Basics of Lie theory Classification of Lie Algebras

Andreas Wieser

ETH Zürich

11.03.2012

SO(3)

The Matrix group SO(3)

Consider the Matrix group

$$\mathsf{SO}(3) = \{ \mathsf{A} \in \mathsf{Mat}(3,\mathbb{R}) \mid \mathsf{A}^\mathsf{T}\mathsf{A} = \mathbb{1}, \mathsf{det}(\mathsf{A}) = 1 \}$$

Define the Lie algebra of SO(3) as

$$\mathfrak{so}(3) = \{\dot{\gamma}(0) \mid \gamma : (-\varepsilon, \varepsilon) \to \mathsf{SO}(3), \gamma(0) = \mathbb{1}\}$$

Claim

$$\mathfrak{so}(3) = \{A \in \mathsf{Mat}(3,\mathbb{R}) \mid A^T + A = 0\}$$

Proof of the Claim:

 $"\subset "$ Consider γ as in the definition of the Lie algebra. Then

$$\gamma(t)^T \gamma(t) = \mathbb{1} \quad \forall t \in [0, \varepsilon)$$

SO(3)

By differentiation

$$\dot{\gamma}(t)^{T}\gamma(t) + \gamma(t)^{T}\dot{\gamma}(t) = 0$$
$$\stackrel{t=0}{\Rightarrow} \dot{\gamma}(0)^{T} + \dot{\gamma}(0) = 0$$

"⊃" Let $A \in Mat(3, \mathbb{R})$ st. $A^T + A = 0$. In particular Tr(A) = 0. Define

$$egin{aligned} &\gamma:\mathbb{R} o \mathsf{Mat}(3,\mathbb{R})\ &t\mapsto \mathsf{exp}(\mathcal{A}t) \end{aligned}$$

Note that

•
$$\gamma(0) = 1$$

• $\det(\gamma(t)) = \exp(t \operatorname{Tr}(A)) = 1$
• $\gamma(t)^T \gamma(t) = \exp(-At) \exp(At) = 1$
• $\dot{\gamma}(0) = A \square$

Definiton Examples (Matrix Lie groups) The associated Lie algebra Examples of Lie algebras

Lie groups

Definition

A Lie group G is a set that has compatible structures of a smooth manifold and of a group. Compatible means that group multiplication and inversion are smooth maps i.e. the maps $(g, h) \mapsto gh$ and $g \mapsto g^{-1}$ are smooth

A **Matrix Lie group** is a Lie group that is contained in $GL(n, \mathbb{K})$ for some n and field K. Let $n \in \mathbb{N}$. Then the following groups are Lie groups

- $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$
- $SL(n, \mathbb{R})$ and $SL(n, \mathbb{C})$
- O(n), SO(n), U(n), SU(n)
- The symplectic groups $\mathsf{Sp}(2n,\mathbb{R})$ and $\mathsf{Sp}(2n,\mathbb{C})$
- The group B_n of upper-triangular matrices

Definiton Examples (Matrix Lie groups) The associated Lie algebra Examples of Lie algebras

Construction of the Lie algebra

Consider the action of the Lie group G on itself by conjugation

 $\Psi: G \to Aut(G)$ $g \mapsto \psi_g$

where

$$\psi_g(h) = ghg^{-1} \quad \forall h \in G$$

Note that the neutral element e gets mapped to itself. Consider now for $g \in G$ the map

$$Ad(g) = (d\psi_g)_e : T_eG \to T_eG$$

Thus

$$Ad: G \rightarrow Aut(T_eG)$$

Taking the differential map of Ad at the unity we get a map in the tangent spaces

$$ad: T_eG \rightarrow End(T_eG)$$

This implies a bilinear map $T_eG \times T_eG \rightarrow T_eG$ called the **Lie bracket** by

$$[X,Y] := ad(X)(Y)$$

Theorem

The Lie bracket fulfills

- [X, Y] = -[Y, X] for all $X, Y \in T_eG$
- the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0

for all $X, Y, Z \in T_eG$

The Lie algebra associated to the Lie group G is T_eG together with the Lie bracket on T_eG , we write \mathfrak{g} . A vectorspace \mathfrak{g} together with a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying the conditions in the theorem above is called a Lie algebra.

Definiton Examples (Matrix Lie groups) The associated Lie algebra Examples of Lie algebras

Homomorphisms of Lie groups and Lie algebras

Definition

Let G,H be Lie groups and $\mathfrak{g},\mathfrak{h}$ a Lie algebras

- A Lie group homomorphism ρ : G → H is a smooth map such that ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G.
- A Lie algebra homomorphism φ : g → h is a linear map, such that φ([X, Y]) = [φ(X), φ(Y)] for all X, Y ∈ g.

A representation of a Lie group G is a Lie group homomorphism mapping to GL(V), where V is some vector space. A representation of a Lie algebra \mathfrak{g} is a Lie algebra homomorphism mapping to $\mathfrak{gl}(V) = End(V)$.

Fact

- Let G a Lie group and g its Lie algebra. If G is connected, it is possible to generate the whole Lie group using g only.
- Let G,H Lie groups and g, h its Lie algebras. If G is simply connected, the Lie group homomorphisms from G to H are in one-to-one correspondence to the Lie algebra homomorphisms from g to h.

An introductory example Definito Lie groups Lie algebras The asso Classification of simple Lie algebras Example

Definiton Examples (Matrix Lie groups) The associated Lie algebra Examples of Lie algebras

Examples of Lie algebras

- $\mathfrak{gl}_n\mathbb{C} = \operatorname{End}(\mathbb{C}^n)$ (or more generally $\mathfrak{gl}(V)$ for V vector space)
- $\mathfrak{sl}_n\mathbb{C} = \{A \in \operatorname{Mat}(n,\mathbb{C}) \mid \operatorname{Tr}(A) = 0\}$
- $\mathfrak{sp}_{2n}\mathbb{C} = \{A \in \operatorname{Mat}(2n,\mathbb{C}) \mid MA + A^T M = 0\}$ where

$$M = \left(\begin{array}{cc} 0 & \mathbb{1}_n \\ -\mathbb{1}_n & 0 \end{array}\right)$$

• $\mathfrak{so}_{2n}\mathbb{C}$. As above, but with $M = \begin{pmatrix} 0 & \mathbb{1}_n \\ \mathbb{1}_n & 0 \end{pmatrix}$

•
$$\mathfrak{so}_{2n+1}\mathbb{C}$$
. With $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \mathbb{1}_n \\ 0 & \mathbb{1}_n & 0 \end{pmatrix}$

Basic notions Example: a basis for $\mathfrak{sl}_2(\mathbb{C})$ Cartan-Weyl basis The Killing form and the Weyl group

Lie algebras - basic notions

A subspace \mathfrak{h} of a Lie algebra \mathfrak{g} , that is closed under the Lie bracket (i.e. $[\mathfrak{h},\mathfrak{h}] \subset \mathfrak{h}$) is called a **Lie subalgebra**.

Definition

- A Lie subalgebra \mathfrak{h} is an **ideal** if $[\mathfrak{g},\mathfrak{h}] \subset \mathfrak{h}$.
- **2** A Lie algebra \mathfrak{g} is **abelian** if $[\mathfrak{g}, \mathfrak{g}] = 0$.
- A non-abelian Lie algebra g that does not contain any non-trivial ideal, is called simple.
- A Lie algebra g that does not contain any abelian ideal is called semisimple.

Example 1: The center $Z(\mathfrak{g}) = \{X \in \mathfrak{g} \mid [X, Y] = 0 \ \forall Y \in \mathfrak{g}\}$ is an ideal. The center of a semisimple Lie algebra contains only 0. **Example 2**: $\mathfrak{sl}_n \mathbb{C} \subset \mathfrak{gl}_n \mathbb{C}$ is a non-abelian ideal.

The adjoint map

Let \mathfrak{g} be a complex Lie algebra in what follows. The **adjoint map** at $X \in \mathfrak{g}$ is

$$\mathsf{ad}_X:\mathfrak{g} o\mathfrak{g}\ Y\mapsto [X,Y]$$

One can show that

$$\mathsf{ad}_{[X,Y]} = [\mathsf{ad}_X, \mathsf{ad}_Y]$$

Thus ad is a representation of \mathfrak{g} on itself \to adjoint representation.

Basic notions Example: a basis for $\mathfrak{sl}_2(\mathbb{C})$ Cartan-Weyl basis The Killing form and the Weyl group

Example: a basis for $\mathfrak{sl}_2(\mathbb{C})$

We consider the following basis of $\mathfrak{sl}_2(\mathbb{C})$:

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \ X = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \ Y = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$$

Then

$$[H, X] = 2X, \ [H, Y] = -2Y, \ [X, Y] = H$$

It can easily be shown that $\mathfrak{sl}_2(\mathbb{C})$ is simple using the relations above.

Cartan subalgebra

Let \mathfrak{g} a semisimple (finite) Lie algebra. Consider a maximal subset of \mathfrak{g} consisting of linearly independent, commuting elements, st. for each element H ad_H is diagonalizable (i.e. H is **ad-diagonalizable**). The subalgebra spanned by these elements is called a **Cartan subalgebra**, denoted by \mathfrak{h} . Note that

- $\bullet\,$ The Cartan subalgebra is unique up to automorphisms of $\mathfrak{g}.$
- The Cartan subalgebra is a maximal abelian subalgebra consisting of simultaneously ad-diagonalizable elements b.c.

$$[\mathsf{ad}_{H_1},\mathsf{ad}_{H_2}] = \mathsf{ad}_{[H_1,H_2]} = 0 \quad \forall H_1, H_2 \in \mathfrak{h}$$

• h is non trivial.

Basic notions Example: a basis for $\mathfrak{sl}_2(\mathbb{C})$ Cartan-Weyl basis The Killing form and the Weyl group

Cartan decomposition

 \to action of $\mathfrak h$ on $\mathfrak g$ by adjoint representation (diagonalizable!). This yields the Cartan decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_lpha\mathfrak{g}_lpha$$

where g_{α} are eigenspaces of the action of \mathfrak{h} . For $H \in \mathfrak{h}, \ X \in \mathfrak{g}_{\alpha}$ we have

$$\mathsf{ad}_H(X) = [H, X] = \alpha(H)X$$

 $\rightarrow \alpha \in \mathfrak{h}^*$, called **roots**. \mathfrak{g}_{α} are the **root spaces**

Basic notions Example: a basis for $\mathfrak{sl}_2(\mathbb{C})$ Cartan-Weyl basis The Killing form and the Weyl group

Action of \mathfrak{g}_{lpha} on \mathfrak{g}

Claim

In the adjoint representation $\mathfrak{g}_{\alpha} : \mathfrak{g}_{\beta} \to \mathfrak{g}_{\alpha+\beta}$

Proof: Let $X_{\alpha} \in \mathfrak{g}_{\alpha}, X_{\beta} \in \mathfrak{g}_{\beta}$ and $H \in \mathfrak{h}$. Then

$$\begin{split} [H, [X_{\alpha}, X_{\beta}]] &= -[X_{\beta}, [H, X_{\alpha}]] - [X_{\alpha}, [X_{\beta}, H]] \\ &= -\alpha(H)[X_{\beta}, X_{\alpha}] + \beta(H)[X_{\alpha}, X_{\beta}] \\ &= (\alpha + \beta)(H)[X_{\alpha}, X_{\beta}] \quad \Box \end{split}$$

We will denote the set of roots by R.

Basic notions Example: a basis for $\mathfrak{sl}_2(\mathbb{C})$ Cartan-Weyl basis The Killing form and the Weyl group

On roots and root spaces

Proposition

Let ${\mathfrak g}$ a semisimple, complex, finite-dim. Lie algebra. Let ${\mathfrak h}$ a Cartan subalgebra. Consider the Cartan-decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_lpha\mathfrak{g}_lpha$$

Then

- The roots span the dual space \mathfrak{h}^* .
- Every root space is one dimensional.
- The only multiples of a root α , which are roots are $\pm \alpha$.

A basis of \mathfrak{g} consisting of a basis of \mathfrak{h} and of elements spanning \mathfrak{g}_{α} is called a **Cartan-Weyl basis**.

Remark

We can show that $[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}]\neq 0$, $[[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}],\mathfrak{g}_{\alpha}]\neq 0$. Thus

$$s_lpha := \mathfrak{g}_lpha \oplus \mathfrak{g}_{-lpha} \oplus [\mathfrak{g}_lpha, \mathfrak{g}_{-lpha}] \simeq \mathfrak{sl}_2\mathbb{C}$$

We can thus choose $X_{\alpha} \in \mathfrak{g}_{\alpha}$, $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ and set $H_{\alpha} = [X_{\alpha}, Y_{\alpha}] \in \mathfrak{h}$, such that the usual commutation relations of $\mathfrak{sl}_2\mathbb{C}$ hold i.e.

$$[H_{\alpha}, X_{\alpha}] = 2X_{\alpha}, [H_{\alpha}, Y_{\alpha}] = -2Y_{\alpha}, H_{\alpha} = [X_{\alpha}, Y_{\alpha}]$$

In particular $\alpha(H_{\alpha}) = 2$.

It is possible to "build up" the Cartan subalgebra with elements $\{H_{\alpha}\}_{\alpha\in R}$. In fact we can choose a subset of R st. the above elements form a basis.

Proposition

There are elements $\{H_{\alpha}\}_{\alpha \in R}$ spanning \mathfrak{h} such that $\beta(H_{\alpha})$ is an integer for every $\alpha, \beta \in R$ and $\alpha(H_{\alpha}) = 2$.

The Killing form

For $X, Y \in \mathfrak{g}$ we define the Killing form as

$$B(X,Y) = \mathsf{Tr}(\mathsf{ad}_X \circ \mathsf{ad}_Y)$$

Note that B is a linear map

$$B:\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$$

It also clear, by definition of B, that B is symmetric.

Nondegeneracy of the Killing form

Proposition

The Killing form is positive definite on the real subspace of \mathfrak{h} spanned by $\{H_{\alpha}\}_{\alpha}$.

Proposition

 \mathfrak{g} is semisimple iff its Killing form is nondegenerate.

Idea of the Proof: " \Rightarrow " Show that the kernel of B is an ideal. " \Leftarrow " Show that if I is an ideal, then I^{\perp} is also an ideal.

Killing form on \mathfrak{h}^*

Remark

The nondegeneracy of the bilinear form (on the real subspace spanned by $\{H_{\alpha}\}_{\alpha}$) supplies an isomorphism $\mathfrak{h} \to \mathfrak{h}^*$ under which

$$T_{lpha} := 2H_{lpha}/B(H_{lpha},H_{lpha}) \mapsto lpha$$

The Killing form on \mathfrak{h}^* is defined by

$$B(\alpha,\beta)=B(T_{\alpha},T_{\beta})$$

for two roots $\alpha, \beta \in R$ (pos.def. on the subspace spanned by R). By definition

$$\beta(H_{\alpha}) = \frac{2B(\beta, \alpha)}{B(\alpha, \alpha)}$$

The Weyl group

Proposition

For any $\alpha \in R$ the map (an involution)

$$egin{aligned} \mathcal{W}_lpha &: \mathfrak{h}^* o \mathfrak{h}^* \ eta &\mapsto eta - eta (\mathcal{H}_lpha) lpha \end{aligned}$$

leaves R invariant.

The **Weyl group** is the group generated by the set of automorphisms $\{W_{\alpha}\}_{\alpha \in R}$. By the above the set of roots R is invariant under the Weyl group.

Since

$$W_{\alpha}(\beta) = \beta - \frac{2B(\beta, \alpha)}{B(\alpha, \alpha)} \alpha$$

 W_{α} corresponds to a reflection in the hyperplane

$$\Omega_{\alpha} = \{\beta \in \mathfrak{h}^* : B(\beta, \alpha) = 0\}$$

Ordering of the roots Root systems Dynkin diagrams Classification of simple Lie algebras

Ordering of the roots

Pick a hyperplane in \mathfrak{h}^* such that no point of the lattice spanned by R is contained and call by convention the points on one side the plane **positive** and on the other negative. A positive root is called **simple** if it cannot be written as a sum of two positive roots. E.g.

Figure: Root system of $\mathfrak{sl}_3\mathbb{C},$ splitting of the space by the thick line, simple roots in red.

Angles between roots

Denote by \mathbb{E} the real subspace of \mathfrak{h}^* spanned by the roots together with the scalar product given by the Killing form (denoted simply by (\cdot, \cdot) . Recall: $\forall \alpha, \beta \in R$

$$n_{etalpha} := rac{2B(eta, lpha)}{B(lpha, lpha)} = eta(H_{lpha}) \in \mathbb{Z}$$

If θ is the angle between α and $\beta,$ then

$$n_{etalpha} = 2\cos(\theta) \frac{||eta||}{||lpha||}$$

Thus

$$n_{\beta\alpha}n_{\alpha\beta} = 4\cos^2(\theta) \le 4$$

Ordering of the roots Root systems Dynkin diagrams Classification of simple Lie algebras

Angles between roots

Hence $4\cos^2(\theta)$ is an integer. The allowed angles in $[0, \pi)$ are $\theta = \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6}$.

Example: Assume $|n_{\beta\alpha}| \ge |n_{\alpha\beta}|$ and $\theta = \frac{\pi}{6}$ for instance. Then $\cos(\theta) = \frac{\sqrt{3}}{2}$ and $n_{\beta\alpha}n_{\alpha\beta} = 3$. Hence $n_{\beta\alpha} = 3$ and $n_{\alpha\beta} = 1$ $\Rightarrow \frac{||\beta||}{||\alpha||} = \sqrt{3}$.

Ordering of the roots Root systems Dynkin diagrams Classification of simple Lie algebras

Examples of root systems

We call

$$r := \dim_{\mathbb{R}} \mathbb{E} = \dim_{\mathbb{C}} \mathfrak{h}$$

the rank of the Lie algebra.

 $\underline{rank \ 1}$ There is exactly one possible root system that can be drawn

This is precisely the root system of $\mathfrak{sl}_2\mathbb{C}$.

Ordering of the roots Root systems Dynkin diagrams Classification of simple Lie algebras

Examples of root systems

rank 2 There are 4 different root system in 2 dimensions.

Ordering of the roots Root systems **Dynkin diagrams** Classification of simple Lie algebras

Further symmetries of the root system

Recall: a Lie algebra is *simple* if it is non-abelian and contains no non-trivial ideals.

Lemma

A semisimple Lie algebra is simple iff its root system is irreducible i.e. cannot be written as a direct sum of two root systems.

Also recall that a simple root is a root that cannot be written as a sum of two positive roots. One can show that:

- If α, β simple, then neither $\alpha \beta$ nor $\beta \alpha$ are roots.
- The angle between two simple roots cannot be acute.
- The simple roots are linearly independent and span \mathbb{E} . Every positive root can be uniquely written as a non-negative integral linear combination of simple roots.

Ordering of the roots Root systems **Dynkin diagrams** Classification of simple Lie algebras

Dynkin diagrams

The Dynkin diagram of a root system is drawn as follows.

- Every simple root is represented by a node \circ .
- Two simple roots are connected in the following way
 - not connected, if $\theta = \frac{\pi}{2}$
 - one line, $\theta = \frac{2\pi}{3}$
 - two lines and an arrow pointing from the longer to the shorter root, if $\theta = \frac{3\pi}{4}$.
 - three lines and an arrow pointing from the longer to the shorter root, if $\theta = \frac{5\pi}{6}$.

Classification of simple Lie algebras

Theorem

The Dynkin diagrams of irreducible root systems are:

Ordering of the roots Root systems Dynkin diagrams Classification of simple Lie algebras

On the proof of the theorem

Given any Dynkin diagram of an irreducible root system, one can prove that:

- The Dynkin diagram contains no loops/cycles and is connected (i.e. it's a tree).
- Any node has at most three lines to it.