x)+\omega_{a} \frac{\partial \mathcal{F}}{\omega_{a}}
\end{aligned}
$$

- The Generator of a symmetry transformation is defined by

$$
\begin{gathered}
\Phi^{\prime}(x)-\Phi(x)=:-i \omega_{a} G_{a} \Phi(x) \\
\cdots=-\left(\frac{\partial \Phi}{\partial x^{\mu}} \frac{\partial x^{\mu}}{\partial \omega_{a}} \omega_{a}-\frac{\partial \mathcal{F}}{\partial \omega_{a}} \omega_{a}\right)
\end{gathered}
$$

Repetition - Symmetries and Noethers theorem

$$
\begin{aligned}
x^{\prime \mu} & =x^{\mu}+\omega_{a} \frac{\partial x^{\mu}}{\partial \omega_{a}} \\
\Phi^{\prime}\left(x^{\prime}\right) & =\Phi(x)+\omega_{a} \frac{\partial \mathcal{F}}{\partial \omega_{a}}
\end{aligned}
$$

- Example 1 - Translation:

$$
\begin{aligned}
x^{\prime \mu} & =x^{\mu}+a^{\mu} \\
\Phi^{\prime}(x+a) & =\Phi(x) \\
\rightarrow P_{\mu} & =-i \partial_{\mu}
\end{aligned}
$$

Repetition - Symmetries and Noethers theorem

$$
\begin{aligned}
x^{\prime \mu} & =x^{\mu}+\omega_{a} \frac{\partial x^{\mu}}{\partial \omega_{a}} \\
\Phi^{\prime}\left(x^{\prime}\right) & =\Phi(x)+\omega_{a} \frac{\partial \mathcal{F}}{\partial \omega_{a}}
\end{aligned}
$$

- Example 2 - Lorentz transformation:

$$
\begin{aligned}
x^{\prime \mu} & =x^{\mu}+\omega_{\nu}^{\mu} x^{\nu} \\
& =x^{\mu}+\omega_{\rho \nu} g^{\rho \mu} x^{\nu} \\
\Phi^{\prime}\left(x^{\prime}\right) & =L_{\Lambda} \Phi(x) \\
& =\left(1-\frac{1}{2} i \omega_{\rho \nu} S^{\rho \nu}\right) \Phi
\end{aligned}
$$

- $\omega_{\rho \nu}=-\omega_{\nu \rho}$ is antisymmetric

$$
\rightarrow L^{\rho \nu}=i\left(x^{\rho} \partial^{\nu}-x^{\nu} \partial^{\rho}\right)+S^{\rho \nu}
$$

Repetition - Symmetries and Noethers theorem

- The effect of an infinitesimal transformation on the action can be shown to be

$$
\begin{aligned}
\delta S & =S-S^{\prime} \\
& =-\int d^{d} \times \partial_{\mu} j_{a}^{\mu} \omega_{a}
\end{aligned}
$$

with the conserved current

$$
j_{a}^{\mu}=\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)} \partial_{\nu} \Phi-\delta_{\nu}^{\mu} \mathcal{L}\right) \frac{\partial x^{\nu}}{\partial \omega_{a}}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)} \frac{\partial \mathcal{F}}{\partial \omega_{a}}
$$

- For a continuous symmetry transformation $\left(\delta S=0\right.$ for all $\left.\omega_{a}\right)$ this implies

$$
\partial_{\mu} j_{a}^{\mu}=0
$$

- This is Noether's theorem
- Every conserved current gives us an integral of motion. We can solve a system with n degrees of freedom if n currents are conserved.
- Repetition: Symmetries and Noethers theorem
- The structure of infinitesimal conformal transformations
- Global conformal transformations
- The Virasoro algebra in 2 dimensions

The structure of infinitesimal conformal transformations Conformal transformations

- Conformal transformations conserve angles

Figure: Conformal transformation

The structure of infinitesimal conformal transformations Conformal transformations

- Conformal transformations conserve angles
- This is equivalent to leaving to leaving the metric tensor invariant up to a scaling factor

$$
g_{\rho \sigma} \frac{\partial x^{\rho}}{\partial x^{\mu}} \frac{\partial x^{\prime \sigma}}{\partial x^{\nu}}=\Lambda(x) g_{\mu \nu}
$$

The structure of infinitesimal conformal transformations Conformal transformations

- Conformal maps include Lorentz transformations and translations (Poincaré group) - this corresponds to $\Lambda(x)=1$
- But there are more! Let's discuss the conditions for conformal invariance in more detail...

The structure of infinitesimal conformal transformations Conditions

- Consider an infinitesimal transformation

$$
x^{\prime \rho}=x^{\rho}+\epsilon^{\rho}+O\left(\epsilon^{2}\right)
$$

- Now impose the constraint that the metric tensor be invariant up to a scale factor

$$
\cdots \rightarrow \partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}=\frac{2}{d}(\partial \cdot \epsilon) g_{\mu \nu}
$$

- One can also derive

$$
(d-1) \partial^{\mu} \partial_{\mu}(\partial \cdot \epsilon)=0
$$

and

$$
2 \partial_{\mu} \partial_{\nu} \epsilon_{\rho}=\frac{2}{d}\left[g_{\rho \mu} \partial_{\nu}+g_{\nu \sigma} \partial_{\mu}+g_{\mu \nu} \partial_{\rho}\right]
$$

- Let us now turn to the general case $d \geq 2$

The structure of infinitesimal conformal transformations The four types

- By equation (2) we can make the ansatz

$$
\epsilon_{\mu}=a_{\mu}+b_{\mu \nu} x^{\nu}+c_{\mu \nu \rho} x^{\nu} x^{\rho}
$$

- We can consider all of the terms separately

The structure of infinitesimal conformal transformations The four types

$$
\epsilon_{\mu}=a_{\mu}+b_{\mu \nu} x^{\nu}+c_{\mu \nu \rho} x^{\nu} x^{\rho}
$$

- No constraint for a_{μ}
- Infinitesimal translations

$$
x^{\prime \mu}=x^{\mu}+a^{\mu}
$$

- Generator:

$$
P_{\mu}=-i \partial_{\mu}
$$

The structure of infinitesimal conformal transformations The four types

$$
\epsilon_{\mu}=a_{\mu}+b_{\mu \nu} x^{\nu}+c_{\mu \nu \rho} x^{\nu} x^{\rho}
$$

- Constraint for $b_{\mu \nu}$

$$
b_{\mu \nu}+b_{\nu \mu}=\frac{2}{d} b_{\lambda}^{\lambda} g_{\mu \nu}
$$

- Dilations

$$
x^{\prime \mu}=\alpha x^{\mu}
$$

and rotations

$$
x^{\prime \mu}=M_{\nu}^{\mu} x^{\nu}
$$

- Their respective generators are:

$$
\begin{gathered}
D=-i x^{\mu} \partial_{\mu} \\
L_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)
\end{gathered}
$$

The structure of infinitesimal conformal transformations The four types

$$
\epsilon_{\mu}=a_{\mu}+b_{\mu \nu} x^{\nu}+c_{\mu \nu \rho} x^{\nu} x^{\rho}
$$

- Constraint for $c_{\mu \nu \rho}$

$$
c_{\mu \nu \rho}=g_{\mu \rho} c_{\sigma \nu}^{\sigma}+g_{\mu \nu} c_{\sigma \rho}^{\sigma}-g_{\nu \rho} c_{\sigma \mu}^{\sigma}
$$

- "Special Conformal Transformations":

$$
x^{\prime \mu}=\frac{x^{\mu}-(x \cdot x) b^{\mu}}{1-2(b \cdot x)+(b \cdot b)(x \cdot x)}
$$

- Generator:

$$
K_{\mu}=-i\left(2 x_{\mu} x^{\nu} \partial_{\nu}-(x \cdot x) \partial_{\mu}\right)
$$

The structure of infinitesimal conformal transformations The four types

- Special Conformal Transformations consist of an inversion followed by a translation and another inversion, i.e.:

Figure: Special conformal transformation

- Repetition: Symmetries and Noethers theorem
- The structure of infinitesimal conformal transformations
- Global conformal transformations
- The Virasoro algebra in 2 dimensions

Global conformal transformations - The Conformal Group and Algebra

- The group $S O(p, q)$ is a generalization of the usual special orthogonal group.
- It leaves invariant the scalar product $\langle x, y\rangle=x^{\top} g y$ where g is the metric tensor with p times +1 on the diagonal and q times -1 .
- The Lorentz group is $S O(3,1)$
- There is a basis $J_{a b}$ in which the commutation relations read

$$
\left[J_{a b}, J_{c d}\right]=i\left(g_{a d} J_{b c}+g_{b c} J_{a d}-g_{a c} J_{b d}+g_{b d} J_{a c}\right)
$$

Global conformal transformations - The Conformal Group and Algebra

- The Conformal Group is the group consisting of globally defined, invertible and finite conformal transformations
- The Conformal Algebra is the Lie Algebra corresponding to the Conformal Group

Global conformal transformations - The Conformal Group and Algebra

- We now seek similarities between the Conformal Group and known groups
- There were four types of conformal transformations
(1) Translations $P_{\mu}=-i \partial_{\mu}$
(2) Dilations $D=-i x^{\mu} \partial_{\mu}$
(3) Rotations $L_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)$
(9) Special Conformal Transformations $s K_{\mu}=-i\left(2 x_{\mu} x^{\nu} \partial_{\nu}-(x \cdot x) \partial_{\mu}\right)$

Global conformal transformations - The Conformal Group and Algebra

- Now compute the commutation relations
(1) $\left[D, P_{\mu}\right]=i P_{\mu}$
(2) $\left[D, K_{\mu}\right]=-i K_{\mu}$
(3) $\left[K_{\mu}, P_{\nu}\right]=2 i\left(g_{\mu \nu} D-L_{\mu \nu}\right)$
(9) $\left[K_{\rho}, L_{\mu \nu}\right]=i\left(g_{\rho \mu} K_{\nu}-g_{\rho \nu} K_{\mu}\right)$
(5) $\left[P_{\rho}, L_{\mu \nu}\right]=i\left(g_{\rho \mu} P_{\nu}-g_{\rho \nu} P_{\mu}\right)$
(0) $\left[L_{\mu \nu}, L_{\rho \sigma}\right]=i\left(g_{\nu \rho} L_{\mu \sigma}+g_{\mu \sigma} L_{\nu \rho}+g_{\mu \rho} L_{\nu \sigma}+g_{\nu \sigma} L_{\mu \rho}\right)$
- Define
(1) $J_{\mu \nu}=L_{\mu \nu}$
(2) $J_{-1, \mu}=\frac{1}{2}\left(P_{\mu}-K_{\mu}\right)$
(3) $J_{-1,0}=D$
(9) $J_{0, \mu}=\frac{1}{2}\left(P_{\mu}+K_{\mu}\right)$
- These obey

$$
\left[J_{a b}, J_{c d}\right]=i\left(g_{a d} J_{b c}+g_{b c} J_{a d}-g_{a c} J_{b d}+g_{b d} J_{a c}\right)
$$

- Hence, the Conformal Group in d dimensions is isomorphic to the group $S O(d+1,1)$ with $\frac{(d+2)(d+1)}{2}$ parameters

Global conformal transformations - The case $d=2$

- Let us now turn to the case $d=2$

Global conformal transformations - The case $d=2$

- For $d=2$,

$$
\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}=\frac{2}{d}(\partial \cdot \epsilon) g_{\mu \nu}
$$

turns into the Cauchy-Riemann equations

- Infinitesimal holomorphic functions $f(z)=z+\epsilon(z)$ give rise to infinitesimal conformal transformations

Global conformal transformations - The Witt Algebra

- A general meromorphic function can be expanded into a Laurent series

$$
f(z)=z+\sum_{n \in \mathbb{Z}} \epsilon_{n}\left(-z^{n+1}\right)
$$

Global conformal transformations - The Witt Algebra

- A general meromorphic function can be expanded into a Laurent series

$$
f(z)=z+\sum_{n \in \mathbb{Z}} \epsilon_{n}\left(-z^{n+1}\right)
$$

- There is a generator for each of the terms

$$
I_{n}=-z^{n+1} \partial_{z}
$$

- Their commutation relation is

$$
\left[I_{m}, I_{n}\right]=(m-n) I_{m+n}
$$

- We call this the Witt Algebra
- It is infinite dimensional

Global conformal transformations - Local and Global Conformal Transformations

- The Witt Algebra was induced by infinitesimal conformal invariance. What about global transformations?
- We know from complex analysis that the complete set of global conformal transformations (projective or Möbius transformations) of the Riemann sphere is

$$
f(z)=\frac{a z+b}{c z+d} \quad \text { with } a d-b c=1
$$

- They form a group and one can associate the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with each of them
- Therefore, the global conformal group is isomorphic to $S L(2, \mathbb{C}) \cong S O(3,1)$

Global conformal transformations - Local and Global Conformal Transformations

- Now reconsider the Witt Algebra
- Notice that the generators of the Witt Algebra generate transformations which are singular at certain points
- The principal part of the Laurent series diverges for $n<-1$
- We are actually working on the Riemann Sphere rather than the complex plane
- All transformations generated by generators with $n>1$ are singular at ∞
- The only globally defined generators of the Witt Algebra are

$$
I_{-1}, l_{0}, l_{1}
$$

- This is a particuliarity of the $2 d$-case

Global conformal transformations - Local and Global Conformal Transformations

- Now is the Conformal Group in two dimensions infinite dimensional or does it have dimension 6?
- Locally: Infinite dimensions
- Globally: Six dimensions
- Repetition: Symmetries and Noethers theorem
- The structure of infinitesimal conformal transformations
- Global conformal transformations
- The Virasoro algebra in 2 dimensions
- A central extension of a Lie algebra of \mathfrak{g} by an abelian Lie algebra \mathfrak{a} is an exact sequence of Lie algebra homomorphisms

$$
0 \rightarrow \mathfrak{a} \rightarrow \mathfrak{h} \rightarrow \mathfrak{g} \rightarrow 0
$$

where $[\mathfrak{a}, \mathfrak{h}]=0$ and the image of every homorphism is the kernel of the succeeding one

- For every such sequence there is a linear map $\beta: \mathfrak{g} \rightarrow \mathfrak{h}$
- Let $\Theta: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{a}$

$$
\Theta(X, Y):=[\beta(X), \beta(Y)]-\beta([X, Y])
$$

$$
\Theta(X, Y):=[\beta(X), \beta(Y)]-\beta([X, Y])
$$

- We can check that Θ fulfills
(1) It is bilinear and alternating
(2) $\Theta(X,[Y, Z])+\Theta(Y,[Z, X])+\Theta(Z,[X, Y])=0$
- A map satisfying those requirements is a cocyle
- Every central extension has exactly one associated cocycle and it is trivial if there is a homomorphism μ such that

$$
\Theta(X, Y)=\mu([X, Y])
$$

$$
0 \rightarrow \mathfrak{a} \rightarrow \mathfrak{h} \rightarrow \mathfrak{g} \rightarrow 0
$$

- For the central extension of the Witt Algebra \mathfrak{W} we identify:
- $\mathfrak{a} \leftrightarrow \mathbb{C}$
- $\mathfrak{h} \leftrightarrow \mathfrak{V i r}$
- $\mathfrak{g} \leftrightarrow \mathfrak{W}$
- We propose that

$$
\omega\left(L_{n}, L_{m}\right):=\delta_{n+m, 0} \frac{n}{12}\left(n^{2}-1\right)
$$

is the cocycle defining the only nontrivial central extension of \mathfrak{W} by \mathbb{C}

- It is bilinear and alternating
- It fulfills $\omega\left(L_{k},\left[L_{m}, L_{n}\right]\right)+\omega\left(L_{m},\left[L_{n}, L_{k}\right]\right)+\omega\left(L_{n},\left[L_{k}, L_{m}\right]\right)=0$
- If there was a homomorphism μ with $\Theta(X, Y)=\mu([X, Y])$ it would satisfy

$$
\mu\left(L_{0}\right)=\frac{1}{24}\left(n^{2}-1\right)
$$

which cannot be true for every n

- It can be shown that every other cocycle Θ is a multiple of ω.

$$
\Theta(X, Y):=[\beta(X), \beta(Y)]-\beta([X, Y])
$$

- Hence we define the Virasoro algebra $\mathfrak{V i r}$ as the unique central extension of the Witt algebra $\mathfrak{W J}$ by \mathbb{C}, i.e
- $\mathfrak{V i r}=\mathfrak{W} \oplus \mathbb{C}$

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+c \frac{n}{12}\left(n^{2}-1\right) \delta_{m+n, 0}
$$

