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1 Introduction

This report is associated with the talk The Conformal Group In Various
Dimensions held on 04.03.2013 in a proseminar series on Conformal Field
Theory and String Theory at ETH Zurich. Ideas mentioned in the talk
(which is available on www.itp.phys.ethz.ch) will be elaborated in the re-
port and derivation are worked out more thoroughly with details and further
thoughts given on the material presented.
Conformal field theories and in particular conformal quantum field theories
are of high interest in modern theoretical physics. This is partly due to
the possible applications among which there is a description of second or-
der phase transitions and quantum behavior at very high energies. Both
situations share scale invariance of space and mass respectively and thus
are good examples of systems with symmetries exceeding the usual given
Lorentz symmetry. The other important contribution of conformal theo-
ries to physics is as a playground for applying theoretical tools since those
theories - exhibiting very high (and sometimes even infinite) amounts of
symmetry are relatively simple to solve with basic mathematics; most no-
tably group theory and complex analysis.
The ideas presented in this report will follow the same structure as the talk.
Prerequisite material is quickly reviewed in the Repetition and Noethers the-
orem section (mostly from [2]) before deriving The structure of infinitesimal
conformal transformations after which we are presented with the confor-
mal group - essentially an enlarged Lorentz group. The notion of Global
conformal transformations will be made clear when compared to the lo-
cal conformal group - a difference only occurring in the important 2D-case
(material from [3] is used). Things will be finished up by giving a short
mathematical introduction to The Virasoro algebra in 2 dimensions , the
unique central extension of the conformal algebra that arises naturally due
to the quantum mechanical nature of the systems we study. This is also the
first time that the discussion will be restricted to quantum mechanics. All
other ideas presented could as well be true for classical field theories. Since
the last section is rather mathematical, [1] is used as the primary source).
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2 Repetition and Noether’s Theorem

In this section we will revise the importance of symmetry in field theories.
We know from Classical Mechanics that Lagrange’s equations of motions

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 (1)

are equivalent to Hamilton’s principle of least action

δS = 0 (2)

where the action is by definition

S :=

∫
ddxL(xi, ẋi, t) (3)

In field theory we build upon this idea by switching from a discrete to a con-
tinuous set of parameters - the values of the fields and their first derivatives
at any position. We now consider general transformations of the action func-
tional (functional because it now depends on the fields Φ and ∂µΦ which are
now essentially functions) before going to symmetry transformations. In the
talk we restricted ourselves to continuous transformations, i.e. transforma-
tions that are continuously connected to the identity by a small parameter
ε. Discrete transformations like time are space inversion are neglected here
because the all important Noethers theorem which will be stated shortly
requires continuous transformations. A general transformation changes not
only the coordinates but also the fields (figure 1):

x→ x′ (4)

Φ(x)→ Φ′(x′) =: F(Φ(x)) (5)

It is also to be stated that the same transformation can be understood
in the so called active and passive sense. In the active view we actually
perform a rotation for example on space-time. If you drew up a sample field
on a sheet of paper this would amount to twisting the paper whereas in the
passive view the observer goes around the sheet and thus only changes his
point of view of the same thing. It is of course clear that we can regard
every transformation as being generated by one or the other point of view
but in we will stick with the active view for the time being.

2.1 Examples

Let us revise some basic examples.
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Figure 1: Active transformation [2]

2.1.1 Example 1 - Translations

Under a translation by a vector a the coordinates change according to

x′ = x+ a (6)

In order to stay invariant under this coordinate only transformation the
fields must change like

Φ′(x+ a) = Φ′(x′) = Φ(x) (7)

which leads us to field transformation function

F = Identity (8)

We are now interested in the variation of the action δS = S − S′. One can
write down the general transformed action

S′ =

∫
ddx

∣∣∣∣∂x′∂x

∣∣∣∣L(F(Φ(x)
)
,

(
∂xν

∂x′µ

)
∂νF

(
Φ(x)

))
(9)

Since we additionally have
∂x′ν

∂xµ
= δνµ (10)

the Jacobian determinant is 1 and we obtain

S = S′ (11)
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Note that the derivation inside the arguments of the Lagrangian is with
respect to the spacial coordinates and not with respect to Φ, i.e. ∂µF is not
zero but ∂µΦ(x)

2.1.2 Example 2 - Lorentz Transformations

We now turn to Rotations of Minkowski space-time, i.e. Lorentz transfor-
mations. We are obliged to include Lorentz symmetry in our theories by
special relativity. Under a Lorentz transformation by a Lorentz matrix Λ
the coordinates change according to

x′µ = Λµνx
ν (12)

which gives
∂xν

∂x′µ
=
(
Λ−1

)ν
µ

(13)

The fields change linearly according to

Φ′(Λx) = LΛΦ(x) (14)

The transformation function is then just a matrix.

F = LΛ (15)

If we now plug all this into (equation 9) we obtain

S′ =

∫
ddx L

(
LΛΦ,Λ−1∂

(
LΛΦ(x)

))
(16)

2.1.3 Example 3 - Scale Transformations

As a third and last example we now consider this new type of transforma-
tions. This is given by

x′ = λx (17)

∂xν

∂x′µ
= λ−∆ (18)

Φ′(λx) = F(Φ(x)) = λ−∆Φ(x) (19)

S′ = λd
∫
ddx L

(
λ−∆Φ, λ−1−∆∂µΦ

)
(20)

We have not yet done any statement about possible invariance of the
fields under those transformations. There are certain requirements for F
which potentially lead to invariance which we will study in the next chapters.
But before we will introduce the notion of infinitesimal transformations .
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2.2 Infinitesimal Transformations

As the transformations we consider are continuously connected to the iden-
tity we can linearize their effects, i.e. represent them by a Taylor series up
to first oder about the identity. For a general transformation depending on
a set of parameters ωa this can be written down as

x′µ = xµ + ωa
∂xµ

∂ωa
(21)

where the Einstein sum convention is understood. The effect on the fields
can be linearized in terms of the continuous, differentiable transformation
function F

Φ′(x′) = Φ(x) + ωa
∂F
ωa

(22)

We also recall the definition of the Generator Ga of an infinitesimal transfor-
mation depending on parameters a which relates the changed and unchanged
field at the same position.

Φ′(x)− Φ(x) =: −iωaGaΦ(x) (23)

= −
(
∂Φ

∂xµ
∂xµ

∂ωa
ωa −

∂F
∂ωa

ωa

)
(24)

The last expression originates from plugging in the first order Taylor expan-
sion and the chain rule for Φ(x′). We can easily see that for the examples
covered in section (2.1,2.2,2.3) the generators are as follows: For a transla-
tion in the direction of µ we have

Pµ = −i∂µ (25)

since ∂xµ

∂aµ
= 1 and ∂F

∂aµ
= 0. Things are little more complicated in the case

of Lorentz transformations. If we write

xµ + ωρνg
ρµxν (26)

with the metric tensor g we recall that ωρν = −ωνρ must be antisymmetric
to keep the metric invariant. This allows us to write the transformation
function as

F(Φ) =

(
1− 1

2
iωρνS

ρν

)
Φ (27)

Finally plugging this into the formula for the generators we obtain

Lρν = i
(
xρ∂ν − xν∂ρ

)
+ Sρν (28)
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In four-dimensional Minkowski space-time we have 16 generators. We also
rediscover the classical angular momentum operator as the first term. By the
same procedure it can be shown that the generator of scale transformations
must be

D = −ixµ∂µ (29)

2.3 Conserved Currents

In classical mechanics every continuous symmetry was associated with a
conserved quantity, i.e if the system looked the same under rotations it ex-
hibited angular momentum conservation, invariance to translations resulted
in momentum conservation. Time invariance was associated with the con-
servation of energy. Systems were called integrable or solvable if the number
of conserved quantities matched the number of degrees of freedom. With the
continuous set of parameters introduced our notion of a conserved quantity
changes in favor of the conserved current

jµa =

(
∂L

∂(∂µΦ)
∂νΦ− δµνL

)
∂xν

∂ωa
− ∂L
∂(∂µΦ)

∂F
∂ωa

(30)

This quantity is associated with an infinitesimal transformation depending
on parameters a. The motivation of this definition is that the variation of
the action can then exactly be cast into the form

δS = S − S′ (31)

= −
∫
ddx ∂µj

µ
aωa (32)

This would not be of any use if ωa represented a discrete symmetry. This
integral vanishing for one particular ωa tells us nothing about the currents
ja. Only the fact that this integral vanishes for every ωa results in

∂µj
µ
a = 0 (33)

by the variational principle. This is Noether’s Theorem .

3 The structure of infinitesimal conformal trans-
formations

The structure of the Poincar group i.e. the Lorentz transformations plus
translations is well known and has been revisited in the preceding section.
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We want to elaborate on how allowing a scale factor enlarges the Poincar
group and by doing so will discover a surprise, namely that the addition
of scale transformations allows for a fourth kind of transformations to be
added to the group structure.

3.1 Requirements for conformal invariance

By definition, conformal transformations only preserve angles (figure 2) (un-
like Lorentz transformations which also keep lengths). This is equivalent to

Figure 2: Conformal transformation[2]

leaving the metric tensor invariant up to a scaling factor Λ(x) which can
depend on position.

gρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν (34)

We will again follow the approach of infinitesimal transformations which
allows us to compose finite transformations from the generators. Consider
hence an infinitesimal map of the form

x′ρ = xρ + ερ +O(ε2) (35)

and plug this into the constraint equation (equation 34) we can place a
constraint on the ερs after a short calculation.

∂x′ρ

∂xµ
= δρµ + ∂µε

ρ (36)

Λ(x)gµν = gρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
+O(ε2) (37)

= gρσ
(
δρµ + ∂µε

ρ
)(
δσν + ∂νε

σ
)

+O(ε2) (38)

= gρσ
(
δρµδ

σ
ν + δρµ∂νε

σ + ∂µε
ρδσν
)

+O(ε2) (39)

= gµν + ∂νεµ + ∂µεν (40)
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where we have lowered the indices of ε upon contraction with the metric
tensor. To keep invariance up to scaling we naturally require

∂νεµ + ∂µεν = Kgµν (41)

where K can be determined by tracing with gµν

gµν
(
∂νεµ + ∂µεν

)
= Kgµνg

µν (42)

2(∂ · ε) = dK (43)

where we introduced ∂ ·ε := ∂νε
ν and d is the dimension of the metric tensor.

Going back to equation (40) we conclude that

∂νεµ + ∂µεν =
2

d
(∂ · ε)gµν (44)

which we refer to as the constraint equation for conformal transformations.
Every transformation of the form (35) has to fulfill (44). We can also derive

(d− 1)∂µ∂µ(∂ · ε) = 0 (45)

if d is not equal to 2.

3.2 The four types

If we look at equation (45) we find that εµ is constrained to be at most
quadratic in the position arguments. Any cubic or higher dependence would
violate the third derivative being zero everywhere (bare in mind however that
(45) was derived for the case d 6= 2!). By this token we can make the ansatz

εµ = aµ + bµνx
ν + cµνρx

νxρ (46)

Now the constraint equation (34) is true everywhere in space. This means
that we can consider the constant, linear and quadratic term separately,
place constraints on the coefficients, extract the according generators and
recompose any arbitrary transformation in the end.

3.2.1 The constant term - Translations

By this logic we consider a constant εµ = aµ first. From equation (44) we
get

∂νaµ + ∂µaν =
2

d
(∂ · a)gµν (47)
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and since a is constant we trivially get 0 = 0. The variable a is hence totally
arbitrary. The transformations associated with x′ = x+ a are of course the
translations and their generators were determined to be

Pµ = −i∂µ (48)

in section (2.1).

3.2.2 The linear term - Dilations and Rotations

Consider now the linear term only

εµ = bµνx
ν (49)

By equation (44) we get

∂νεµ + ∂µεν =
2

d
(∂ · ε)gµν (50)

∂µbνρx
ρ + ∂νbµρx

ρ =
2

d
∂σbσρx

ρgµν (51)

bνρδ
ρ
µ + bµρδ

ρ
ν =

2

d
bσρgµνδ

ρ
σ (52)

bνµ + bµν =
2

d
bρρgµν (53)

which tells us that we can decompose the second-rank tensor bνµ into an
antisymmetric part (for µ 6= ν, gµν will be zero since the metric tensor we
consider is diagonal) and a multiple of the identity matrix (µ = ν). We
recover dilations in the latter case since the transformation then reads

x′µ = αxµ (54)

and the associated generator was given in equation (29). An antisymmetric
matrix acting as infinitesimal parameters of a transformation is familiar since
section (2.1.2). We identify those with the usual Lorentz transformations.

3.2.3 The quadratic term - Special Conformal Transformations

It was to be expected that dilations arise naturally if Λ 6= 1 is allowed
in addition to the Poincar transformations. However we are not done yet!
Pluggin in εµ = cµνρ into equation (44) we obtain

cµνρ = gµρc
σ
σν + gµνc

σ
σρ − gνρcσσµ (55)
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It becomes clear in this form that there are only d degrees of freedom for
this transformation and not 3d as could have been expected. Casting those
d parameters into a vector b it is possible to show that the according trans-
formation takes the form

x′µ =
xµ − (x · x)bµ

1− 2(b · x) + (b · b)(x · x)
(56)

The generators of this are found to be

Kµ = −i(2xµxν∂ν − (x · x)∂µ) (57)

The meaning of such a transformation can be understood by considering

Figure 3: Special conformal transformation [2]

figure (3). It is actually an inversion on the unit circle then a translation
by the vector b and then another inversion. The astout reader may ask why
this transformation did not arise before allowing a scale factor. The answer
is that only in these conditions the transformation containing an inversion
can be continuously connected to the identity. For our further discussion we
should also be aware of the fact that the point

x′µ =
1

b · b
bµ (58)

is mapped to infinity.
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4 Global Conformal Transformations

In this section we will consider the globally defined versions of the transfor-
mations found in section (2). In the end an interesting identification can be
made namely that the group of all globally defined conformal transforma-
tions is isomorphic to the Lorentz group in d+2 dimensions. The case d = 2
- which was excluded in order to use equation (45) and motivate our ansatz
- will also be reviewed in detail.

4.1 The group SO(p,q)

The group SO(p) is known from linear algebra; it is just the group of or-
thogonal matrices with determinant one, i.e. they leave the scalar product

< x, y >= xT gy (59)

invariant, where g in this case is just the identity matrix. The generalization
to other metric tensors is straightforward: Members of the group SO(p,q)
leave invariant the scalar product

< x, y >= xT gy (60)

where g is the metric tensor with p +1s and q −1s on the diagonal. The
most familiar example is the Lorentz group SO(3,1). In depth calculations
show that the commutation relations of the SO(p,q) group are

[Jab, Jcd] = i(gadJbc + gbcJad − gacJbd + gbdJac) (61)

The generators of the conformal transformations represent the conformal
group and they were calculated in equations (25), (28), (29) and (57). Their
commutation relations read

[D,Pµ] = iPµ (62)

[D,Kµ] = −iKµ (63)

[Kµ, Pν ] = 2i(gµνD − Lµν) (64)

[Kρ, Lµν ] = i(gρµKν − gρνKµ (65)

[Pρ, Lµν ] = i(gρµPν − gρνPµ (66)

[Lµν , Lρσ] = i(gνρLµσ + gµσLνρ + gµρLνσ + gνσLµρ) (67)
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The generators can be cast into a matrix Jµν in a particular way. We define

Jµν := Lµν (68)

J−1,µ :=
1

2
(Pµ −Kµ) (69)

J−1,0 := D (70)

J0,µ :=
1

2
(Pµ +Kµ) (71)

Again the commutation relations can be computed and the result is

[Jab, Jcd] = i(gadJbc + gbcJad − gacJbd + gbdJac) (72)

Compare equations (61) and (72). They are equal. Identifying the matrix
elements we have contracted a one to one correspondence between the el-
ements of SO(d+1,1) and the conformal group in d dimensions. Quickly
consider the dimensions. The group SO(d+1,1) is completely determined
by its’ upper triangular part (consider the Lorentz group to see this). In

d+ 2 dimensions this amounts to
∑d+2

n=1 n = (d+2)(d+1)
2 elements. Now count

the number of independent generators of the conformal group. There are
d generators for both translations and special conformal transformations,
rotations (with their constraint of antisymmetry) add another d(d−1)

2 while
dilations only have one generator. We quickly calculate

d+ d+
d(d− 1)

2
+ 1 =

(d+ 2)(d+ 1)

2
(73)

Hence the conformal group in d dimensions is isomorphic to the group
SO(d+1,1) with (d+2)(d+1)

2 parameters.

4.2 The d=2 case

Applying the aforementioned to the two-dimensional case we are interest-
ingly have

conformal group ≈ SO(3, 1) ≈ SL(2,C) (74)

This is indeed true for the global conformal group for d = 2 (we have not
assumed equation (45) in section (4.1)) but we expect the infinitesimal struc-
ture to be quite different since there the failure of (45) to hold will have large
consequences. What is still true is equation (44). For µ = ν = 0, 1 we get
in both cases

∂0ε0 = ∂1ε1 (75)
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For µ 6= ν we are on the off-diagonal of the metric tensor (which we just
take to be the identity for a moment - no Minkowski space involved) and
get a zero:

∂0ε1 = −∂1ε0 (76)

If we identify ε0,1 with the real and imaginary part of a complex function
respectively we recover the Cauchy-Riemann equations! This means that
the infinitesimal conformal maps are exactly the holomorphic ones on the
complex plane. A general locally holomorphic map can be written down as

f(z) = z +
∑
n∈Z

εn(−zn+1) (77)

which can be decomposed into functions fn = εn(−zn+1) corresponding to
the summands in the expansion. Each of those infinitesimal transformations
has a corresponding generator according to (24). Computing ∂xµ

∂ωa = ∂z′

∂εn
=

−zn+1 we obtain
ln := −zn+1∂z (78)

We compute the commutation relation of those generators

[lm, ln] = −zm+1∂z(z
n+1∂z) + zn+1∂z(z

m+1∂z) (79)

= (m− n)lm+n (80)

(81)

Those generators constituting any Laurent series together with this commu-
tation relation are called Witt Algebra . Obviously, it is infinite-dimensional.
But wait! Shouldn’t the group of conformal transformations in d dimensions
be isomorphic to SO(d+ 1, 1)? For the case d = 2 this would only allow for
six dimensions, not infinitely many. This paradox comes from the fact that
(45) was used to derive the correlation between those groups but it does not
hold for the infinitesimal transformations considered here. Let us instead
review global conformal transformations, i.e. those which map the Riemann
sphere in a 1-1 and holomorphic way onto itself. From complex analysis we
know that those functions have to fulfill a couple of constraints.

• It may not have essential singularities

• Injectivity requires that it may only have one pole of order one and
one zero of multiplicity one. Hence only functions of the form

f(z) =
p(z)

q(z)
(82)

are possible.
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• It must satisfy the group property, i.e. the combination must again be
such a transformation.

The only holomorphic function left are thus

f(z) =
az + b

cz + d
with ad− bc = 1 (83)

where 1 is a constant chosen for simplicity. Any other constant would be
equivalent up to rescaling. Those transformations are called Mobius Trans-
formations We now consider the combinations of such a Mobius Transforma-
tion F with parameters a, b, c and d with a second one G with the parameters
e, f, g and h:

F (G(z)) =
a ez+fgz+h + b

c ez+fgz+h + d
(84)

=
aez + af + bgz + bh

cez + cf + dgz + dh
(85)

=
z(ae+ bg) + (af + bh)

z(ce+ dg) + (cf + dh)
(86)

=:
Az +B

Cz +D
(87)

where we have defined

A := ae+ bg (88)

B := af + bh (89)

C := ce+ dg (90)

D := cf + dh (91)

We see that indeed the composition of two Mobius Transformations results
in another Mobius Transformation. What’s more, the structure of the re-
sulting coefficients lets us identify the Mobius composition with a matrix
multiplication

(
A B
C D

)
=

(
a b
c d

)(
e f
g h

)
(92)

Together with the constraint on what we now see turns out to be the
determinant of the according matrix we can identify every Mobius transform
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with an element of SL(2,C) which is in turn isomorphic to SO(3, 1) which
we know from linear algebra. We have thus shown that for global conformal
transformations, we recover the behavior of the transformation group elab-
orated in section 4.1.

That still does not answer what is wrong with the Witt Algebra in the
first place. Let us reconsider the generators ln given by (??generatorl). We
first note that the principal part of the Laurent series diverges at z = 0 for
n < −1. Now we study the behavior of the side part for z → ∞. Again
from complex analysis we know that f(z) is defined to have a singularity at
z =∞ if f(w := 1

z ) has a singularity at w = 0. Thus we first have to recast
the generators into that shape. Since

z =
1

w
(93)

→ ∂

∂z
=
∂w

∂z

∂

∂w
(94)

= − 1

z2

∂

∂w
(95)

= −w2 ∂

∂w
(96)

we have that

ln = −zn+1∂z (97)

= −
(
− 1

w

)n−1

∂w (98)

A singularity at w = 0 in the latter expression only occurs for n > 1. The
only generators that are thus allowed in a holomorphic 1-1 Laurent series are
l−1, l0 and l1. It remains to be said that the local and global perspective
being inequivalent is a particularity of the two-dimensional case.

5 The Virasoro Algebra Vir in two dimensions

In section 4.2 we found out that the Witt Algebra finds realization in classical
conformal field theories. Due to quantum effects, we have to consider any
central extension that the algebra might exhibit. A central extension of a
Lie algebra g by an abelian Lie algebra a is an exact sequence of Lie algebra
homomorphisms
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0→ a→ h→ g→ 0 (99)

where [a, h] = 0 and the image of every homorphism is the kernel of the
succeeding one. One can show that for every such sequence there is a linear
map β : g→ h. Now let Θ : gxg→ a

Θ(X,Y ) := [β(X), β(Y )]− β([X,Y ]) (100)

This bilinear form is obviously alternating and it fulfills a quasi-Jacobi iden-
tity, namely

Θ(X, [Y, Z]) + Θ(Y, [Z,X]) + Θ(Z, [X,Y ]) = 0 (101)

This - a bilinear, alternating map fulfilling the last identity - is what we
call a cocycle . It is an algebraic theorem that every central extension has
exactly one associated cocycle and it is trivial if there is a homomorphism
µ such that

Θ(X,Y ) = µ([X,Y ]) (102)

for all X and Y . After those definitions we turn back to our case of the Witt
Algebra . We stare at equation (99) and identify

a↔ C (103)

h↔ Vir (104)

g↔W (105)

And educated guess would then tell us that the cocycle defining the only
nontrivial central extension of W by C is

ω(Ln, Lm) := δn+m,0
n

12
(n2 − 1) (106)

It remains to be shown that this is indeed a cocycle, that it is non-trivial
and that it is indeed the only cocycle that can be associated with the Witt
Algebra .

The proposed cocycle is evidentially alternating and bilinear. It also
fulfills

ω(Lk, [Lm, Ln]) + ω(Lm, [Ln, Lk]) + ω(Ln, [Lk, Lm]) = 0 (107)
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hence it indeed is a cocycle. Is it trivial? Consider a homomorphism µ that
fulfills equation (102). Plugging in L0 we get

µ(L0) =
1

24
(n2 − 1) (108)

in which the left side is independent of n whereas the right side is not. The
cocylce ω is thus non-trivial. The proof of uniqueness involves more detailed
calculations and can for example be found in [1]. By the above, ω defines
the unique central extension of the Witt Algebra in the following way. Set

Vir = W⊕ C (109)

and complete the definition by specifying the commutation relations

[Lm, Ln] = (m− n)Lm+n + c
n

12
(n2 − 1)δm+n,0 (110)
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