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Abstract

The aim of this report is to give a short introduction to boundary conformal field

theory. Start from the free boson example, the boundary conditions that

preserve the conformal symmetry will be built. The boundary states that satisfy

the boundary condition will be constructed. Some partition function will be

calculated in detail, and the important loop-channel – tree-channel equivalence

will be shown. Cardy condition will be introduced which put strong constrains to

the possible boundary condition that could exist. Finally,the ground state

degeneracy, or the g-function will be introduced.
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1 Introduction

In this report I will demonstrate how the presence of boundary change the picture

of conformal field theory.

In part I, starting with simple example of free boson, the conditions of bound-

ary that still preserve conformal symmetry will be shown. Then this idea will be

generalized so that the boundary states that satisfied boundary conditions can be

constructed. Then some cylinder partition functions will be calculated in analogy

with the calculation of torus partition function. During the calculation of parti-

tion functions, the loop-channel – tree channel equivalence which is a very essential

property of boundary conformal field theory will be shown.

And then, in part II, I will generalize the idea obtained in part I to Rational Con-

formal Field Theory. In RCFT, the Ishibashi states satisfy the gluing condition,

however the Ishibashi states are not real boundary states. The real boundary

states are linear combination of the Ishibashi states. And then the Cardy con-

dition will be introduced, which put strong constrains to the possible boundary

states that could exist.

Finally, in part III, I will show that how the presence of boundary change the value

of partition function in the way of ground state degeneracy, or g-function. And

show how its related to the Cardy condition.
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2 Boundary Condition and Boundary States

2.1 Conformal Invariance and Boundary Condition

We start by the discussing of boundary conformal field theory of free boson. In

order to demonstrate how the appearance change the picture of conformal field

theory, we look at the two-dimensional action for free boson X(σ, τ). It is given

by:

S=
1

4π ∫
dσdτ ((∂σX)

2
+ (∂τX)

2
) (1)

2.1.1 Least Action Principal in the Presence of Boundaries

Note now we consider a two-dimensional spacetime with boundaries such that

τ ∈ (−∞,+∞) denotes the two-dimensional time coordinate and σ ∈ [0, π] is the

coordinate parametrising the distance between the boundaries. The variation of

Figure 1: Two dimensional surface with boundaries

the action (1) could be easily obtained, but this time we take the boundary terms

into account. More specifically, we compute the variation as follows:

δXS =
1

π ∫
dσdτ ((∂σX) (∂σδX) + (∂τX) (∂τδX)) (2)

=
1

π ∫
dσdτ (− (∂2

σ + ∂
2
τ)X ⋅ δX + ∂τ (∂τX ⋅ δX) + ∂σ (∂σX ⋅ δX)) (3)

The equation of motion is obtained by requiring this expression to vanish for all

variations δX. The vanishing of the first term in (3) leads to (∂2
σ + ∂

2
τ )X = 0
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which is the familiar Klein-Gordon equation. The remaining two terms, which

interpreted as the boundary term can be written as follows:

1

π ∫
dσdτ (∂τ (∂τX ⋅ δX) + ∂σ (∂σX ⋅ δX)) (4)

=
1

π ∫
dσdτ ∇⃗ ⋅ (∇⃗XδX) (5)

=
1

π ∫B
dlB(∇⃗X ⋅ n⃗)δX (6)

where ∇⃗ = (∂τ , ∂σ)T and Stokes theorem was used to rewrite the integral ∫ dσdτ as

an integral over the boundary B. Furthermore, dlB denotes the line element along

the boundary and n⃗ is a unit vector normal to B. In our case, the boundary is

specified by σ = 0 and σ = π so that n⃗ = (0,1)T as well as dlB = dτ . The vanishing

of the last two terms in (3) can therefore be expressed as:

0 =
1

π ∫
dτ (∂σX) δX ∣

σ=π
σ=0 (7)

This equation allows for two different solutions and hence for two different bound-

ary conditions. The first possibility is a Neumann boundary condition given by

∂σX ∣σ=0,π = 0. The second possibility is a Dirichlet condition δX ∣σ=0,π = 0 which

implies ∂τX ∣σ=0,π = 0. In summary, the two different boundary conditions for the

free boson theory read as follows:

∂σX ∣σ=0,π = 0 Neumann Condition

δX ∣σ=0,π = ∂τX ∣σ=0,π = 0 Dirichlet Condition
(8)

2.1.2 Boundary Conditions for the Laurent Modes

Above, we have considered the BCFT in terms of the real variables (τ, σ) which

was convenient in order to arrive at Eq. (8). However, it is much more convenience

to use a description in terms of complex variables for more advanced studies. Thus

we now consider a mapping from the infinite strip described by the real variables

(τ, σ) to the complex upper half-plane H+ is achieved by z = exp (τ + iσ). The

mapping is illustrated in Fig. 2, and the boundaries σ = 0, π is mapped to the real

axis z = z̄

With this map, we can express the boundary conditions (8) for the field X(σ, τ)

in terms of the corresponding Laurent modes. Recalling that j(z) = i∂X(z, z̄), we
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Figure 2: Mapping from the infinite strip to the complex upper half-plane

find

∂σX = i(∂ − ∂̄)X = j(z) − j̄(z̄) = ∑
n∈Z

(jnz
−n−1 − j̄nz̄

−n−1) (9)

i ⋅ ∂τX = i(∂ + ∂̄)X = j(z) + j̄(z̄) =∑
n∈Z

(jnz
−n−1 + j̄nz̄

−n−1) (10)

where we used the explicit expressions for ∂ and ∂̄. For transforming the right-hand

side of these equations as z ↦ ew with w = σ + iτ , we employ j(z) = 1 as a primary

field of conformal dimension h = 1, In particular, we have j(z)=∂z/∂w1j(w) =

zj(w) leading to

∂σX = ∑
n∈Z

(jne
−n(τ+iσ) − j̄ne

−n(τ−iσ)) (11)

i ⋅ ∂τX = ∑
n∈Z

(jne
−n(τ+iσ) + j̄ne

−n(τ−iσ)) (12)

Thus both of the Neumann and Dirichlet boundary conditions at σ = 0 are easily

obtained as

∂σX ∣σ=0 = ∑
n∈Z

(jn − j̄n)e
−nτ (13)

∂τX ∣σ=0 = ∑
n∈Z

(jn + j̄n)e
−nτ (14)

Finally, we note that boundaries introduce relations between the chiral and the

anti-chiral modes of the conformal fields which read

jn − j̄n = 0 Neumann Condition

jn + j̄n = 0 Dirichlet Condition
(15)
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2.1.3 Conformal Symmetry

Let us remark that Eq. (15) apply to the Laurent modes of the two U(1) currents

j(z) and j̄(z̄) of the free boson theory leaving only a diagonal U(1) symmetry.

However, in addition there is always the conformal symmetry generated by the

energy-momentum tensor. Since boundaries in general break certain symmetries,

we expect also restrictions on the Laurent modes of energyCmomentum tensor.

Recall that the energy-momentum tensor T (z) and T̄ (z̄) can be expressed in terms

of the currents j(z) and j̄(z̄) in the following way:

T (z) =
1

2
N (jj) (z) , T̄ (z̄) =

1

2
N (j̄j̄) (z̄)

where N stands for normal ordering. And if we consider the Laurent mode of the

energy-momentum tensor T (z), which is L(n) = N(jj), we find that the Neumann

as well as the Dirichlet boundary conditions in Eq.(15) imply that

Ln − L̄n = 0 (16)

Note that this condition can be expressed as T (z) = T̄ (z̄) which in particular

means the central charges of the holomorphic and anti-holomorphic theories have

to be equal, i.e. c = c̄.

2.2 Boundary States and Gluing Condition

By far, we have described the boundaries for the free boson CFT implicitly via

the boundary conditions for the fields. However, in an abstract CFT usually there

is no Lagrangian formulation available and no boundary terms will arise from a

variational principle. Therefore, to proceed in the more general theories, we need

a more inherent formulation of a boundary.

In the following, we first take a quick look into the BCFT partition functions, and

then we will illustrate the construction of the so-called boundary states for the

example of the free boson.

2.2.1 Partition Function in Boundary Conformal Field Theory

For conformal field theories this is essentially the same object as in statistical

mechanics where it is defined as a sum over all possible configurations weighted
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with the Boltzmann factor exp(?βH). Similarly, it corresponds to the generating

functional in quantum field theory.

Definition

Let us now consider the one-loop partition function for BCFTs. To do so, we first

review the construction of partition functions for the boundary-free conformal field

theory and then compare with the present situation.

� we defined the one-loop partition function for CFTs without boundaries as

follows. We started from a theory defined on the infinite cylinder described by

(τ, σ), where σ was periodic and τ ∈ (−∞,∞). Next, we imposed periodicity

conditions also on the time coordinate τ yielding the topology of a torus

� In the present case, since the space coordinate σ is not periodic, we thus start

from a theory defined on the infinite strip given by σ= [0, π] and τ ∈ (−∞,∞).

For the definition of the one-loop partition function, we again make the time

coordinate τ periodic leaving us with the topology of a cylinder instead of a

torus. This is illustrated in Fig.3.

� Similarly to the modular parameter of the torus, there is a modular pa-

rameter t with 0 ≤ t<∞ parametrising different cylinders. The inequivalent

cylinders are described by {(τ, σ ∶)0 ≤ σ ≤ π,0 ≤ τ ≤ t}.

For the partition function, we need to determine the operator generating trans-

lations in time circling the cylinder once along the τ direction. Because boundaries

lead to an identification of the left- and right-moving sector as required by Eq. (16),

we see that this operator is the Hamiltonian say in the open sector

Hopen = (Lcyl.)0 = L0 −
c

24
(17)

In analogy to the case of the torus partition function, we then define the cylin-

der partition function as Z = Tr exp (−2πtHopen) which can be brought into the

following form:

ZC(t) = TrHB (qL0− c
24 ) (18)

where q = exp(−2πt), and C on Z denotes the cylinder partition function, and HB

denotes the Hilbert space of all states satisfying one of the boundary conditions
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Figure 3: Illustration of obtaining the cylinder partition function

Eq.(15).Since the partition function in BCFT is defined is such way, it is necessary

to understand those states satisfying the boundary conditions. We call those states

boundary states.

2.2.2 Boundary States

Let us start with the following observation. As illustrated in Fig.4, by interchang-

ing τ and σ, we can interpret the cylinder partition function of the boundary

conformal field theory on the left-hand side as a tree-level amplitude of the un-

derlying theory shown on the right-hand side. From a string theory point of view,

the tree-level amplitude describes the emission of a closed string at boundary A

which propagates to boundary B and is absorbed there. Thus, a boundary can be

interpreted as an object, which couples to closed strings. Note that in order to

simplify our notation, we call the sector of the BCFT open and the sector of the

underlying CFT closed. The relation above then reads

(σ, τ)open↔ (τ, σ)closed (19)

which in string theory is known as the world-sheet duality between open and closed

strings.

Let us now focus on the closed sector(tree level).The boundary for the closed

sector can be described by a coherent state in the Hilbert space H⊗ H̄ which takes
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Figure 4: Illustration Loop-channel - Tree-channel Equivalence

the general form

∣B⟩ = ∑
i,j̄∈H⊗H̄

αij̄ ∣i, j̄⟩ (20)

Here i, j̄ label the states in the holomorphic and anti-holomorphic sector of H⊗ H̄,

and the coefficients αij̄ encode the strength of how the closed string mode ∣i, j̄⟩

couples to the boundary ∣B⟩. Such a coherent state is called a boundary state and

provides the CFT description of a D-brane in string theory.

Boundary Conditions → Gluing Conditions

Now we can translate the boundary condition in Eq.(8) into the picture of bound-

ary states. By using (σ, τ)open↔ (τ, σ)closed, we obtain

∂τXclosed∣τ=0 ∣BN⟩ = 0 Neumann Condition

∂σXclosed∣τ=0 ∣BD⟩ = 0 Dirichlet Condition
(21)

Now for the example of free boson theory we would like to express the boundary

conditions Eq.(21) of a boundary state in terms of the Laurent modes. To do so,

we recall Eq.(11) and Eq.(12) and set τ = 0 to obtain

i ⋅ ∂τXclosed∣τ=0 = ∑
n∈Z

(jne
−inσ + j̄ne

+inσ) (22)

∂σXclosed∣τ=0 = ∑
n∈Z

(jne
−inσ − j̄ne

+inσ) (23)
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We then relabel n →?n in the second term of each line and observe again that

for generic σ, the summands are linearly independent. Therefore, the boundary

conditions Eq.(21) expressed in terms of the Laurent modes read

(jn + j̄−n) ∣BN⟩ = 0 Neumann Condition

(jn − j̄−n) ∣BD⟩ = 0 Dirichlet Condition
(24)

for each n.

Such conditions relating the chiral and anti-chiral modes acting on the boundary

state are called gluing conditions.

Here, we are going to state the solutions for the gluing conditions for the

example of the free boson and verify them thereafter. The boundary states for

Neumann and Dirichlet conditions in terms of the Laurent modes jn and j̄−n read

∣BN⟩ = 1
NN

exp(−
∞
∑
k=1

1
kj−kj̄−k) ∣0⟩ Neumann Condition

∣BD⟩ = 1
ND

exp(+
∞
∑
k=1

1
kj−kj̄−k) ∣0⟩ Dirichlet Condition

(25)

where NN and ND are normalisation constants to be fixed later. One possibility to

verify the boundary states is to straightforwardly evaluate the gluing conditions

Eq.(24) for the solutions Eq.(25) explicitly. However, in order to highlight the

underlying structure, we will take a slightly different approach.

Construction of Boundary States

In the following, we focus on a boundary state with Neumann conditions. First,

we rewrite the Neumann boundary state in Eq.(25) as

∣BN⟩ =
1

NN

exp(−
∞
∑
k=1

1

k
j−kj̄−k) ∣0⟩ (26)

=
1

NN

∞
∏
k=1

∞
∑
m=0

1
√
m!

(
j−k
√
k
)

m

∣0⟩⊗
1

√
m!

(
−j−k
√
k

)

m

∣0̄⟩ (27)

=
1

NN

∞
∑
m1=0

∞
∑
m2=0

⋅ ⋅ ⋅
∞
∏
k=1

1
√
mk!

(
j−k
√
k
)

mk

∣0⟩⊗
1

√
mk!

(
−j−k
√
k

)

mk

∣0̄⟩ (28)

where we first have written the sum in the exponential as a product and then we

expressed the exponential as an infinite series. Next, we note that the following
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states form a complete orthonormal basis for all states constructed out of the

Laurent modes j?k :

∣m⃗⟩ = ∣m1,m2,m3 ⋅ ⋅⋅⟩ =
∞
∏
k=1

1
√
mk!

(
j−k
√
k
)

mk

∣0⟩ (29)

We now introduce an operator U mapping the chiral Hilbert space to its charge

conjugate U ∶ H → H+ and similarly for the anti-chiral sector. In particular, the

action of U reads:

UjkU
−1 = −jk = −(j−k)

�, U j̄kU
−1 = −j̄k = −(j̄−k)

�, UcU−1 = c∗ (30)

where c is a constant and ∗ denotes complex conjugation. In the present example,

the ground state ∣0⟩ is non-degenerate and is left invariant by U . Knowing these

properties, we can show that U is anti-unitary. For this purpose, we expand a

general state as ∣a⟩ = ∑m⃗Am⃗ ∣m⃗⟩ and compute

U ∣a⟩ = ∑
m⃗

UAm⃗U
−1

∞
∏
k=1

1
√
mk!

(
Uj−kU−1

√
k

)

mk

U ∣0⟩ (31)

= ∑
m⃗

A∗
m⃗

∞
∏
k=1

(−1)
mk ∣m⃗⟩ (32)

where m⃗ denotes the multi-index m1,m2, .... By using that ∣m⃗⟩ and ∣n⃗⟩ form an

orthonormal basis, we can now show that U is anti-unitary

⟨Ub ∣ Ua⟩ = ∑
n⃗,m⃗

⟨n⃗∣Bn⃗

∞
∏
k=1

(−1)
nk+mkA∗

m⃗ ∣m⃗⟩ =∑
m⃗

A∗
m⃗Bm⃗ = ⟨a ∣ b⟩ (33)

After introducing an orthonormal basis and the anti-unitary operator U, we now

express Eq.(28) in a more general way which will simplify and generalise the fol-

lowing calculations:

∣B⟩ =
1

N
∑
m⃗

∣m⃗⟩⊗ ∣Ū⃗m⟩ (34)

Verification of the Gluing Conditions

Now we can verify the gluing conditions Eq(24) for Neumann boundary states,

we note that these have to be satisfied also when an arbitrary state ⟨ā∣ ⊗ ⟨b∣ is
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multiplied from the left. We then calculate

⟨ā∣⊗ ⟨b∣ (jn + j̄−n) ∣B⟩ =
1

N
∑
m⃗

⟨ā∣⊗ ⟨b∣ (jn + j̄−n) ∣m⃗⟩⊗ ∣Ū⃗m⟩ (35)

=
1

N
{∑
m⃗

⟨b∣ jn ∣m⃗⟩ ⟨ā∣ ∣Ū⃗m⟩ + ⟨b ∣ m⃗⟩ ⟨ā∣ j̄−n ∣Ū⃗m⟩} (36)

Next, due to the identifications on the boundary, the holomorphic and the anti-

holomorphic algebra are identical. We can therefore replace matrix elements in

the anti-holomorphic sector by those in the holomorphic sector. Using finally the

anti-unitarity of U and that ∑m⃗ ∣m⃗⟩ ⟨m⃗∣ = I, we find

⟨ā∣⊗ ⟨b∣ (jn + j̄−n) ∣B⟩ =
1

N
∑
m⃗

⟨b∣jn ∣m⃗⟩ ⟨a∣ ∣Um⃗⟩ + ⟨b ∣ m⃗⟩ ⟨a∣ j−n ∣Um⃗⟩ (37)

=
1

N
∑
m⃗

⟨b∣jn ∣m⃗⟩ ⟨m⃗ ∣ U−1a⟩ + ⟨b ∣ m⃗⟩ ⟨m⃗∣ j−n ∣U
−1a⟩ (38)

=
1

N
(⟨b∣ jn ∣U

−1a⟩ − ⟨b∣ jn ∣U
−1a⟩) = 0 (39)

Therefore, we have verified that the Neumann boundary state in Eq.(25) is indeed

a solution to the corresponding gluing condition in Eq.(24).

Note furthermore, the construction of boundary states and the verification of the

gluing conditions are also applicable for more general CFTs. for instance Rational

CFTs, which we will consider later.

Conformal Symmetry

In studying the example of the free boson, we have expressed all important quanti-

ties in terms of the U(1) current modes jn and j̄n However, in more general CFTs

such additional symmetries may not be present but the conformal symmetry gen-

erated by the energyCmomentum tensors always is. In view of generalisations

of our present example, let us therefore determine the boundary conditions of

the boundary states in terms of the Laurent modes Ln and L̄n. Mainly guided

by the final result, let us compute the following expression by employing that

T (z) = 1
2N (jj) (z) which implies Ln =

1
2 ∑k>−1 jn−kjk +

1
2 ∑k≤−1 jkjn−k:

(Ln − L̄−n) ∣BN,D⟩ (40)

=
1

2
(∑k>−1

(jn−kjk − j̄−n−kj̄k) +∑k≤−1
(jkjn−k − j̄kj̄−n−k)) ∣BN,D⟩ (41)
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If we apply the the gluing condition in Eq.(24) and continue the calculation, we

will find

(Ln − L̄−n) ∣BN,D⟩ = 0 (42)

In summary, we have shown that the boundary states are conformally symmetric.

2.3 Partition Function and Loop-Channel – Tree-Channel

Equivalence

In this subsection, we will calculate the partition function of the free boson in

the Neumann-Neumann boundary condition case with detail. We will calculate

the partition functions for both the open(loop) and closed(tree) sector, then we

will show that the partition functions in the open and closed sector are identical,

which leads to a very important result of BCFT, the loop-channel - tree-channel

equivalence.

2.3.1 Loop-Channel Partition Function ( Open Sector)

Figure 5: Illustration Loop-channel partition function

We know that we can consider the cylinder as a portion of torus, let us first re-

call the calculation of how the torus partition function was calculated.The partition

function for a conformal field theory defined on a torus with modular parameter
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τ is given by

Z(τ, τ̄) = TrH(qL0−c/24q̄L̄0−c̄/24) where q = exp(2πiτ) (43)

For the free boson, the Laurent modes of the energy-momentum tensor are written

using the modes of the current j(z) = i∂X(z). In particular, we have

L0 =
1

2
j0j0 +∑

k≥1

j−kjk (44)

Since the current j(z) is a field of conformal dimension one, we find jn ∣0⟩ = 0 for

n > −1 and that states in the Hilbert space have the following form:

∣n1, n2, n3, ...⟩ = j
n1
−1j

n2
−2j

n3
−3 ... ∣0⟩ with ni ≥ 0 (45)

And the current algebra for the Laurent modes reads

[jm, jn] =mδm,−n (46)

Next, let us compute the action of L0 on a state Eq(42), Clearly, j0 commutes

with all j?k and annihilates the vacuum. For the other terms we calculate

[j−kjk, j
nk
−k ] = nkkj

nk
−k (47)

and so we find for the zero Laurent mode of the energy-momentum tensor that

L0 ∣n1, n2, n3, ...⟩ =∑
k≥1

jn1
−1j

n2
−2 ...(j−kjk)j

nk
−k ... ∣0⟩ =∑

k≥1

knk ∣n1, n2, n3, ...⟩ (48)

We will utilise this last result in the calculation of the partition function where for

simplicity we only focus on the holomorphic part. We compute

Tr(qL0−c/24) (49)

= q−1/24
∞
∑
n1=0

∞
∑
n2=0

∞
∑
n3=0

... ⟨n1, n2, n3, ...∣
∞
∑
p=0

1

p!
(2πτ)

p
(L0)

p

∣n1, n2, n3, ...⟩ (50)

= q−1/24
∞
∑
n1=0

∞
∑
n2=0

∞
∑
n3=0

... ⟨n1, n2, n3, ...∣
∞
∑
p=0

1

p!
(2πτ)

p
(
∞
∑
k=1

knk)

p

∣n1, n2, n3, ...⟩(51)

= q−1/24
∞
∑
n1=0

∞
∑
n2=0

∞
∑
n3=0

... (q1⋅n1 ⋅ q2⋅n2 ⋅ q3⋅n3 ⋅ ...) (52)

= q−1/24 (
∞
∑
n1=0

q1⋅n1) ⋅ (
∞
∑
n2=0

q2⋅n2) ⋅ (
∞
∑
n3=0

q3⋅n3) ⋅ ... (53)

= q−1/24
∞
∏
k=1

∞
∑
nk=0

qk⋅nk (54)

= q−1/24
∞
∏
k=1

1

1 − qk
(55)
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where in the last step we employed the result for the infinite geometric series and

the ellipses indicate that the structure extends to infinity. We then define the

Dedekind η-function as

η (τ) = q1/24
∞
∏
n=1

1 − qn (56)

so that, including also the anti-holomorphic part, the partition function of a single

free boson reads

Zbos. (τ, τ̄) =
1

∣η (τ)∣
2 (57)

Using this result of the torus partition function we can determine the cylinder

partition function for the free boson. Recalling our calculation above and setting

τ = it, we obtain

TrHB(q
L0−c/24) =

1

∣η (it)∣
2 without j0 (58)

However, there we have assumed the action of j0 on the vacuum to vanish, which

in the case of string theory is in general not applicable. Taking into account the

effect of j0, we now study the three different cases of boundary conditions in turn.

� For the case of Neumann-Neumann boundary conditions, the momen-

tum mode π0=
1
2j0 is unconstrained and in principle contributes to the trace.

Since it is a continuous variable, the sum is replaced by an integral

TrHB(q
1
2
j20) =∑

n0

⟨n0∣e
−πt⋅j20 ∣n0⟩ =∑

n0

e−πt⋅n
2
0 → ∫

∞

−∞
dπ0e

−4πt⋅π2
0 (59)

where we utilised n0 = 2π0. Evaluating this Gaussian integral leads to the

following additional factor for the partition function:

1

2
√
t

(60)

� For the DirichletCDirichlet boundary conditions, we have seen that

j0 is related to the positions of the string endpoints. Therefore, we have a

contribution to the partition function of the form

q
1
2
j20 = exp

⎛

⎝
−2πt

1

2
(
xb0 − x

a
0

2π
)

2
⎞

⎠
= exp(−

t

4π
(xb0 − x

a
0)

2
) (61)
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� For the Mixed boundary conditions, we will not present the detail cal-

culation here, but only the result.

In summary, the cylinder partition functions(open sector) for the example of

the free boson read

Z
C(N,N)
bos. (t) =

1

2
√
t

1

η (it)
(62)

Z
C(D,D)
bos. (t) = exp(−

t

4π
(xb0 − x

a
0)

2
)

1

η (it)
(63)

Z
C(mixed)
bos. (t) =

¿
Á
ÁÀ η (it)

ϑ4(it)
(64)

2.3.2 Tree-Channel Partition Function ( Closed Sector)

Figure 6: Illustration Tree-channel partition function

Now we compute the partition function(tree-channel). Referring again to Fig.6,

in string theory, we can interpret this diagram as a closed string which is emitted at

the boundary A, propagating via the closed sector Hamiltonian Hclosed = L0 − L̄0 −

(c + c̄) /24 for a time τ = l until it reaches the boundary B where it gets absorbed.

In analogy to Quantum Mechanics, such an amplitude is given by the overlap

Z̃C (l) = ⟨ΘB∣ e−2πl(L0−L̄0−(c+c̄)/24) ∣B⟩ (65)
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where the tilde indicates that the computation is performed in the closed sector

(or at tree-level) and l is the length of the cylinder connecting the two bound-

aries. Furthermore, we have introduced the CPT operator Θ which acts as charge

conjugation (C), parity transformation (P) and time reversal (T) for the two-

dimensional CFT. The reason for considering this operator can roughly be ex-

plained by the fact that the orientation of the boundary a closed string is emitted

at is opposite to the orientation of the boundary where the closed string gets ab-

sorbed. Without a detailed derivation, we finally note that the theory of the free

boson is CPT invariant and so the action of Θ on the boundary states Eq.(25) of

the free boson theory reads

Θ ∣B⟩ =
1

N∗ ∣B⟩ , ΘcΘ−1 = c∗ (66)

Let us now compute the overlap of two boundary states Eq.(65) for the example

of the free boson. To do so, we note that for the free boson CFT we have c = c̄ = 1

and we recall that

L0 =
1

2
j0j0 +∑

k≥1

j−kjk (67)

and similarly for L̄0. Next, we perform the following calculation in order to evaluate

Eq.(65). In particular, we use j−kjkj
mk
k ∣0⟩ =mkkj

mk
k ∣0⟩ to find

q∑k≥1 j−kjk ∣m⃗⟩ =
∞
∏
k=1

∞
∑
p=0

(−2πiτ)
p

p!
(j−kjk)

p
∞
∏
l=1

1
√
ml!

(
j−l
√
l
)

ml

∣0⟩ (68)

=
∞
∏
k=1

∞
∑
p=0

(−2πiτ)
p

p!
(mkk)

p
∞
∏
l=1

1
√
ml!

(
j−l
√
l
)

ml

∣0⟩ (69)

=
∞
∏
k=1

qmkk ∣m⃗⟩ (70)

The cylinder diagram for the three possible combinations of boundary conditions

is then computed as follows.

� For the case of NeumannCNeumann boundary conditions, we have

j0 ∣BN⟩ = j̄0 ∣BN⟩ = 0 and so the momentum contribution vanishes. For the

17



remaining part, we calculate using Eq.(70) and Eq.(32)

Z̃
C(N,N)
bos. (l) =

e−2πl(− 2
24
)

N2
N

∑
m⃗

⟨m⃗∣ e−2πl∑k≥1 j−kjk ∣m⃗⟩ × × ⟨Ū⃗m∣ e−2πl∑k≥1 j̄−k j̄k ∣Ū⃗m⟩(71)

=
e−2πl(− 2

24
)

N2
N

∑
m⃗

∞
∏
k=1

e−2πlmkk(−1)∑
∞

l=1mle−2πlmkk(−1)∑
∞

l=1ml (72)

=
e
πl
6

N2
N

∞
∏
k=1

∞
∑
mk=0

(e−4πlk)

mk

(73)

=
1

N2
N

e
πl
6

∞
∏
k=1

1

1 − e−4πlk
(74)

where in the last step, we performed a summation of the geometric series.

Let us emphasise that due to the action of the CPT operator Θ, N2 is just the

square of N and not the absolute value squared. Then, with q = exp(2πiτ)

, τ = 2il and η(τ) the Dedekind η-function defined before, we find that the

cylinder diagram for NeumannCNeumann boundary conditions is expressed

as

Z̃
C(N,N)
bos. (l) =

1

N2
N

1

η (2il)
(75)

� Next, we consider the case of DirichletCDirichlet boundary conditions.

Noting that U now acts trivially on the basis states, we see that apart from

the momentum contribution the calculation is similar to the case with Neu-

mannCNeumann conditions. Here we just state the result without detail

calculation:

Z̃
C(D,D)
bos. (l) =

1

N2
D

exp(−
(xb0 − x

a
0)

2

8πl
)

1
√

2l

1

η (2il)
(76)

� Finally, we can express the cylinder diagram for mixed boundary condi-

tions as

Z̃
C(mixed)
bos. (l) =

√
2

NDNN

¿
Á
ÁÀ η (2il)

ϑ2 (2il)
(77)

2.3.3 Loop-Channel - Tree-Channel Equivalence

Let us come back to Fig.4. As it is illustrated there and motivated at the beginning

of this section, we expect the cylinder diagram in the closed and open sectors to be
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Figure 7: Illustration Loop-channel - Tree-channel Equivalence

related. More specifically, this relation is established by (σ, τ)open ⇔ (τ, σ)closed,

where σ is the world-sheet space coordinate and τ is world-sheet time. However,

this mapping does not change the cylinder, in particular, it does not change the

modular parameter τ . In the open sector, the cylinder has length 1/2 and circum-

ference t when measured in units of 2π, while in the closed sector we have length l

and circumference 1. Referring then to the discussion of modular transformation,

we find for the modular parameter in the open and closed sectors that

τopen =
it

1/2
= 2it, τclosed =

i

l
(78)

As we have emphasised, the modular parameters in the open and closed sectors

have to be equal which leads us to the relation

t = 1/2l (79)

This is the formal expression for the pictorial loop-channelCtree-channel equiv-

alence of the cylinder diagram illustrated in Fig.4. We now verify this relation for

the example of the free boson explicitly which will allow us to fix the normalisa-

tion constants ND and NN of the boundary states. Recalling the cylinder partition

function Eq.(75) in the open sector, we compute

Z
C(N,N)
bos. (t) =

1

2
√
t

1

η (it)
→ (t = 1/2l)→

1

2η (2il)
=
N2
N

2
Z̃
C(N,N)
bos. (l) (80)
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where we used the modular properties of the Dedekind function. Therefore,

requiring the results in the loop- and tree-channels to be related, we can fix

NN =
√

2 (81)

Next, for DirichletCDirichlet boundary conditions, we find

ND = 1 (82)

Finally, the loop-channelCtree-channel equivalence for mixed NeumannCDirichlet

boundary conditions can be verified along similar lines. This discussion shows that

indeed the cylinder partition function for the free boson in the open and closed

sectors is related via a modular transformation, more concretely via a modular

S-transformation.
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3 Cardy Condition

3.1 Boundary states for Rational CFT

Similar to free boson case in BCFT, we now generalize our finding in rational CFT,

where Rational CFT is CFT with finite number of primary fields. And we will

formulate the corresponding Boundary RCFT just in terms of gluing conditions

for the theory on the sphere.

Boundary Conditions

We consider Rational conformal field theories with chiral and anti-chiral symmetry

algebras A and Ā, respectively. For the theory on the sphere the Hilbert space

splits into irreducible representations of A⊗ Ā as

H =⊕
i,j̄
Mi,j̄Hi ⊗ H̄j (83)

where Mi,j̄ are the same multiplicities of the highest weight representation ap-

pearing in the modular invariant torus partition function. Note that for the case

of RCFTs we are considering, there is only a finite number of irreducible repre-

sentations and that the modular invariant torus partition function is given by a

combination of chiral and anti-chiral characters as follows:

Z (τ, τ̄) =∑
i,j̄

Mi,j̄χi (τ) χ̄j̄ (τ̄) (84)

Generalising the results from the free boson theory, we state without derivation

that a boundary state ∣B⟩ in the RCFT preserving the symmetry algebra A = Ā

has to satisfy the following gluing conditions:

(Ln − L̄n) ∣B⟩ = 0 Conformal Symmetry (85)

Ishibashi States

Next, let us recall that the charge conjugation matrix C maps highest weight

representations i to their charge conjugate i+. Denoting then the Hilbert space

built upon the charge conjugate representation by H+
i , we can state the important

result of Ishibashi:
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� For A = Ā and H̄i = H+
i , to each highest weight representation φi of A one

can associate an up to a constant unique state ∣βi⟩⟩ such that the gluing

conditions are satisfied.

Note that since the CFTs we are considering are rational, there is only a finite

number of highest weight states and thus only a finite number of such so-called

Ishibashi states ∣βi⟩⟩ We now construct the Ishibashi states in analogy to the

boundary states of the free boson. Denoting by ∣φi,m⟩ an orthonormal basis for

Hi , the Ishibashi states are written as

∣βi⟩⟩ =∑
m

∣φi,m⟩⊗U ∣φ̄i ,̄m⟩ (86)

where U is once again the anti-unitary operator.

We can easily prove that the Ishibashi states are solutions to the gluing condition

Eq.(85). Since it is completely analogous to the example of the free boson and so

we will not present it here.

Now, also the Ishibashi states satisfy the gluing condition, are they really

the boundary states? In order to answer this question, we need to consider the

following overlap:

⟨⟨βj ∣ e
−2πl(L0+L̄0− c+c̄24

) ∣βi⟩⟩ (87)

Utilising the gluing conditions for the conformal symmetry generator Eq.(85), we

see that we can replace L0 by L̄0 and c by c̄. Next, because the Hilbert spaces of

two different HWRs ψi and ψj are independent of each other, the overlap above

is only nonzero for i = j+. Note that here we have written the charge conjugate

j+ of the highest weight ψj because the hermitian conjugation also acts as charge

conjugation. We then obtain

⟨⟨βj ∣ e
−2πl(L0+L̄0− c+c̄24

) ∣βi⟩⟩ = δij+ ⟨⟨βj ∣ e
2πl(2il)(L0− c

24
) ∣βi⟩⟩ (88)

= δij+TrHi (q
L0− c

24 ) (89)

= δij+χi (2il) (90)

with χi the character of the highest weight ψi defined as

χi (τ) ∶= TrHi (q
L0− c

24 ) (91)
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Performing a modular S-transformation for this overlap, by the same reasoning as

for the free boson, we expect to obtain a partition function in the boundary sector.

However, because the S-transform of a character χi (2il) in general does not give

non-negative integer coefficients in the loop-channel, it is not clear whether to in-

terpret such a quantity as a partition function counting states of a given excitation

level.

Note, S-transform of χ(2il) should give non-negative integer coefficients as re-

quired by Verline formula:

Zαβ (t) =∑
j

njαβχj (it) (92)

As it turns out, the Ishibashi states are not the boundary states itself but

only building blocks guaranteed to satisfy the gluing conditions. A true boundary

state in general can be expressed as a linear combination of Ishibashi states in the

following way:

∣Bα⟩ =∑
i

Bi
α ∣βi⟩⟩ (93)

3.2 Cardy Condition

We have just stated that the real boundary states in RCFT are not Ishibashi states

but linear combination of them:

∣Bα⟩ =∑
i

Bi
α ∣βi⟩⟩ (94)

The complex coefficients Bi
α in Eq.(93) are called reflection coefficients and are

very constrained by the so-called Cardy condition.

Cardy Condition

This condition essentially ensures the loop-channelCtree-channel equivalence.

Indeed, using relation Eq(89) and choosing normalisations such that the action of

the CPT operator Θ introduced before reads:

Θ ∣Bα⟩ =∑
i

(Bi
α)

∗
∣βi+⟩⟩ (95)
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the cylinder amplitude between two boundary states of the form (93) can be ex-

pressed as follows:

Z̃αβ (t) = ⟨ΘBα∣ e
−2πl(L0+L̄0− c+c̄24

) ∣Bβ⟩ (96)

= ∑
i,j

Bj
αB

i
β ⟨⟨βj ∣ e

−2πl(L0+L̄0− c+c̄24
) ∣βi⟩⟩ (97)

= ∑
i

Bi
αB

i
βχi (2il) (98)

Performing a modular S-transformation l ↦ 1
2t on the characters χi , this closed

sector cylinder diagram is transformed to the following expression in the open

sector:

Z̃αβ (l)→ Z̃αβ (
1

2t
) =∑

i,j

Bi
αB

i
βSijχj (2il) =∑

j

njαβχj (it) = Zαβ (t) (99)

where Sij is the modular S-matrix and where we introduced the new coefficients

njαβ. Now, the Cardy condition is the requirement that this expression can be

interpreted as a partition function in the open sector. That is, for all pairs of

boundary states ∣Bα⟩ and ∣Bβ⟩ in a RCFT, the following combinations have to be

non-negative integers:

njαβ =∑
i,j

Bi
αB

i
βSij ∈ Z

+
0 (100)

Construction of Boundary States

The Cardy condition just illustrated is very reminiscent of the Verlinde formula,

where a similar combination of complex numbers leads to non-negative fusion

rule coefficients. For the case of a charge conjugate modular invariant parti-

tion function, that is, when the characters χi(τ) are combined with χ̄i+ (τ̄) as

Z =∑i χi (τ) χ̄i+ (τ̄), we can construct a generic solution to the Cardy condition by

choosing the reflection coefficients in the following way:

Bi
α=

Sαi
√
S0i

(101)

Note, for each highest weight representation ψi in the RCFT, there exists not

only an Ishibashi state but also a boundary state, i.e. the index α in ∣Bα⟩ also

runs from one to the number of HWRs. Employing then the Verlinde formula:
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Nk
ij =

N−1

∑
m=0

SimSjmS
∗

mk

S0m
,and denoting the non-negative integer fusion coefficients by

Nα
jβ, we find that the Cardy condition for the coefficients njαβ is always satisfied:

njαβ =∑
i

SαiSβiSij
S0i

=∑
i

SαiSβiS∗ij+

S0i

= N j+

αβ ∈ Z
+
0 (102)

Note that here we employed S∗ij = Sij+ which is verified by noting that S−1 = S∗.
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4 G-function

Now we are going to discuss how the presence of boundary change the value of

partition function. A good indicator is the so-called g-function. It was introduced

by Affleck and Ludwig as a measure of the ground state degeneracy of a conformal

boundary condition.

Ground State Degeneracy

Consider the partition function of a classical statistical-mechanical system de?ned

on a cylinder of length l. Among the characteristics of the model might be bound-

ary scales depending on the boundary conditions α and β imposed at the two

ends of the cylinder; we will highlight the role of these quantities by denoting the

partition function: Zαβ(l) If l is taken to in?nity , then

Zαβ (l) ∼ Aαβe
−lE0 (103)

where E0 is the ground state energy of the model. To derive this asymptotic l-

Figure 8: The space-time is periodic and has boundary states at the ends

dependence, it is sufficient to treat the boundary conditions as boundary states

∣α⟩ in a formalism where time runs along the length of the cylinder, and states are

propagated by a bulk Hamiltonian Hcirc.:

Zαβ (l) = ⟨α∣ exp(−lHcirc.) ∣β⟩ (104)

At large l the contribution of the ground state ∣0⟩ dominates, establishing Eq.(103)

and also giving

Aαβ =
⟨α ∣ 0⟩ ⟨0 ∣ β⟩

⟨0 ∣ 0⟩
(105)
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The inner products appearing in Eq.(105) should in general contain a term corre-

sponding to a free-energy per unit length f0, i.e.

log
⟨α ∣ 0⟩

⟨0 ∣ 0⟩
1/2 = −f0 + log gα (106)

Where gα does not depend on length or mass or any energy scale, only depends on

boundary.

This is to say, if we consider the logarithm of the partition function Zαβ, the effect

of boundaries leads to one extra term logg, i.e.

logZαβ → logZαβ + log g, Zαβ → g ⋅Zαβ (107)

For g is defined as

g = ⟨0 ∣ α⟩ ⟨β ∣ 0⟩ , g = gαgβ, gα = ⟨0 ∣ α⟩ (108)

the g-function is called the ground state degeneracy. For the example of free boson,

the torus partition function is given by:

ZT
bos.(t) =

1

η(it)
(109)

and the cylinder partition function for Neumann-Neumann boundary conditions

is given by:

Z
C(N,N)
bos. (t) =

1

2
√
t

1

η(it)
(110)

Using the method above, the g-function could be calculated: g = 1√
2
, which means

the effect of boundaries change the value of partition function by 1√
2
.

Cardy Condition Revisited

Once again, let us consider the cylinder partition function with Verlinde formula:

Z0
αβ = Tr(e

π
l
(L0−c/24)) =∑

i

niαβχi (111)

Now, the infinite limit of l could be expressed as modular transformation for the

character:

χi =∑
j

Sijχj (112)
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at infinite limit of l, only ground state contributes to the expression, thus:

Zαβ → Tr(e
π
l
(L0−c/24))∑

i

niαβSi0 → g ⋅Z0
αβ (113)

with

g = gαgβ =∑
i

niαβSi0 (114)

We can interpret this result as: the consistency of this formula with gα = ⟨0 ∣ α⟩

puts certain constrain on the possible boundary states and the coefficients n. This

constraint is nothing but Cardy Condition.
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